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Abstract

Various strategies can be applied to improve reliability at certain costs, including equipment redun-

dancy, product storage, and maintenance, which gives rise to the problem of optimally allocating

the reliability improvement costs among various strategies and balancing them against the poten-

tial loss due to unavailabilities. Motivated by the reliability concerns of air separation units, we use

Markov Decision Process to model the stochastic dynamic decision making process of condition-

based maintenance assuming bathtub shaped failure rate curves of single units, which is then

embedded into a non-convex MINLP (DMP) that considers the trade-off among all the decisions.

An initial attempt to directly solve the MINLP (DMP) for a mid-sized problem with several global

solvers reveals severe computational difficulties. In response, we propose a custom two-phase algo-

rithm that greatly reduces the required computation effort. The algorithm also shows consistent

performance over randomly generated problems around the original example of 4 processing stages

and problems of larger sizes.

Keywords: reliability design, maintenance, optimization, Markov Decision Process, MINLP

1. Introduction

Process reliability is important to chemical plants, as it directly impacts the availability of the

end product, and thus the profitability. In particular, what motivated this work is the reliability of

air separation units that supply gas products to designated customers through pipelines, which is
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at an even higher stake since the interruption of the pipeline supply will also result in production

interruption at the customer site.

If we focus on the system design and the reliability of the process itself, there is a clear trade-off

between higher expected availability of the process and higher capital investment for backup units.

A few works have looked into this point. Thomaidis and Pistikopoulos (1994, 1995) incorporate

the reliability index of each unit as part of process design optimization considering flexibility and

reliability. Aguilar et al. (2008) address reliability in utility plant design and operation by consid-

ering a few pre-specified redundancy selection alternatives and failure scenarios. Ye et al. (2018)

propose a general mixed-integer programming framework for the optimal selection of redundant

units.

Another strategy to improve product availability for air separation units is to provide buffer

storage of the liquified products, which can be evaporated to sustain the pipeline supply when the

air separation units fails. This strategy also incurs costs of building the tanks and maintaining

the stock, which increases with the size of the storage tanks (Terrazas-Moreno et al., 2010). Our

previous work (Ye et al., 2020) has looked into the exact modeling of the stochastic process of

liquid storage consumption.

Quantifying and optimizing the maintenance efforts after the commissioning of a plant is a

well recognized topic in industry (Van Rijn, 1987) as well as in academia. Tan and Kramer

(1997) present a general framework for preventive maintenance optimization utilizing Monte Carlo

Simulation and genetic algorithms overcoming certain drawbacks of analytics based methods and

Markov based methods. With regards to timing and resource allocation of maintenance tasks,

Pistikopoulos et al. (2001) optimize maintenance alongside with normal production tasks. Cheung

et al. (2004) address a short-term scheduling problem of plant shutdown, overhaul, inspection

and startup actions within one plant. Amaran et al. (2016) focus on optimizing the maintenance

turnaround planning of integrated chemical sites for minimum cost accounting for workload and

manpower uncertainties. Achkar et al. (2019) optimize the scheduling of general maintenance tasks

on oil and gas wells and surface facilities.

However, there have only been limited number of works reported on the simultaneous optimiza-

tion of design and maintenance schedule (Vassiliadis and Pistikopoulos (2001), Nápoles-Rivera et al.

(2013), Liang and Chang (2008), Godoy et al. (2015), Wibisono et al. (2014)), especially ones that
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model the stochastic process of failure and maintenance in detail (Redutskiy, 2017). Another exam-

ple of the latter is our previous work (Ye et al., 2019), where the process is modeled with a Markov

Chain, where the failure rates are considered constant for the entire horizon, and are subject to the

inspection frequency decision. It was shown in the paper that incorporating maintenance decisions

into the economic trade-off can have major impact on the overall cost. As an improvement, in

this work, we incorporate the more realistic assumption that the failure rates of single units vary

with time, and model the condition-based maintenance decisions as the action policy of Markov

Decision Process, which largely refers to Amari et al. (2006), while the latter work only focuses on

one unit and has no design component.

Markov Decision Process is a one-step look-ahead framework for dynamic decision making

under uncertainty that was first proposed by Bellman (1957). It has since received wide interest

and has had broad applications (White, 1993), such as inventory management (Ahiska et al. (2013),

Yin et al. (2002)), planning and scheduling (Shin et al., 2017) , investment (Bäuerle and Rieder,

2011), and maintenance (Byon and Ding (2010), Chen and Trivedi (2005)), as well as the recently

rising reinforcement learning area (Powell, 2004), where MDP is used as the basic framework for

describing the behavior of various systems including human beings. The optimality condition of a

Markov Decision Process is given by the Bellman equation. Basic ways of finding the solution that

satisfy the Bellman equation include linear programming, policy iteration and value iteration. In

this work, we employ a slightly modified version of the linear programming formulation, which is

mixed-integer and has a more specific objective function to suit our need of simultaneous design

and operations optimization.

In section 2, we describe the problem scope including the decisions to make and their correspon-

dence to the modeling components. Section 4 presents the mathematical model, where we start by

introducing the basics of Markov Decision Process in section 4.1. Then, in section 4.2, we propose

the MINLP model as described in the last paragraph. In order to keep the model tractable, each

processing stage is modeled as an MDP (Markov Decision Process), and the stage interdependency

is captured via functional relationships of the MDP parameters. In section 4.3, we describe the

interaction between the MDPs of all the processing stages and its impact on the entire system.

In section 5.1, we propose to exactly linearize the bilinear terms in the model. Furthermore, in

section 5.2, we show a reformulation of the objective function that helps to tighten the objective
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bounds.

In section 6, we present an example with 4 processing stages to discuss how to determine

the basic parameters of the MDPs based on the reliability and price specifications of individual

units, and show that directly solving the original MINLP model faces considerable computational

difficulties. It motivates us in section 7 to propose an algorithm with two phases: Enumeration and

Bounding, and Rewards Iteration. The objective reformulation proposed in section 5.2 also helps

with the proof of a proposition that supports the validity of the algorithm. Finally in section 8, we

show that the proposed algorithm is efficient on the example introduced in section 6 as well as 20

problems randomly generated around it. The performance of the algorithm on larger problems is

slightly less stable as reflected by solving another group of 20 randomly generated problems with

6 processing stages.

2. Problem statement

The decisions to make include the selection of redundant units and sizes of storage tanks, as

well as basic maintenance policies for a chemical process. As our motivating example, the general

flowsheet of an air separation unit is shown in Figure 1, where the failure of one stage results in the

failure of the entire process. Following common practice of the air separation industry (Linde, plc

(2020), Chart (2020)), the sizes of the storage tanks will be selected from a few discrete standard

options.

Figure 1: Air separation process

If more redundant units are selected for critical processing stages, such as compressors, the plant
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will be less likely to fail. Also, as discussed in the introduction, the liquid oxygen and liquid nitrogen

can be evaporated to sustain the pipeline supply when the air separation units fails, and the larger

the storage tanks are, the longer are the downtime periods that can be covered. Furthermore,

in the operation phase, placing more efforts into maintenance can increase the process reliability.

Each pipeline interruption will incur a fixed amount of penalty, which is to be balanced against

the costs of the above strategies to increase availability. To address this problem, we propose a

mixed-integer programming model based on a Markov Decision Process framework. Figure 2 shows

the conceptual modeling structure. Assuming that for a process, the base flowsheet is given, the

exact design and maintenance policy decisions are described in section 2.1 and 2.2, respectively.

Figure 2: Conceptual modeling structure

2.1. Design decisions

There are two major design decisions:

• The number and selection of redundant units of different prices and reliability specifications

for each processing stage. The binary variable zk,h = 1 indicates that in processing stage k

(e.g. compressor stage), design h (e.g. compressor 1 and compressor 3 each of 100% capacity)

is selected.

• The sizes of end product storage tanks. Binary variable xp,n = 1 means that for product p

(e.g. Nitrogen), tank size n (e.g. 100,000 gallon) is selected.

