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Abstract
Motivated by the reliability/availability concern in chemical plants, this paper proposes
MINLP models that determine the optimal selection of parallel units to consider the trade-off
between the availability of a serial producing system and the total costs. Both a basic scenario
where the system transitions between only available and unavailable states, and an advanced
scenario where the system has an intermediate state besides merely up and down are studied.
Two non-convex MINLP models maximizing system net profit are introduced for the two
situations respectively. In addition, a non-convex ε-constraint MINLP model maximizing
availability subject to parametrically varying cost upper bound is posed for the first senario,
which is then convexified. It is also proposed to add the availability evaluation part to process
synthesis optimization problems over flowsheet superstructure. The model applications are
illustrated with several examples which show that the computational requirements are small.

1 Introduction

Plant availability has been a critical consideration for the design and operation of chemical
processes, for it represents the expected fraction of normal operating time, which impacts
directly the ability of meeting demands. Currently, discrete event simulation tools are used
to evaluate reliability/availability of new plants, which simulate the behavior of every asset
in a plant using historical maintenance data and statistical models (Sharda and Bury, 2008).
However, this approach does not guarantee optimal solutions.
The goal of evaluating and optimizing reliability/availability quantitatively for various kinds
of engineering systems and plants has led to the development of the area of reliability en-
gineering, whose aim is to rationally consider the ability of a system to function properly.
According to Zio (2009), major questions that are addressed include the measure/evaluation
of system reliability, the detection of the causes and consequences of system failures, strate-
gies of system maintenance, and reliability-based design optimization (RBDO), which is
relevant to the work in this paper.
One of the major challenges is the complexity of the system, which is the result of multi-state
behaviors that occur frequently in production plants, and topological complexities primarily
faced by distributed service systems such as communication and transportation networks.
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Lisnianski et al. (2010) provide a comprehensive introduction on the study of multi-state sys-
tem behaviors. Specifically, it addresses the use of Markov chain theory on both statistical
and analytical methods. Petri-net based models have been widely used for the performance
analysis of computer systems. Bayesian network is another accepted tool for the analysis of
failure propagation in complex networks (Weber et al., 2012).
Compared with the other major research aspects in reliability engineering, reliability-based
design optimization (RBDO) arises at the early stages for determining the topology and pa-
rameters of a system. Kuo and Prasad (2000) give an exhaustive review of this area. Aside
from continuous parameter selections, discrete decisions regarding parallel redundancies are
an important part of RBDO. Various types of methods have been used to obtain the opti-
mal or suboptimal configurations, such as genetic algorithms (Coit and Smith, 1996), Monte
Carlo simulation (Marseguerra et al., 2005) and heuristics (Hikita et al., 1992).
Research has also been done in chemical engineering to quantitatively analyze the reliability
of the chemical plants (Thomaidis and Pistikopoulos, 1994). Rudd (1962) discusses the esti-
mation of system reliability with parallel redundancies. Henley and Gandhi (1975) suggest
using minimal path method to evaluate failure propagation and the sensitivity of system
reliability to unit reliability. Goel et al. (2003b) consider both design and planning of pro-
duction and maintenance in an MILP model with variable reliability parameters and fixed
system configuration. Terrazas-Moreno et al. (2010) use Markov process theory in an MILP
model to optimize the selection of alternative plants and the design of intermediate storage
for an integrated production site.
Currently, there are virtually no general mixed-integer programming models for optimal
structural design of a reliable chemical process. This work considers a multi-objective opti-
mization model to select parallel units in order to optimize availability and to minimize cost
in serial systems.

2 Motivating example

To better focus on the parallel unit selection problem, we consider a rather simple flowsheet,
an air separation unit (ASU) (Figure 1) as a motivating example. The production assets
include air compressor, cooling, purification, distillation, etc.
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Figure 1: Typical flowsheet of air separation units

The failure of any one of the operations can result in the failure of the whole system. Thus,
we formulate the process as a serial system of independent stages shown in the block diagram
of Figure 2.