2.2. Maintenance policy decisions

The bathtub curve shown in Figure 3(a) is widely accepted on how the failure rate of a unit

varies with time (Henley and Kumamoto (1981), Barlow and Proschan (1975), etc.). We propose
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to capture the bathtub-like deterioration/failure process of the equipment and the condition-based

maintenance with a discrete-time Markov Decision Process. As shown in Figure 3(b), the bathtub

curve is discretized into three ”working states” of the unit: 1. Infant, 2. Stable, and 3. Worn-out.

When a unit is not working, there are three other possible states: 4. Stand-by, 5. Stopped, and 6.

Failed.

(a) (b)

Figure 3: The bathtub curve

At each state, there is a finite number of possible actions: Inspect-T insm (which means to carry

out inspection after T insm days. m ∈ M is the index set of possible inspection intervals), Stop,

Maintain, or Repair. One and only one action is to be assigned to each state, which is the main

decision to make in terms of the maintenance policy.

Figure 4: State space and action space of single units maintenance policy

Figure 4 shows the state space and action space of a processing stage with only one unit. When

in the Infant state, no action will be taken except for waiting for the unit to either fail or proceed

to the Stable state (blue arcs). When in the Stable state and the Worn-out state, the unit can be
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stopped (green arcs), which leads to state Stopped with probability 1. From the Stable state, the

action can also be Inspect-T insm , m ∈M (blue arcs), in which case, the next state will be revealed

at the next inspection, and the probability of going to each of the next possible states depends on

the inspection interval T insm . When in the Stopped state or the Failed state, the only applicable

actions are to maintain (the yellow arc) or to repair (the red arc), respectively, which leads back to

the Stable state if the unit is needed instantly, or to the Stand-by state if other units in the stage

is working properly. With one unit, the Stand-by state will always be skipped. When there are

multiple units, actions at the Stand-by state are by no choice and denoted as None, and it will lead

back to the Infant state with probability 1. That is because the only transition out of a Stand-by

state is to the Infant state, and is always accompanied by the stopping or failing of other units,

which are already accounted for. The Stand-by state being followed by the Infant state accounts

for the higher likelihood of failure of the units after a period of idling.

3. Nomenclature

Indexes

k Processing stage

h Unit selection of single stage

p Product

n Storage size option

s, s′ State

a Action

Sets

K Processing stages

Hk Unit selections of stage k

P Product kinds, i. e. oxygen, nitrogen, etc.

Np Storage size options for product p

Sk,h Possible states of stage k with unit selection h

A(s) Possible actions of state s

Parameters
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CUk,h The investment cost of unit selection h at stage k

CTp,n The investment cost of tank size n for product p

Pk,h(s, a, s′) The probability of transitioning from state s to state s′ if take action a in

stage k with unit selection h

Ridvk,h(s, a, s′) The instant operational cost of transitioning from state s to state s′ if take

action a in stage k with unit selection h

Ridv penk,h (s, a, s′) The instant penalty incurred cost of transitioning from state s to state s′ if

take action a in stage k with unit selection h

(Rpenk,h (s, a, s′))L The lower bound of Rpenk,h (s, a, s′)

tresk,h(s, a) The expected residence time of state s if take action a in stage k with unit

selection h

Variables

zk,h Binary variable that indicates the selection of design h at stage k

xp,n Binary variable that indicates the selection of storage size n for product p

yp,n,k,h Binary variable that indicates the selection of storage size n for product p

and design h at stage k at the same time

wk,h(s, a) Binary variable that indicates the selection of action a at state s of stage k

with unit selection h

vk,h(s) The value of state s of stage k with unit selection h

πk,h(s) The stationary probability of state s of stage k with unit selection h

πsubk,h (s, a) The disaggregated stationary probability of state s of stage k with unit se-

lection h when choosing action a

Rk,h(s, a, s′) The instant cost of transitioning from state s to state s′ if take action a in

stage k with unit selection h

Rpenk,h (s, a, s′) The instant penalty incurred cost of transitioning from state s to state s′ if

take action a in stage k with unit selection h that is discounted by t ratioAk

based on Ridv penk,h (s, a, s′)

R ypenk,h (s, a, s′) The aggregated variable of yp,n,k,hR
pen
k,h (s, a, s′)

t ratioAk The portion of time state k being available
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4. Mathematical Model

As mentioned above, we propose to model the process with MDP (Markov Decision Process),

as preparation for which the state space representation is formulated as in the example shown in

Figure 4. Arguably, the exact modeling of the system with multiple processing stages would require

construction of the entire state space and state-action pairs, which can become intractable as the

number of stages and potential redundant units increase, as shown in Table 1.

Table 1: Numbers of possible states in systems of different sizes

SMALL MEDIUM LARGE

Number of stages 2 3 4

Number of potential units per stage 2 3 4

Number of possible states 425 430,000 3,576,336,546

Therefore, we take a simplified approach to model each processing stage as an MDP (Markov

Decision Process), and capture the stage interdependency via functional relationships of the MDP

parameters. In section 4.1, we introduce the basic principles of MDP, especially the optimal con-

dition and how to compute the stationary distribution of the reduced Markov Chain given the

optimal actions, which constitute the theoretical foundation of this paper and the mathematical

prgramming model afterwards. In section 4.2, we derive the optimization formulation of the MDP

of each stage. In section 4.3, the interaction between the MDP of each processing stage is modeled.

Then in section 5, we propose to improve the model formulation by linearizing the bilinear terms

into two constraints, and reformulating the objective function into an expression with tighter lower

bounds for relaxations that arise when dropping the discrete requirements. However, we will show

later that directly solving the original MINLP model still faces considerable computational difficul-

ties, which motivates us to propose a customized two-phase algorithm. The objective reformulation

proposed in section 5 also helps with the proofs of the supporting propositions of the algorithm.

4.1. Markov Decision Process and the Optimality Condition

A Markov Chain describes the stochastic transitioning behavior of a system among a finite set

of states. On top of that, a Markov Decision Process allows the decision maker to choose an action
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at each state to control the system transitioning behavior. At the same time, an instant reward

R (could be positive or negative) is associated with certain action at certain state and the next

state. For example, in Figure 5, compared to the Markov Chain on the left, in the Markov Decision

Process shown on the right, actions A1 or A2 could result in different transition probabilities P

between state S1 and S2, and the rewards R depend on current state, the action, and the next

state.

Figure 5: Markov Chain (left) vs. Markov Decision Process (right)

A policy δ of a Markov Decision Process is a projection from its state space S to the action

space A.

δ : S → A

For the example in Figure 5, a possible policy is δ(S1) = A1, δ(S2) = A2, in which case the

transition diagram becomes as shown in Figure 6, which reduces back to a Markov Chain.
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Figure 6: Reduced transition diagram

Under a certain policy δ, a value function is defined for each state s as in equation (1). The

first term is the reward associated with s and its designated action according to δ. The second

term is the weighted sum of the value function of the next possible states s′ ∈ S discounted by a

future factor γ. In this paper, we assign a 10% discount factor for γ.

Vs(δ) =
∑
s′∈S

P (s, δ(s), s′) · (R(s, δ(s), s′) + γ · Vs′(δ)), s ∈ S (1)

With the reward function R, the transition matrix P and the discount factor γ given, the optimal

policy for maximum overall value V ∗s is defined as in equation (2), where a ∈ As is the set of

possible actions for state s.

V ∗s = max
a∈As

∑
s′∈S

P (s, a, s′) · (R(s, a, s′) + γ · V ∗s′), s ∈ S (2)

In our case, the instant rewards R(s, a, s′) are the negative of the costs. Therefore, we let Us = −Vs

and flip the sign of the conventional expression. We then remove the negative sign before R(s, a, s′),

and let R(s, a, s′) be the instant costs of going from state s to state s′ by action a. We still denote

it as instant rewards to distinguish it from the breakdown cost parameters. With that, (3) is

equivalent to (2).