Figure 2: The diagram of ASU reliability design alternatives. Each block represents a parallel unit with
certain rate of capacity shown in the block

3 Problem statement

In this section, we develop general models based on the serial system configurations (Figure
3) abstracted and generalized from the ASU case. The models make design decisions regard-
ing whether to install each of the potential parallel units, in order to maximize the system
availability (i.e. probability that the system performs without failures) and minimize the
total cost of the entire system.
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Figure 3: A serial system

Two kinds of situations are investigated. One of them is the basic scenario where all the
stages need only one unit to work properly. A set of potential units j ∈ Jk for each stage
k are given with certain availabilities (i.e. the probability of finding the unit available),
operating priorities(indicated by j), which means that a unit can only become active when
all installed units that have higher priorities have failed, and cost rates. The stage k is con-
sidered fail where all its units are failed. The processing stages are divided into two kinds,
stages where potential parallel units are completely identical (k ∈ Kiden), and stages where
potential parallel units have the same capacities, but are distinct in terms of availability,
cost, etc (k ∈ Knon).
In the other scenario being investigated, some of the stages may need one or two units to
deliver full capacity. The model for the advanced scenario is built under similar frameworks,
however, due to the existence of flexible stages (those who can have one or two necessary
units), the stages are classified more particularly. A more fundamental difference is that the
stages where two units are sharing the workload will provide half of the normal capacity
when only one unit is left available, which gives the system an intermediate state besides
merely up and down.
Two non-convex MINLP models maximizing system net profit are presented in detail re-
garding the two situations respectively. In addition, considering maximizing availability
and minimizing cost separately, another non-convex ε-constraint MINLP model that can be
convexified for the basic scenario is posed. What’s more, the possibility of combining this
availability evaluation part with process synthesis problem over flowsheet superstructure is
examined. Illustrative case studies are presented for all these models mentioned above.

4 Nomenclature

Indices
k Stage
j Parallel unit, smaller j has priority over larger j
l Dummy variable for j

Set
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K Set of processing stage (e.g. absorption)
Kiden Set of stages with identical parallel units
Knon Set of stages with non-identical parallel units (Kiden and Knon is a partition of K)
Jk Set of parallel units for each state

Parameter
nk Number of potential parallel units in stage k
pk Availability of single units in stage k with identical parallel units
pk,j Availability of single unit j in stage k with non-identical parallel units
c instk Investment for single units in stage k with identical parallel units
c repak Repair cost for single units in stage k with identical parallel units
c instk,,j Investment for single unit j in stage k with non-identical parallel units
c repak,,j Repair cost for single unit j in stage k with non-identical parallel units
cost bar Upper bound of total cost
rv Revenue rate of final product
pn Penalty rate for not meeting lower bound of availability
bn Bonus rate for exceeding upper bound of availability
A lo The lower bound of system availability arranged in the contract
A up The upper bound of system availability arranged in the contract

Variables
yk,j Binary variable that indicates whether unit j of stage k is selected
Pk Availability of stage k
Ek Expectancy of units being repaired of stage k
C repak Total repair cost for single units in stage k
Ck Total cost for stage k
Ctot Total cost of system
RV Expected revenue
PN Expected penalty
BN Expected bonus
NP Net profit
w1, w2, w3 Binary variable that indicate which one of the ranges A falls in
A1, A2, A3 Components of A for corresponding range
PN1, PN2, PN3 Components of PN for corresponding components of A
BN1, BN2, BN3 Components of BN for corresponding components of A

5 Model Formulation

5.1 Binary state

First we present the constraints of the multi-objective optimization problem (P1) that max-
imizes system availability while minimizing total cost. We then introduce its ε-constraint
optimization problem (P1’) in order to obtain the Pareto optimal solution.

5



Constraint (1) requires that for each stage k at least one unit j should be installed.

nk∑
j=1

yk,j ≥ 1, k ∈ K (1)

Constraint (2) is a symmetry breaking constraint for stages k ∈ Kiden, which requires that
a unit can be only be selected if the one with higher priority is selected.

yk,j+1 ≤ yk,j, k ∈ Kiden, j ∈ Jk (2)

The availability of a stage depends on the number of installed parallel units and the corre-
sponding availabilities. Considering the fact that the redundancies for one stage are usually
no more than a few, we enumerate all possible scenarios for each stage to evaluate the
availablity.

(a) Stage with identical units (b) Stage with distinct units

Figure 4: Sample diagrams for single stages

Consider the diagram in Figure 4(a) as an example, which has 4 scenarios in total: Unit 1
is active; Unit 2 is active while unit 1 has failed; Unit 3 is active while unit 1 and 2 have
failed; All three units have failed. The first 3 scenarios correspond to the available state
of the stage. Due to the symmetry breaking constraints (2), a unit j in stage k is selected
means that all the potential units with higher priorities are in place. Therefore, whether a
scenario is possible depends only on the existence of the unit that is active in it, and the
probability for a possible scenario to take place depends on the availability of that particular
unit as well as all the potential units with higher priorities. Thus, we have

P1 = p1y1,1 + (1− p1)p1y1,2 + (1− p1)2p1y1,3

which can be easily generalized to the form of equation (3).