U∗s = min
a∈As

∑
s′∈S

P (s, a, s′) · (R(s, a, s′) + γ · U∗s′), s ∈ S (3)

The equivalent linear programming model is shown in (4) (d’Epenoux (1963), Puterman (2014)),

where cs are arbitrary positive weights. With given P (s, a, s′) and R(s, a, s′), problem (4) solves
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for the optimal value of each state and the corresponding policy. Notice that if the optimal policy

selects action a for state s, then the optimal dual variable of constraint (s, a) is greater than 0;

otherwise it equals 0.

max
∑
s∈S

csUs

s.t.Us ≤
∑
s′∈S

P (s, a, s′) · (R(s, a, s′) + γ · Us′), s ∈ S, a ∈ As
(4)

As mentioned above, the weights in the objective function, cs, do not affect the solution of the

optimal actions in the above LP model. But in order for the objective function to reflect the

operational cost, the weights are set equal to the stationary probability distribution π∗s of the

reduced Markov Chain under the optimal policy. π∗s satisfies the following constraints.

∑
s∈S

π∗s = 1 (5)

∑
s∈S

π∗sP (s, a∗(s), s′) = π∗s , ∀s′ ∈ S (6)

Below we show how to enforce the LP formulation minimizing operational cost (4), as well as the

constraints (5) and (6) in the overall optimization model.

4.2. Mixed integer programming formulation based on the MDP optimal condition of each stage

As indicated in the problem statement, we index the processing stages by k, the potential

designs of individual stages by h, the products by p, and the storage tank sizes by n. The binary

variable zk,h indicates the selection of design h of stage k, while the binary variable xp,n indicates

the selection of tank size n for product p. These binary variables satisfy equations (7) and (8).

∑
h∈Hk

zk,h = 1, ∀k ∈ K (7)

∑
n∈Np

xp,n = 1. ∀p ∈ P (8)

Based on the above, we define the binary variable yp,n,k,h that indicates the overall design decision,

which satisfy the logical relationship (9), where the logical clauses are true when design h of stage

k and size n of product p are selected simultaneously.

Yp,n,k,h ⇐⇒ Zk,h ∧Xp,n, ∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk (9)
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Another way of expressing the above logical relationship is (10) and (11), which can be directly

translated into the algebraic constraints (12) and (13) that are tighter than those translated from

(9) (see Castro et al. (2008) for proof).

∨
n∈Np

Yp,n,k,h ⇐⇒ Zk,h, ∀k ∈ K,h ∈ Hk, p ∈ P (10)

∨
h∈Hk

Yp,n,k,h ⇐⇒ Xp,n, ∀p ∈ P, n ∈ Np, k ∈ K (11)

∑
n∈Np

yp,n,k,h = zk,h, ∀k ∈ K,h ∈ Hk, p ∈ P (12)

∑
h∈Hk

yp,n,k,h = xp,n, ∀p ∈ P, n ∈ Np, k ∈ K (13)

The state space of design h in stage k is denoted as Sk,h. Similarly, the transition probability matrix

is Pk,h(s, a, s′), s, s′ ∈ Sk,h, a ∈ A(s), and the reward matrix is Rp,n,k,h(s, a, s′), s, s′ ∈ Sk,h, a ∈ A(s).

The constraint stated in the general formulation (4) is adapted into constraint (14) that involves

the design decision yp,n,k,h. If
∑

p∈P,n∈Np yp,n,k,h = 0, it means that design h in stage k is not

selected, and then the first term on the right-hand-side of (4) is zero, making vk,h(s) = 0, s ∈ Sk,h
a feasible solution. Considering that in the objective function below, vk,h(s) are being minimized

with non-negative weights, vk,h(s) = 0, s ∈ Sk,h is part of the optimal solution.

vk,h(s) ≤
∑

s′∈Sk,h

(Pk,h(s, a, s′) ·
∑

p∈P,n∈Np

yp,n,k,hRp,n,k,h(s, a, s′))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (14)

The objective function is shown in (15), which minimizes the capital cost of the selected processing

units (CUk,h) and storage tanks (CTp,n), plus the weighted state values of the MDPs (πk,h · vk,h),

which takes into consideration both the operational costs and the reliability values.

min
∑

p∈P,n∈Np

xp,nC
T
p,n +

∑
k∈K,h∈Hk

zk,hC
U
k,h +

∑
k∈K,h∈Hk

∑
s∈Sk,h

πk,h(s)vk,h(s) (15)

Notice that in the original LP form shown in (4), the weighted sum of the value functions (vk,h(s) in

the model) are maximized in the objective function, which enforces the equality at the action that

yields the minimum value. However, as shown in (15), the weighted sum of the value functions

have to be minimized together with the investment costs. Therefore, we need another set of
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constraints to make sure that vk,h(s) does not become unbounded. In disjuction (16), Boolean

variable Wk,h(s, a) is true if action a is the optimal action for state s, in which case it enforces that

vk,h(s) be greater than or equal to the right hand side.
Wk,h(s, a)

vk,h(s) ≥
∑

s′∈Sk,h (Pk,h(s, a, s′) ·
∑

p∈P,n∈Np yp,n,k,hRp,n,k,h(s, a, s′))

+γ
∑

s′∈Sk,h Pk,h(s, a, s′) · vk,h(s′)

 ∨ [
¬Wk,h(s, a)

]
(16)

It can be translated via Big-M reformulation into the algebraic constraint (17).

M(1− wk,h(s, a)) + vk,h(s) ≥
∑

s′∈Sk,h

(Pk,h(s, a, s′) ·
∑

p∈P,n∈Np

yp,n,k,hRp,n,k,h(s, a, s′))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (17)

Logic condition (18) requires that if design h is not selected, meaning zk,h = 0, then any action for

that design is not valid. Constraint (19) is the corresponding algebraic equation of (18).

∨
a∈As

Wk,h(s, a) ⇐⇒ Zk,h, ∀k ∈ K,h ∈ Hk, s ∈ Sk,h (18)

∑
a∈As

wk,h(s, a) = zk,h, ∀k ∈ K,h ∈ Hk, s ∈ Sk,h (19)

πk,h(s) is the stationary probability of state s in the state space of the MDP of design h in stage

k, which satisfies (20), where a∗(s) is the optimal action at state s.

∑
s∈Sk,h

πk,h(s)Pk,h(s, a∗(s), s′) = πk,h(s′), ∀k ∈ K,h ∈ Hk, s
′ ∈ Sk,h (20)

To represent (20) by algebraic inequalities, we define πsubk,h (s, a) as the disaggregated variables of

πk,h(s) with regard to action a as shown in (21), whose valued are related to the Boolean variables

Wk,h(s, a) as shown in (22), which translates into algebraic constraint (23).

∑
a∈As

πsubk,h (s, a) = πk,h(s), ∀k ∈ K,h ∈ Hk (21)

 Wk,h(s, a)

πsubk,h (s, a) ≤ 1

 ¬Wk,h(s, a)

πsubk,h (s, a) = 0

 (22)

πsubk,h (s, a) ≤ wk,h(s, a), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ As (23)
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Given the relationship shown in (23), (21) can be substituted into (20), which yields (24).∑
s∈Sk,h

∑
a∈As

πsubk,h (s, a)Pk,h(s, a, s′) = πk,h(s′), ∀k ∈ K,h ∈ Hk, s
′ ∈ Sk,h (24)

Furthermore, as shown in (25), we require that πk,h(s) are 0 if design h is not selected for stage

k, and that πk,h(s) sum up to 1 if otherwise. The condition can be expressed with the algebraic

constraint shown in (26) Zk,h∑
s∈Sk,h πk,h(s) = 1

 ∨
 ¬Zk,h∑

s∈Sk,h πk,h(s) = 0

 (25)

∑
s∈Sk,h

πk,h(s) = zk,h, ∀k ∈ K,h ∈ Hk (26)

4.3. Stage interdependency

As mentioned in section 2, the processing stages impact each other’s performance. Especially,

a stage k can only transition into the next state when the other stages are not in the Failed state.

Therefore, as shown in equation (27), the reward of transitioning from state s into another state s′,

Rp,n,k,h(s, a, s′), is to be corrected with the portion of time the other states being available, based

on the reward parameter when the stage k stands alone, Ridvk,h(s, a, s′) and Ridv penp,n,k,h (s, a, s′). Notice

here Ridvk,h(s, a, s′) has to be evenly distributed to each product.

Rp,n,k,h(s, a, s′) = Ridvk,h(s, a, s′) · 1

|P |
+Ridv penp,n,k,h (s, a, s′) ·

∏
l∈K,l 6=k

t ratioAl ,

∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h (27)

where t ratioAk equals to the weighted probability of available states divided by the probability

weighted time length of all states of stage k, as shown in (28), where tres is the expected residence

time in state s if taking action a.

t ratioAk =

∑
h∈Hk

∑
s∈Sk,h,s/∈Sfk,h,a∈As

πsubk,h (s, a)tresk,h(s, a)∑
h∈Hk

∑
s∈Sk,h,a∈As π

sub
k,h (s, a)tresk,h(s, a)

, k ∈ K (28)

With that, the basic non-convex MINLP model minimizes the total cost (15) subject to constraints

(7), (8), (12)-(14), (17), (19), and (21)-(28), where (14) and (17) involve bilinear terms of binary

variables yp,n,k,h and continuous variables Rpenp,n,k,h, (27) involves multi-linear terms of continuous

variables t ratioAk , and (28) is a linear-fractional constraint.
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5. Reformulations

As will be shown in this section, the model can be improved through several reformulation

steps. In section 5.1, we perform an exact linearization of the bilinear terms in the model, and in

section 5.2, we propose to reformulate the objective function taking advantage of the functional

relationships specified by the constraints.

5.1. Standard linearization of the bilinear constraints

We use Glover’s linearization scheme (Glover, 1975), a special case of the McCormick Envelopes

(McCormick, 1976), to linearize equations (14) and (17), which also involve the reformulation of

equation (27). We first introduce a new variable Rpenp,n,k,h(s, a, s′) and rewrite the three constraints

mentioned above as follows in (29)-(31) where variable Rp,n,k,h(s, a, s′) is eliminated.

vk,h(s) ≤
∑

s′∈Sk,h

Pk,h(s, a, s′) · (zk,hRidvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

yp,n,k,hR
pen
p,n,k,h(s, a, s′))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (29)

M(1−wk,h(s, a))+vk,h(s) ≥
∑

s′∈Sk,h

Pk,h(s, a, s′) · (zk,hRidvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

yp,n,k,hR
pen
p,n,k,h(s, a, s′))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (30)

Rpenp,n,k,h(s, a, s′) = Ridv penp,n,k,h (s, a, s′) ·
∏

l∈K,l 6=k
t ratioAl ,

∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h (31)

We then replace the bilinear term yp,n,k,hR
pen
p,n,k,h(s, a, s′) with the new variable R ypenp,n,k,h(s, a, s′)

as shown in (32) and (33), and use equations (34)-(37) to require that they be equal to each other.

vk,h(s) ≤
∑

s′∈Sk,h

Pk,h(s, a, s′) · (zk,hRidvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

R ypenp,n,k,h(s, a, s′))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (32)
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M(1−wk,h(s, a))+vk,h(s) ≥
∑

s′∈Sk,h

Pk,h(s, a, s′) · (zk,hRidvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

R ypenp,n,k,h(s, a, s′))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (33)

R ypenp,n,k,h(s, a, s′) ≤ yp,n,k,hRidv penp,n,k,h (s, a, s′), ∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h

(34)

R ypenp,n,k,h(s, a, s′) ≤ Rpenp,n,k,h(s, a, s′) + (yp,n,k,h − 1)(Rpenp,n,k,h(s, a, s′))L,

∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h (35)

R ypenp,n,k,h(s, a, s′) ≥ yp,n,k,h(Rpenp,n,k,h(s, a, s′))L, ∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h

(36)

R ypenp,n,k,h(s, a, s′) ≥ Rpenp,n,k,h(s, a, s′) + (yp,n,k,h − 1)Ridv penp,n,k,h (s, a, s′),

∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h (37)

The element-wise lower bounds of Rpenp,n,k,h(s, a, s′), (Rpenp,n,k,h(s, a, s′))L, are found by first solving for

the lowest possible portion of available time (t ratioAk )L of each stage k as shown in (38), and apply

(31) as shown in (39). Notice that all the constraints of problem (38) are linear, and the objective

function is linear fractional, which is nonlinear but pseudo-convex and pseudo-concave (Avriel,

2003). Pseudo-convex function has the property of a convex function with respect to finding its

local minima. Therefore, when we relax the integrality requirement in problem (38), it becomes a
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convex NLP.

(t ratioAk )L = min

∑
h∈Hk

∑
s∈Sk,h,s/∈Sfk,h,a∈As

πsubk,h (s, a)tresk,h(s, a)∑
h∈Hk

∑
s∈Sk,h,a∈As π

sub
k,h (s, a)tresk,h(s, a)

(38)

s.t.
∑
h∈Hk

zk,h = 1

∑
a∈As

wk,h(s, a) = zk,h, ∀h ∈ Hk, s ∈ Sk,h

∑
s∈Sk,h

πk,h(s) = zk,h, ∀h ∈ Hk

∑
a∈As

πsubk,h (s, a) = πk,h(s), ∀h ∈ Hk

πsubk,h (s, a) ≤ wk,h(s, a), ∀h ∈ Hk, s ∈ Sk,h, a ∈ As∑
s∈Sk,h

∑
a∈As

πsubk,h (s, a)Pk,h(s, a, s′) = πk,h(s′), ∀h ∈ Hk, s
′ ∈ Sk,h

(Rpenp,n,k,h(s, a, s′))L = Ridv penp,n,k,h (s, a, s′) ·
∏

l∈K,l 6=k
((t ratioAk )L,

∀p ∈ P, n ∈ Np, k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s), s′ ∈ Sk,h (39)

5.2. Reformulation of the objective function

In this section we show a valid reformulation of the objective function (15) that potentially

provides tighter lower bounds, that is derived based on the MDP optimal conditions implied by

the constraints. Thus, the MINLP (referred to as (DMP)) consists of the objective function (40)

that represents net present value of the system and constraints (7), (8), (12), (13), (19), (21)-(26),

(28), and (31)-(37), with linear fractional functions in (28), multi-linear terms in (31) and bilinear

terms in (40), all of which cannot be exactly linearized.

min
x,y,z,w,π,πsub,πa,v,Rpen

∑
p∈P,n∈Np

xp,nC
T
p,n +

∑
k∈K,h∈Hk

zk,hC
U
k,h

+
∑

k∈K,h∈Hk

∑
s∈Sk,h,a∈As

πsubk,h (s, a)
∑

s′∈Sk,h

Pk,h(s, a, s′)(Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

R ypenp,n,k,h(s, a, s′))

(40)

In Appendix A, we prove in Proposition 1 that the new objective function in (40) has equal value as

the previous one in (15) when all the constraints are satisfied. The new objective function in (40)
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has two important properties. First, comparing to the original objective function in (15) which also

contains the sum of bilinear terms, the new objective function breaks down to more terms, which

gives rise to potentially stronger lower bounds when being directly relaxed (dropping the discrete

requirement). Also, one part of the bilinear terms in the new objective function is the complicating

variable R ypenp,n,k,h that reflects the stage interactions, so when the complicating variable is fixed,

the objective function becomes linear.

6. Illustrative example

The motivating example of air separation unit has a few critical processing stages, such as main

air compressor, pre-purifier, booster air compressor, and the LO2 pump. In this example, three

redundancies are considered for each processing stages, and the pre-purifier stage has to have at

least 2 units to function. The superstructure is shown in Figure 7. There are two products, O2

and N2.

Figure 7: The small example

The reliability data being used are modified based on actual data. Stable failure rates range

from 0.0001 to 0.001 times per day. The Stable phase lasts for 3 years. Repair times are 24 hours.

Capital cost of each unit range from $30k - $150k. Maintenance times are 6 hours. Repair costs

range from $4k - $20k per time. Maintenance costs range from $2k - $10k per time. Table 2 shows

the penalty rates and pipeline flow rates used in the model.
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Table 2: Profitability parameters

cfailp (k$ per outage) δp (k gallon per day)

LO2 2400 48

LN2 2000 60

Table 3 shows the standard tank size options in terms of number of days of demand it can

cover, and the corresponding costs normalized based on the costs of the smallest tanks.