Pk = pk

nk∑
j=1

yk,j(1− pk)j−1, k ∈ Kiden (3)

The diagram in Figure 4(b) represents a stage k ∈ Knon with non-identical redundancies,
which is not restricted by symmetry breaking constraints. Hence, we cannot avoid non-
linearity by enumerating all the scenarios where the system is available as it was done for
identical standby stages, which contributes to increasing the complexity of the analysis. The
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availability is represented by substracting the probabilities of unavailable scenarios. (Goel
et al., 2003a)

Pk = 1−
∏
j∈Jk

(1− pk,jyk,j), k ∈ Knon (4)

For example, for the stage shown in Figure 4(b), we have

P1 = 1− (1− p1,1y1,1)(1− p1,2y1,2)(1− p1,3y1,3)

Notice that multi-linear terms of 0-1 variables are introduced, which will be linearized as
shown in the next section. Based on equations (3) and (4) , the availability of the system
consisting of stages k ∈ K is given by equation (5)

A =
∏
k∈K

Pk (5)

The total cost of each stage is the summation of investment and repair cost.

Ck = (c instk + c repak)

nk∑
j=1

yk,j, k ∈ Kiden (6)

Ck =

nk∑
j=1

yk,j(c instk,j + c repak), k ∈ Knon (7)

The total cost of the entire system is then given by equation (8)

Ctot =
∑
k∈K

Ck (8)

A typical pattern of the way availability affecting net profit is applied below, where system
availability is reflected in revenue, penalty and bonus, and net profit is the summation of
the three terms minus the summation of costs.

max NP = RV − PN +BN − Ctot (9)

The total revenue is considered proportional to the availability of the system.

RV = rvA (10)

Since RV is positive in the maximized objective function (9), (10) can be relaxed as (11)

RV ≤ rvA (11)

which can be converted to (12) based on the linearization presented in section 5.1.1 and (35)

lnRV −
∑
k∈K

lnPk ≤ lnrv (12)
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Since lnRV is concave separable, and −
∑

k∈K lnPk is convex, replacing (10) with (12) im-
proves the quality of the feasible region and save the effort of spatial searching for global
optimization.
Generally, in the contract between the plant and the customer, two reference bounds will
be set for the availability of the plant. As shown in Figure (5), if the actual availability of
the plant does not meet the lower bound, the plant that provides products for the customer
will be charged a penalty proportional to the difference. On the other hand, if the actual
availability exceeds the upper bound, the customer will reward the plant with bonus that is
also proportional to the difference.

Figure 5: Definition of penalty and bonus functions

The penalty and bonus are described by the equation (13) and the disjunction (14).

w1 + w2 + w3 = 1 (13)
w1 = 1
A ≤ A lo

PN = (A lo− A)pn
BN = 0

 ∨


w2 = 1
A lo ≤ A ≤ A up

PN = 0
BN = 0

 ∨


w3 = 1
A ≥ A up
PN = 0

BN = (A− A up)bn

 (14)

The convex-hull reformulation (Balas, 1985) yields,

A = A1 + A2 + A3 (15)

PN = PN1 + PN2 + PN3 (16)

BN = BN1 +BN2 +BN3 (17)

A1 ≤ w1A lo (18)

w2A lo ≤ A2 ≤ w2A up (19)

A3 ≤ w3A up (20)

PN1 = (A low1 − A1)pn (21)

PN2 = 0 (22)
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PN3 = 0 (23)

BN = 0 (24)

BN2 = 0 (25)

BN3 = (A3 − A upw3)bn (26)

Constraints (16), (17) and (21) − (26) can be reduced to (27) and (28)

PN = (A low1 − A1)pn (27)

BN = (A3 − A upw3)bn (28)

Thus, the linear equations(inequalities) (13), (15), (18) − (20) and (27) − (28) define the
convex hull of (13) and (14).
In summary, the MINLP (SO) maximizes the net profit (9) subject to (1)−(4), (6)−(8),
(12), (13), (15), (18) − (20) and (27) − (28). This is a non-convex MINLP due to the
nonconvexity of (5), which is involved in the objective (9).