Table 3: Tank sizes and costs

Tank sizes (days) 2 8 14 20 30

Normalized cost of LO2 tank 1 4.3 7.8 11.3 17.3

Normalized cost of LN2 tank 1 4.3 7.8 11.3 17.3

In section 6.1, we will show how the equipment and contract specifications shown above are

transformed into the parameters used in the MINLP described in sections 4 and 5. In section 6.2,

we show the preliminary computational results for directly solving the problem.

6.1. Transforming the specifications into the MDP parameters

The transition probability matrix Pk,h(s, a, s′), s, s′ ∈ Sk,h, a ∈ A(s) and the reward matrix

Rk,h(s, a, s′), s, s′ ∈ Sk,h, a ∈ A(s) are the key parameters in the MDPs. In general, we extract

the transition probabilities from the Weibull distributions of individual units, and the reward

parameters from the operational costs and the unavailability losses. Below we show an example of

how to obtain the MDP parameters for a single unit in a single stage, where the stage index k and

design index h are dropped.

As stated in section 2.2, we discretize the bathtub curve into 3 states, Infant, Stable, and Worn-

out (Figure 3(b)). For any unit in any stage, Stop action leads to Stopped state with probability

1. Also, Maintain action is the only option in Stopped state, and Repair action is the only option
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in Failed state, which leads to Infant state with probability 1.

P (Stable, Stop,Stopped) = 1 (41)

P (Worn-out, Stop,Stopped) = 1 (42)

P (Stopped,Maintain, Stable) = 1 (43)

P (Failed,Repair, Stable) = 1 (44)

For the working states on the bathtub curve, we assume Weibull distributions whose cumulative

distributive function is denoted by F (x;λ, β) = 1 − e−(λx)β . For Infant state, the shape factor is

β1. For Worn-out state, the shape factor is β3. For Stable state, the shape factor is β2 = 1, where

the Weibull distribution reduces to exponential distribution. {T insm ,m ∈ M} is the set of possible

inspection intervals, where m is the index for inspection intervals. T stable is the length of stable

period of the subject unit. T infant is the length of infant period. Tworn is the length of worn-out

period.

P (Infant,None,Failed) = F (T infant;λ, β1) (45)

P (Infant,None, Stable) = 1− F (T infant;λ, β1) (46)

P (Stable, Inspect-T insm ,Stable) = e−λ·T
ins
m · (1− T insm

T stable
),∀m ∈M (47)

P (Stable, Inspect-T insm ,Worn-out) = e−λ·T
ins
m · T

ins
m

T stable
,∀m ∈M (48)

P (Stable, Inspect-T insm ,Failed) = 1− e−λ·T insm , ∀m ∈M (49)

P (Worn-out,None,Failed) = F (T infant + T stable + Tworn;λ, β3) (50)

P (Worn-out,None,Worn-out) = 1− F (T infant + T stable + Tworn;λ, β3) (51)

The expected residence time in state s when taking action a is denoted as tres(s, a). For example,

for Stable state, the next point of observation is either the next inspection depending on the choice

of inspection interval, or the failure before the inspection. Therefore, as shown in (52), the expected

residence time in a Stable state is the first moment of the exponential lifetime distribution within

the inspection interval T insm , plus T insm multiplied with the cumulative probability of not failing

within T insm .

tres(Stable, Inspect-T insm ) =

∫ T insm

0
t · λe−λtdt+ e−λT

ins
m · T insm =

1

λ
(1− e−λT insm ) (52)
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Similarly, for Infant and Worn-out states, the expected residence times are calculated as shown in

(53) and (54) based on the Weibull lifetime distributions. γ(s, x) =
∫ x

0 t
s−1e−tdt is the incomplete

gamma function.

tres(Infant,None) =

∫ T infant

0
t · β1λ

β1tβ1−1e−(λt)β1dt+ e−(λT infant)β1 · T infant

=
1

λ
· γ(

1

β1
+ 1, (λT infant)β1) + e−(λT infant)β1 · T infant (53)

tres(Worn-out,None) =

∫ T infant+T stable+Tworn

T infant+T stable
t · β3λ

β3tβ3−1e−(λt)β3dt (54)

+e−(λ(T infant+T stable+Tworn))β3 · Tworn

=
1

λ
· [γ(

1

β3
+ 1, (λ(T infant + T stable + Tworn))β3)

− γ(
1

β3
+ 1, (λ(T infant + T stable))β3)]

+ e−(λ(T infant+T stable+Tworn))β3 · Tworn (55)

The basic instant reward of transitioning from state s to state s′ by taking action a is denoted

as Ridv(s, a, s′), which is the corresponding operational cost of taking Inspection, Maintenance or

Repair actions.

Ridv(s, Inspect-T insm , s′) = cins, ∀s′ /∈ Sf ,m ∈M (56)

Ridv(s,Maintain, s′) = cmain, ∀s′ /∈ Sf (57)

Ridv(s,Repair, s′) = crepair, ∀s′ /∈ Sf (58)

The penalty instant reward is 0 if s′ is not a failure state.

Ridv penp,n (s, a, s′) = 0, ∀p ∈ P, n ∈ Np, s
′ /∈ Sf (59)

If the destination state is Failed or Stopped, then the penalty instant reward is the outage penalty

associated with the repair/maintenance rate of the failure scenario, µr(s)/µm(s), the storage size

of each product Vp,n, and the consumption rate of each product δp, as shown in equations (60) and

(61).

Ridv penp,n (s, a, s′) = cfailp · e−
Vp,n

δpµr(s′) , ∀p ∈ P, n ∈ Np, s
′ ∈ Sf (60)

Ridv penp,n (s, Stop, s′) = cfailp · e−
Vp,n

δpµm(s′) , ∀p ∈ P, n ∈ Np, s
′ ∈ Sf (61)
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6.2. Preliminary computational results

The MINLP model (DMP) for the system in Figure 7 has 39,555 equations and 47,559 variables

with 1,762 binary variables. A first attempt is made to solve the MINLP model (DMP) with the

objective function (40) and constraints (7), (8), (12), (13), (19), (21)-(26), and (31)-(37) using the

global solver SCIP 6.0 on GAMS 26.1.0 (Intel R© Xeon R© CPU X5650 @ 2.67GHz). It only reached

a solution with a gap of 21.08% after 100,000 CPUs (27.8 Hr), which is better than the performance

of the global solvers BARON 17.4.1 and Antigone 1.1.

In order to overcome the computational difficulty, we propose below an algorithm that takes

advantage of the problem structure.

7. A two-phase algorithm

Considering that the decision regarding storage tank sizes has a rather small search space and

an impact on the entire system, i.e., the storage tanks are ”shared” by the processing stages, we

propose an algorithm with two major execution phases. The first phase is called Enumeration

and Bounding, where we exhaustively screen all the possible tank size decision nodes by solving

two MILPs (denoted as (DMP-relax) and (DMP-diseng)) at each node for the respective objective

function bounds, and prune all the nodes with lower bounds greater than the upper bound of any

other node. The second phase is called Rewards Iteration, which is carried out for each of the

remaining nodes: A sequence of MILPs (DMP-diseng) with iterative reward parameters are solved

until the decisions converge. Figure 8 provides a more detailed description of the algorithm.

23



1. Enumerate over all possible tank size selections (e.g. 8 days of LO2

and 14 days of LN2). Each is defined as a node.

2. Calculate the lower bounds and upper bounds of the objectives at

each node by solving two MILPs (DMP-relax) and (DMP-diseng).

3. As the calculation proceeds, prune nodes whose lower bounds are

greater than the upper bound of any other node.

Enumeration

and

Bounding

For each remaining node:

i = 0

While (Rpen)(i) not converged:

1. Solve the MILP (DMP-diseng) where Rpen is fixed to (Rpen)(i),

and obtain solution ξ(i).

2. Update (Rpen)(i+1) based on ξ(i)

3. i = i+1 The optimal solution of the node is the final iteration

MILP solution

Rewards

iteration

The optimal solution obtained at each node that gives the lowest objec-

tive function value is the overall optimal solution.

Figure 8: Algorithm overview

In section 7.1, we introduce the bounding problems and prove that the bounds are valid. In

section 7.2, we explain the iterative procedure for solving each node.

7.1. Enumeration and bounding

In this section, we show that valid upper and lower bounds of the objective function with

certain storage tank sizes can be obtained by solving two MILP models where Rpen is fixed to its

upper and lower bounds, respectively, and we describe how to determine these variable bounds.

First, let us represent the MINLP (DMP) with the compact form (62). For simplicity, we let

ξ stand for the binary and continuous variables other than storage tank selection variables x and the
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penalty rewardRpen subject to the multilinear constraint (31). Therefore, ξ = (y, z, w, π, πsub, t ratioA, v),

and we let (x∗, (Rpen)∗, ξ∗) be the true optimizer of the problem.

min
x∈X,0�Rpen,�Ridv penξ∈Ξ

{f(x,Rpen, ξ) | g(x,Rpen, ξ) ≤ 0} (62)

For certain node of storage tank size x̂, we let the (R̂pen, ξ̂) be the minimizer of the restrained

problem as shown in (63)

(R̂pen, ξ̂) = arg min
0�Rpen�Ridv pen,ξ∈Ξ

{f(x̂, Rpen, ξ) | g(x̂, Rpen, ξ) ≤ 0} (63)

At each node of certain storage tank size x̂, if we go further by removing the multilinear constraint

(31) that engage Rpen of each stage with the stationary probability distribution of other stages,

and fixing Rpen to certain valid values R̃pen, the MINLP model (DMP) will reduce to an MILP,

which we call (DMP-diseng). The compact form of (DMP-diseng) is written in (64).

min
ξ∈Ξ
{c(x̂, R̃pen) · ξ |Adiseng · ξ ≤ bdiseng(x̂, R̃pen)} (64)

By definition, we have (65) and (66).

f(x∗, (Rpen)∗, ξ∗) = min
ξ∈Ξ
{c(x∗, (Rpen)∗) · ξ |Adiseng · ξ ≤ bdiseng(x∗, (Rpen)∗)} (65)

f(x̂, R̂pen, ξ̂) = min
ξ∈Ξ
{c(x̂, R̂pen) · ξ |Adiseng · ξ ≤ bdiseng(x̂, R̂pen)} (66)

Based on the MILP model (DMP-diseng), a small relaxation can be derived to form another MILP

model (DMP-relax). If we have the element-wise lower and upper bounds of Rpen: (Rpen)U and

(Rpen)L, the lower bound and upper bound of the objective function f(x̂, R̂pen, ξ̂) at each node

of storage tank size x̂ can be obtained by solving (DMP-relax) and (DMP-diseng) as shown in

(67) and (68). It is to be noticed that in (DMP-diseng) (68), the R̃pen in the objective function

and the constraints are fixed to different values. In Appendix B, we will show the exact forms of

(DMP-diseng) and (DMP-relax), and prove that inequalities (67) and (68) hold with respect to

the problem nature.

min
ξ∈Ξ
{c(x̂, (Rpen)L) · ξ |Arelax · ξ ≤ brelax(x̂, (Rpen)L)} ≤ f(x̂, R̂pen, ξ̂) (67)

min
ξ∈Ξ
{c(x̂, (Rpen)U ) · ξ |Adiseng · ξ ≤ bdiseng(x̂, (Rpen)L)} ≥ f(x̂, R̂pen, ξ̂) (68)

The element-wise upper bounds of Rpen: (Rpen)U , are set as the original penalty parameters

Ridv pen. The element-wise lower bounds of Rpen: (Rpen)L, are set as (Rpenp,n,k,h(s, a, s′))L which are

first derived in section 5.1.
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The algorithm of the Enumeration and Bounding phase is described in Algorithm 1.

Algorithm 1:

for i ≤
∏
p∈P Np do

Solve the lower bounding MILP (MDP-relax) at node i where x = x̂i

LBi = min
ξ∈Ξ
{c(x̂i, (Rpen)L) · ξ |Arelax · ξ ≤ brelax(x̂i, (R

pen)L)}

if ∃j ≤ i s. t. UBj ≤ LBi then
Prune node i

else

Solve the upper bounding MILP (MDP-diseng) at node i where x = x̂i

UBi = min
ξ∈Ξ
{c(x̂i, (Rpen)U ) · ξ |Adiseng · ξ ≤ bdiseng(x̂i, (Rpen)L)}

if ∃j ≤ i s. t. UBi ≤ LBj then
Prune node j

end

end

7.2. Rewards iteration

For each node with certain storage tank size selection x̂ that was not pruned in the bounding

step, a rewards iteration algorithm that guarantees convergence is performed. We first illustrate

the algorithm on a case with two stages (k = 1, 2) as shown in Figure 9(a) and 9(b).

(a) Iteration path fallen into a loop (b) Iteration path converges to a station-

ary point

Figure 9: Iteration path illustration

Each dot in Figure 9(a) stands for a pair of availability values (t ratioA1 , t ratio
A
2 ) that is the

result of a distinct combination of redundancy selection and maintenance policy (z1, z2, w1, w2)
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of the two stages. The number of these combinations is geometric with regard to the number of

processing stages and design alternatives, but is finite.

Starting from an initial point (t ratioA1 , t ratio
A
2 )(0), we first substitute it into (31) and cal-

culate (Rpen1 , Rpen2 )(0), then solve the MILP (DMP-diseng) defined in (64) with R̃pen fixed to

(Rpen1 , Rpen2 )(0) to obtain the optimal design and maintenance policy in this case, (z1, z2, w1, w2)(1),

which corresponds to a next blue point that the arrow leads to as shown in Figure 9(a). The

exact form of the MILP (DMP-diseng) is shown in Appendix B. As the iterations of the algorithm

proceed, it is possible to get trapped into loops, which is also shown in Figure 9(a). In that case

the optimization step will be repeated at the point before the loop with the solutions corresponds

to points in the loop excluded by integer cuts. As shown in Figure 9(b), the algorithm stops when

it converges to a stationary point (t ratioA1 , t ratio
A
2 ), where the optimization step leads back to

itself. It is worth mentioning that the loop points are to be excluded from the feasible region of

the MILP (DMP-diseng) only once when re-optimizing at the previous point to explore a different

path, but not for future iterations, as the stationary property of a point is only proven when the

optimization step leads back to itself among all the points without exception.

The algorithm is guaranteed to converge, because as discussed above, the number of the dots

is finite, and the global optimum, which is a stationary point, is among them. As there can be

several stationary points, the algorithm does not guarantee global optimality. However, as shown

in section 7.1, the lower bounds obtained in phase 1 of the algorithm are rigorous. We will also

show later that for the examples we consider, the algorithm converges quickly to optimal or near

optimal solutions. Algorithm 2 gives a detailed description of the algorithm. The convergence

criterion depends on w, the binary action selection variables, instead of Rpen, because the same

action selection will lead to the exact same probability distribution π and Rpen, and w as binary

variables suffer less from computing precision issues.

27



Algorithm 2: Reward parameters iteration

Initialize: i := 1, (Rpen)(0) := (Rpen)L

ξ(1) := arg min
ξ∈Ξ

{c(x̂, (Rpen)(0)) · ξ |Aξ ≤ b(x̂, (Rpen)(0))}

(Rpen)(1) := Ridv pen ·
∏
l∈K,l 6=k (t ratioAk )(1)

while w(i) 6= w(i−1) do

if ∃j ≤ i− 1 s. t. w(j) = w(i) then

ξ(i) := arg min
ξ∈Ξ

{c(x̂, (Rpen)(j−1)) · ξ |Aξ ≤ b(x̂, (Rpen)(j−1)), ξ 6= ξ(n), j ≤ n ≤ i}

(Rpen)(i) := Ridv pen ·
∏
l∈K,l 6=k (t ratioAk )(i)

else

ξ(i+1) := arg min
ξ∈Ξ

{c(x̂, (Rpen)(i)) · ξ |Aξ ≤ b(x̂, (Rpen)(i))}

(Rpen)(i+1) := Ridv pen ·
∏
l∈K,l 6=k (t ratioAk )(i+1)

i := i+ 1

end

end

The Rewards Iteration of the candidate nodes should be carried out in parallel, as the stationary

point of a node is a valid upper bound for the node. Therefore, when a stationary point is found,

any other node whose lower bound is greater that the objective value of this point should stop

Rewards Iteration and be pruned.