5.1.1 ε constrained model and convexified formulation

In stead of maximizing net profit, we now consider problem (P1) that maximizes system
availability (29) and minimizes total cost (30) subject to constraints (1) − (8), which has a
remarkable property that it can be reformulated to a convex problem.

maxA (29)

minCtot (30)

The bi-criterion optimization problem (P1)((1)−(8) and (29)−(30)) is solved through re-
formulation to the ε-constraint optimization problem (P1’)((1)−(8), (29) and (31)), which
maximizes system availability (5) subject to the upper bound of total cost as shown in
equation (31). The upper bound of total cost is varied parametrically to generate a Pareto-
optimal curve.

Ctot ≤ cos t bar (31)

As mentioned before, equation (4) for nonidentical units in (P1) involves multi-linear terms,
and so does the objective function of (P1’), which causes the problem to be nonlinear and
non-convex. Therefore, in problem (P1’L), which is to be described in this section, we pro-
pose to linearize constraint (4) and convexify the objective function. In order to do so, the
products over linear terms in (4) are expanded as summations over multi-linear terms, which
are then be linearized. Since in (4), the multiplication was done over the set Jk, we first
propose the following new sets and parameters to enumerate the subsets of Jk.
Set:
S Subset of Jk
Sk The power set of Jk: Sk = {S|S ⊆ Jk}

For example, if there are 3 potential units in stage 1 (J1 = {1, 2, 3}), then the number
of subsets in the power set S1 is 23 = 8, S1 = {∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.
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The binary parameter αj,S is defined to indicate whether unit j belongs to subset S: αj,S = 1
means that unit j belongs to subset S. Again, consider J1 = {1, 2, 3} as an example, then
for S = {1, 2}, α1,S = 1, α2,S = 1, α3,S = 0. Table 1 gives a comprehensive example to show
how αj,S is defined for each alternative.mS represents the order of S in Sk

Table 1: An example of the correspondances between the indices of S and αj,S

αj,S

j
mS 1 2 3
1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

To guarantee that all and only subsets of Jk are included in Sk, without any repetition or
omission, we provide one way to generate the subsets automatically.

αj,S = bmod(mS − 1, 2j)

2j−1 c

Here αj,S is the digit on the jth place of the binary form of mS − 1
The following binary variables are then defined based on the above definition of S:

zk,S =
∏
j∈S

yk,j, k ∈ Knon, S ∈ Sk

The following logic conditions hold for the zk,S,

zk,S ⇔
(∧

j∈S

yk,j

)
, k ∈ Knon, S ∈ Sk, S 6= ∅

zk,S = 1, k ∈ Knon, S = ∅

which can be reformulated as the following linear inequalities,

zk,S ≤ yk,j, k ∈ Knon, j ∈ S, S ∈ Sk, S 6= ∅ (32)

zk,S ≥
∑
j∈S

yk,j − |S|+ 1, k ∈ Knon, S ∈ Sk (33)
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Based on the above definitions of the subsets S, the power set Sk and the variable zk,S,
equation(4) is then reformulated as follows

Pk = 1−
∏
j∈Jk

(1− pk,jyk,j), k ∈ Knon

= 1−
∑
S∈Sk

(
∏
j∈S

(−pk,jyk,j))(
∏

j∈Jk\S

1), k ∈ Knon

= 1−
∑
S∈Sk

(
∏
j∈S

(yk,j))(
∏
j∈S

−pk,j), k ∈ Knon

= 1−
∑
S∈Sk

zk,S
∏
j∈S

(−pk,j), k ∈ Knon

(34)

As an example, the diagram shown in Figure 4(b) that has 3 distinct parallel units yields

P1 = 1− (z1,1 + z1,2(−p1,1) + z1,3(−p1,2) + z1,4(−p1,1)(−p1,2) + z1,5(−p1,3)
+ z1,6(−p1,1)(−p1,3) + z1,7(−p1,2)(−p1,3) + z1,8(−p1,1)(−p1,2)(−p1,3))

Thus, the expression of Pk, k ∈ K are all linear in (P1L). On the other hand, let

A′ = lnA = ln(
∏
k∈K

Pk) =
∑
k∈K

lnPk (35)

Since logarithmic functions are monotone, maximizing A′ is equal to maximizing A. The
original objective function (29) can thus be replaced by (36).

maxA′ =
∑
k∈K

lnPk (36)

Since each term in the above summation is concave, A′ is concave. Maximizing the con-
cave function is equivalent to minimizing a convex function, thus, the reformulated problem
(P1’L) ((1)−(3), (5)−(8) and (31)−(36)) is a convex MINLP (i.e. the relaxed NLP of (P1’L)
is convex).