8. Additional examples

8.1. Illustrative example revisited

In this section, we solve the example problem shown in section 6 again with the proposed

algorithm to minimize the total cost in (40). The MILPs are solved with CPLEX 12.8.1.1 in

Pyomo 5.6.9, and the algorithm is implemented with Python 3.6 on Intel(R) Core(TM) i5 @

1.60GHz. Table 4 shows the results of the Enumeration and Bounding phase, where the storage

size selection nodes are examined by rows left to right and top to bottom. 412.58 CPU seconds are

spent in this phase. The nodes that are only showing LBs are pruned because their respective LBs

are greater than the UB(s) of at least one node examined before them. The nodes where both LBs

and UBs are calculated are pruned by the node(s) examined after them. For example, the node

with 2 days of LO2 and 2 days of LN2 is pruned after the node with 8 days of LO2 and 2 days of
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LN2 is examined, which is later also pruned by the node with 8 days of LO2 and 8 days of LN2.

It is guaranteed that the global optimal solution of the problem lies in the only highlighted node.

Table 4: The results of bounds computation

2 days of LN2 8 days of LN2 14 days of LN2 20 days of LN2 30 days of LN2

LB UB LB UB LB UB LB UB LB UB

2 days of LO2 ���959.45 ���962.23 977.78 1045.93 1130.72 1279.27

8 days of LO2 ���958.66 ���961.02 896.20 896.90 963.61 1048.37 1196.91

14 days of LO2 1030.75 968.27 1035.17 1119.90 1268.45

20 days of LO2 1123.26 1060.76 1127.65 1174.10 1303.80

30 days of LO2 1287.11 1224.62 1289.57 1313.49 1433.93

The Rewards Iteration phase at the node with 8 days of LO2 and 8 days of LN2 finds the

stationary point after 1 iteration (28.44 CPUs), the objective value of which is 896.89.

To validate the results of the Rewards Iteration, the MINLP (DMP) restricted to the two

nodes are also solved with the global solver BARON 17.4.1 on GAMS 24.8.5 platform to the global

optimum of 896.21. It is confirmed that the decision variable values of the stationary solutions are

the same as the ones obtained by BARON. The small difference in the objective values are likely

due to computing precision issues. Therefore, it is guaranteed that the solution at the node with

8 days of LO2 and 8 days of LN2 is the global optimal solution.

Figure 10 shows the optimal design, which selects the 2 cheapest units for the first three stages,

and the cheapest one unit for LOP. The total capital cost is $766k, and the expected operational

cost is $130.89k by the Rewards Iteration, and $130.21k by directly solving the node with BARON.

Figure 10: Optimal design
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Table 5 shows the maintenance policy for the booster air compressor (BAC) as an example,

which is the same as that of the main air compressor (MAC). The table has four main columns.

In the first column are the states with no unit being maintained or repaired. In the second and

the third columns are the states with one unit being maintained or repaired. In the last column

are the states where no unit is available. With the other redundancy on standby, the best action

for the Stable state is to be inspected once a year. With the other unit Failed or Stopped, the best

action for the Stable state is to be inspected every half month.

Table 5: Optimal action for the two units in the BAC stage

State Action State Action State Action State Action

unit 2 Infant None Stable Inspect-14 Stopped Maintain Failed Repair

unit 3 Standby None Failed Repair Stable Inspect-14 Failed Repair

unit 2 Stable Inspect-365 Infant None Failed Repair Failed Repair

unit 3 Standby None Stopped Maintain Infant None Stopped Maintain

unit 2 Worn-out Stop Infant None Worn-out None Stopped Maintain

unit 3 Standby None Failed Repair Stopped Maintain Failed Repair

unit 2 Standby None Worn-out None Failed Repair

unit 3 Stable Inspect-365 Failed Repair Worn-out None

unit 2 Standby None Stopped Maintain Stopped Maintain

unit 3 Infant None Infant None Worn-out None

unit 2 Standby None Failed Repair Stable Inspect-14

unit 3 Worn-out Stop Stable Inspect-14 Stopped Maintain

8.2. Demonstration of the algorithm’s efficiency

In order to test the efficiency of the algorithm, we randomly generate 20 problems around the

example shown above. In particular, the reliability parameters and randomly perturbed within

the range of ±10%. Another group of 20 problems of 6 stages are randomly generated in the

similar fashion and solved. The two additional stages are generated with data of similar orders

of magnitudes. The computational statistics are shown in Figure 11(a) and 11(b). It can be seen

that the bounding step can prune most of the nodes for the problems of 4 stages (Figure 11(a)),

and the rewards iterations tend to converge fast at the remaining nodes. However, for the 6 stage

problems (Figure 11(b)), generally more than half of the nodes have to go through the Reward
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Iteration phase, and the CPU times tend to fluctuate more.

(a) Number of nodes to solve for each randomly

generated problem

(b) Total CPUs for each randomly generated

problem

Figure 11: Computational results of randomly generated cases of two different sizes

9. Conclusion

This paper considers redundancy selection, storage tank size selection as well as basic mainte-

nance policies for a chemical process at the conceptual design phase. Markov Decision Process is

used as the fundamental framework to model the stochastic dynamic decision making process of

condition-based maintenance. We embed the optimal condition of Markov Decision Processes and

the stationary probability distribution conditions of the reduced Markov Chain into an MINLP

(DMP) that considers the economic trade-off among all major decisions. In order to make the

model more solvable, we propose a standard linearization for the bilinear terms of binary variables

and continuous variables, and a reformulation of the objective function that potentially provides a

stronger relaxation of the objective.

An example based on the reliable design of an air separation unit is used to demonstrate

how to extract the model parameters from the raw data. We attempted to solve the MINLP

(DMP) directly with several global solvers and found that they would not be solved in reasonable

amount of time. Therefore, we propose an algorithm that consists of two phases, Enumeration and

Bounding, and Rewards Iteration. The validity of the bounding is based on the reformulation of
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the MDP objective function introduced earlier in the paper. Resolving the example shows that

the two-phase algorithm greatly reduces the required computational effort. The algorithm also

has consistent performance over 20 randomly generated problems around the original example of

4 processing stages. Another group of 20 random problems of 6 processing stages are also solved

and show good computational results.
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Appendix A Objective function reformulation

Proposition 1. The following equation holds

∑
k∈K,h∈Hk

∑
s∈Sk,h

πk,h(s)vk,h(s)

=
1

1− γ
∑

k∈K,h∈Hk

∑
s∈Sk,h,a∈As

πsubk,h (s, a)
∑

s′∈Sk,h

Pk,h(s, a, s′)(Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

R ypenp,n,k,h(s, a, s′))

(A.1)

when constraints (12), (13), (19), (21)-(26), and (31)-(37) are satisfied.

Proof. First we focus on the optimal condition of a certain Markov Decision Process based on the

notation of section 4.1, where U∗s is the optimal value of state s, and a∗(s) is the optimal action of

state s.:

U∗s =
∑
s′∈S

P (s, a∗(s), s′) · (R(s, a∗(s), s′) + γ · U∗s′), s ∈ S (A.2)

Equation (A.2) has the matrix form shown in (A.3), where P∗(s, s′) = P (s, a∗(s), s′), and similarly

for R∗(s, s′).

(1− γ)U∗ = γ(P∗ − I)U∗ + diag(P∗(R∗)T) (A.3)
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Next we rewrite equation (20) in the matrix form (A.4), which specifies the conditions that the

stationary distribution π has to satisfy.