5.2 Multi-state model

The models presented in the previous sections are based on the assumption that all of the
stages as well as the entire system transitions between binary states, on and off. Further-
more, for each single stage to be available, the least number of units that must be available
is 1. However, in practice, most systems are subject to multi-state pattern. For simplicity,
here in model (TS) we consider a representative situation, where for some stages at least
2 units are needed to operate at full capacity (if only one unit is available, the system has
only half of the full capacity), for some stages at least 1 unit is needed, and some stages can
choose either of the two patterns.
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To account for the tri-state situation, we define new sets,

Kms Stages with three states
Kbs Stages with only binary states
Kmb Stages that can choose either pattern (flexible stages)
Kb

iden Flexible stages whose units that serve in binary state pattern are identical
Km

iden Flexible stages whose units that serve in three state pattern are identical
Kb

non Flexible stages whose units that serve in binary state are non-identical
Km

non Flexible stages whose units that serve in three state pattern are non-identical

New variables

x bk Binary variable that indicates whether stage k ∈ Kmb choose binary state pattern
x mk Binary variable that indicates whether stage k ∈ Kmb choose three state pattern
P 1k Probability of stage k working in full capacity
P 2k Probability of stage k working in half of full capacity
P 1b

k Probability of stage k ∈ Kmb working in full capacity when it chooses binary state
pattern

P 2b
k Probability of stage k ∈ Kmb working in half of full capacity when it chooses binary

state pattern
P 1m

k Probability of stage k ∈ Kmb working in full capacity when it chooses three state
pattern

P 2m
k Probability of stage k ∈ Kmb working in half of full capacity when it chooses three

state pattern
A 1 Probability of the whole system working in full capacity
A 2 Probability of the whole system working in half of full capacity

For stages with binary state, it is required that at least one unit is selected.∑
j∈Jk

yk,j ≥ 1, k ∈ Kbs (37)

For stages with three states, it is required that at least two units be selected.∑
j∈Jk

yk,j ≥ 2, k ∈ Kms (38)

For stages that can choose,

x bk + x mk = 1, k ∈ Kbm (39)

x bk ≤
∑
j∈Jb

k

yk,j ≤ |J b
k|x bk, k ∈ Kbm (40)

2x mk ≤
∑
j∈Jm

k

yk,j ≤ |Jm
k |x mk, k ∈ Kbm (41)

The symmetry breaking constraint for stages with identical parallel units (constraint (2))
still applies. For stages with only binary states, the availability of the stage is calculated as
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in previous models

P 1k = pk
∑
j∈Jk

yk,j(1− pk)j−1, k ∈ Kiden ∩Kbs (42)

P 1k = 1−
∏
j∈Jk

(1− pk,jyk,j), k ∈ Knon ∩Kbs (43)

P 1b
k = pk

∑
j∈Jb

k

yk,j(1− pk)j−1, k ∈ Kb
iden ∩Kmb (44)

P 1b
k = 1−

∏
j∈Jb

k

(1− pk,jyk,j), k ∈ Kb
non ∩Kmb (45)

For stages with an intermediate state, there are two units working at the same time in each
scenario. The scenarios are counted first in terms of the one with lower priority, then in
terms of the one with higher priority.

(a) Stage with identical units (b) Stage with distinct units

Figure 6: Sample diagrams for single stages

Consider the diagram in Figure 6(a) as an example. Since the units are identical, the first
two units must be installed. Thus, a case that must be taken into consideration is that the
first two units are available and active at the same time. Then, if the third unit is selected,
which is indicated by the binary variable y1,3, there will be two other available cases, in both
of which unit 3 is active, and either unit 1 or 2 is failed.

P 11 = p21 + 2p21(1− p1)y1,3

This equation can then be generalized to the form of Equation (46) and (47)

P 1k = p2k(1 +
∑

j∈Jk,j≥3

yk,j(1− pk)j−2(j − 1)), k ∈ Kiden ∩Kms (46)

P 1m
k = p2k(1 +

∑
j∈Jm

k ,j≥3

yk,j(1− pk)j−2(j − 1)), k ∈ Km
iden ∩Kmb (47)

For the stage shown in Figure 6(b), where the potential units are distinct, the available cases
are the same as those listed for Figure 6. However, here the potential units are not selected
in sequence, thus, more binary variables are multiplied to indicate the existence of the units.