πT(P∗ − I) = 0 (A.4)

By left multiplying (A.3) with πT and substituting (A.4) into it, we obtain (A.5)

πTU∗ =
1

1− γ
πTdiag(P∗(R∗)T) (A.5)

Equation (A.1) trivially holds for the stage designs that are not selected, where both sides of the

equation are equal to 0. For the designs h that are selected for the respective stage k, when

constraints (12), (13), (19), (21)-(26), and (27)-(37) are satisfied, (A.3) and (A.4) hold. Therefore,

equation (A.5) holds, where the right-hand side with the subscripts h, k has the expression shown

in (A.6), where n∗(p) are the indices of the selected storage sizes of product p.

1

1− γ
∑

k∈K,h∈Hk

∑
s∈Sk,h

πk,h(s)
∑

s′∈Sk,h

Pk,h(s, a∗(s), s′)
∑
p∈P

Rp,n∗(p),k,h(s, a∗(s), s′) (A.6)

Since equations (21) and (23) require that πsubk,h (s, a∗(s)) = πk,h(s), and that πsubk,h (s, a) = 0 if

a 6= a∗(s). (A.6) is equal to (A.7) when (21) and (23) hold.

1

1− γ
∑

k∈K,h∈Hk

∑
s∈Sk,h,a∈As

πsubk,h (s, a)
∑

s′∈Sk,h

Pk,h(s, a, s′)
∑
p∈P

Rp,n∗(p),k,h(s, a, s′) (A.7)

As defined in section 5.1, R ypenp,n,k,h(s, a, s′) is zero for non-selected storage sizes. Therefore, (A.7)

can be further written as (A.8), which is the right hand side of (A.1).

1

1− γ
∑

k∈K,h∈Hk

∑
s∈Sk,h,a∈As

πsubk,h (s, a)
∑

s′∈Sk,h

Pk,h(s, a, s′)(Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

R ypenp,n,k,h(s, a, s′))

(A.8)

Thus, the proposition is proved.

Appendix B Objective bounding regarding key parameters

As shown in section 7, the lower and upper bounds of the optimum of the MINLP (MDP) at

each node of storage tank selection x̂, f(x̂, R̂pen, ξ̂), are obtained by solving two MILPs:

Lower bounding MILP (DMP-relax):

min
ξ∈Ξ
{c(x̂, (Rpen)L) · ξ |Arelax · ξ ≤ brelax(x̂, (Rpen)L)} (B.1)
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Upper bounding MILP (DMP-diseng):

min
ξ∈Ξ
{c(x̂, (Rpen)U ) · ξ |Adiseng · ξ ≤ bdiseng(x̂, (Rpen)L)} (B.2)

In the following, we will display their exact formulation, where R̃pen can be replaced with

(Rpen)L or (Rpen)U depending on the needs, and prove in Proposition 2 and 3 that the MILPs

provide valid bounds.

(B.3) shows the exact form of c(x̂, R̃pen) · ξ.

c(x̂, R̃pen) · ξ =
∑

k∈K,h∈Hk

zk,hC
U
k,h+

1

1− γ
∑

k∈K,h∈Hk

∑
s∈Sk,h,a∈As

πsubk,h (s, a)
∑

s′∈Sk,h

Pk,h(s, a, s′)(Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

x̂p,n · R̃penp,n,k,h(s, a, s′))

(B.3)

Arelax ·ξ ≤ b(x̂, R̃pen) consists of (7), (21)-(26), (B.5) and (B.6). Adiseng ·ξ ≤ b(x̂, R̃pen) consists

of (7), (21)-(26), (B.4) and (B.6).

vk,h(s) ≤
∑

s′∈Sk,h

(Pk,h(s, a, s′) · (Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

zk,hx̂p,nR̃
pen
p,n,k,h(s, a, s′)))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (B.4)

M(wk,h(s, a)−1)+vk,h(s) ≤
∑

s′∈Sk,h

(Pk,h(s, a, s′) · (Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

zk,hx̂p,nR̃
pen
p,n,k,h(s, a, s′)))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (B.5)

M(1−wk,h(s, a))+vk,h(s) ≥
∑

s′∈Sk,h

(Pk,h(s, a, s′) · (Ridvk,h(s, a, s′) +
∑
p∈P

∑
n∈Np

zk,hx̂p,nR̃
pen
p,n,k,h(s, a, s′)))

+ γ
∑

s′∈Sk,h

Pk,h(s, a, s′) · vk,h(s′), ∀k ∈ K,h ∈ Hk, s ∈ Sk,h, a ∈ A(s) (B.6)

Proposition 2. If (Rpen)L � R̂pen, then (B.1) is a valid lower bound of f(x̂, R̂pen, ξ̂).

Proof. As shown in section 7, assuming that R̂pen is known, the result of (B.7) is f(x̂, R̂pen, ξ̂).

min
ξ∈Ξ
{c(x̂, R̂pen) · ξ |Adiseng · ξ ≤ bdiseng(x̂, R̂pen)}. (B.7)
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As a constraint in (B.1), (B.5) relaxes the requirement that the state value should be less than or

equal to the right-hand-side corresponding to every possible action, and only requires that it be no

greater than the selected action. That makes all the possible action decisions (possible solution of

variable w) feasible to (B.1), which automatically includes the action decision ŵ corresponding to

the optimal solution of (B.7), ξ̂.

Arguably, substituting ŵ into (B.1) will lead to different state values than v̂, but π̂sub will stay

the same, as certain action decision ŵ leads to unique reduced Markov Processes for each stage,

and unique stationary probability distributions π̂ and π̂sub. Since only π̂sub goes into the objective

function, we can still insert π̂sub as part of ξ̂ into the objective function of (B.1) as a feasible

solution, which by the definition of optimality is no less than the optimum of (B.1), and let (B.8)

hold with a little abuse of the notation.

c(x̂, (Rpen)L) · ξ̂ ≥ min
ξ∈Ξ
{c(x̂, (Rpen)L) · ξ |Arelax · ξ ≤ brelax(x̂, (Rpen)L)} (B.8)

On the other hand, since (Rpen)L � R̂pen, (B.9) holds given the exact formulation of the objective

function shown in (B.3).

c(x̂, (Rpen)L) · ξ̂ ≤ c(x̂, R̂pen) · ξ̂ ≡ f(x̂, R̂pen, ξ̂) (B.9)

Therefore, we have (B.10) and the proposition is proved.

f(x̂, R̂pen, ξ̂) ≥ min
ξ∈Ξ
{c(x̂, (Rpen)L) · ξ |Arelax · ξ ≤ brelax(x̂, (Rpen)L)} (B.10)

Proposition 3. If (Rpen)L � R̂pen � (Rpen)U , then (B.2) is a valid upper bound of f(x̂, R̂pen, ξ̂).

Proof. As shown in section 7, assuming that R̂pen is known, the result of (B.7) is f(x̂, R̂pen, ξ̂).

Also, we denote ξL as the optimal solution of (B.2).

Constraints (B.4) and (B.6) are the only constraints in (B.2) that contains Rpen. Since

(Rpen)L � R̂pen, ξL which satisfies (B.4) in Adiseng · ξ ≤ bdiseng(x̂, (Rpen)L) also satisfies (B.4)

in Adiseng · ξ ≤ bdiseng(x̂, R̂pen). As for (B.6), since exactly one action is selected for each state,

v is always the unique solution of a square linear system and self-bounded by the parameters.

Therefore, the big M can be made large enough such that (B.6) is always satisfied.
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Therefore, ξL is a feasible solution of (B.7), and gives an objective value no less than the

optimum as shown in (B.11)

c(x̂, R̂pen) · ξL ≥ c(x̂, R̂pen) · ξ̂ ≡ f(x̂, R̂pen, ξ̂) (B.11)

On the other hand, since R̂pen � (Rpen)U , (B.12) holds given the exact formulation of the objective

function shown in (B.3).

c(x̂, R̂pen)·ξL ≤ c(x̂, (Rpen)U )·ξL ≡ min
ξ∈Ξ
{c(x̂, (Rpen)U )·ξ |Adiseng ·ξ ≤ bdiseng(x̂, (Rpen)L)} (B.12)

Therefore, we have (B.13) and the proposition is proved.

f(x̂, R̂pen, ξ̂) ≤ min
ξ∈Ξ
{c(x̂, (Rpen)U ) · ξ |Adiseng · ξ ≤ bdiseng(x̂, (Rpen)L)} (B.13)
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