P 11 = p1,2y1,2p1,1y1,1 + p1,3y1,3p1,1y1,1(1− p1,2y1,2) + p1,3y1,3p1,2y1,2(1− p1,1y1,1)
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Equation (48) and (49) is the generalized form of the above equation.

P 1k =
∑

j∈Jk,j≥2

pk,jyk,j

j−1∑
i=1

pk,iyk,i

j−1∏
l=1,l 6=i

(1− pk,lyk,l), k ∈ Knon ∩Kms (48)

P 1m
k =

∑
j∈Jm

k ,j≥2

pk,jyk,j

j−1∑
i=1

pk,iyk,i

j−1∏
l=1,l 6=i

(1− pk,lyk,l), k ∈ Km
non ∩Kmb (49)

The scenarios providing half throughput for stages with multiple states will only happen
when there is only one unit left available. A problem here is how to identify the unit with
lowest priority among those that are selected. For identical-standby stages, the unit j if
selected, is defined as the one installed with lowest priority as long as the unit j + 1 is not
selected, while for stages with distinct components, unit j is with the lowest priority among
all existing units only if all the potential units j + 1, j + 2, . . . , nk are not installed.

P 2k =
∑

j∈Jk,j≥2

yk,jpk(1− pk)j−1(1− yk,j+1), k ∈ Kiden ∩Kms (50)

P 2m
k =

∑
j∈Jm

k ,j≥2

yk,jpk(1− pk)j−1(1− yk,j+1), k ∈ Km
iden ∩Kmb (51)

P 2k =
∑

j∈Jk,j≥2

yk,jpk,j(

j−1∏
l=1

(1− pk,lyk,l))(
nk∏

l=j+1

(1− yk,l)), k ∈ Knon ∩Kms (52)

P 2m
k =

∑
j∈Jm

k ,j≥2

yk,jpk,j(

j−1∏
l=1

(1− pk,lyk,l))(
nk∏

l=j+1

(1− yk,l)), k ∈ Km
non ∩Kmb (53)

P 2k = 0, k ∈ Kbs (54)

P 2b
k = 0, k ∈ Kmb (55)

The availabilities of flexible stages are calculated as follows

P 1k = P 1b
kx bk + P 1m

k x mk, k ∈ Kmb (56)

P 2k = P 2b
kx bk + P 2m

k x mk, k ∈ Kmb (57)

The probability of working with full capacity is simply the product of that of each stage.

A 1 =
∏
k∈K

P 1k (58)

The probability for the entire system to work under half throughput is the probability for
the system not to fail minus the probability of working with full capacity.

A 2 =
∏
k∈K

(P 1k + P 2k)− A 1 (59)
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The availability is defined through the integration:

A =
E
u∈U

(
∫ T

0
CP (u, t)dt)

CP fT

where [0, T ] is the production time that is considered. CP f is the full capacity of the system,
and CP (t) is the system capacity at time t. Thus, we can use equation (60) to estimate the
system availability.

Figure 7: Sketch of an availability curve

A = A 1 + A 2/2 (60)

In summary, the proposed non-convex MINLP model (TS) maximizes the net profit (9)
subject to (6)−(8), (13), (15), (18) − (20), (37)−(60) and (27) − (28).

6 Illustrative examples

In this section, in order to illustrate the applications of the models, a few small examples
are presented and discussed.
In section 6.1, we examine a system where all the stages have only two states, which was
utilized to formulate a problem that maximizes the net profit, and a problem that maximizes
reliability while minimizing cost. The single objective model (SO) was solved directly as a
non-convex MINLP, and the multi-objective problem was solved through reformulating into
its ε- constrained model (P1’), a non-convex MINLP, and then reformulate it as the convex
MINLP (P1’L). In section 6.2, we formulate model (TS) to maximize the net profit for an
ASU process where some of the stages may have three states, giving rise also to a non-convex
MINLP. In section 6.3.2, an availability evaluation part is added to an HDA (hydrodealky-
lation of toluene) process synthesis problem.
All models were implemented in GAMS 24.4.1 on an Intel(R) Core(TM) i7, 2.93GHz.
Commercial solvers BARON 14.4.0 and DICOPT(based on CONOPT 3.16D and CPLEX
12.6.1.0) were used.
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6.1 Binary state system

Figure 8 displays a simple serial system that has 4 stages with up to 3 units at each stage.
Each rectangle represents a single processing unit. The parallel units in stage 1 and 2 are
identical respectively, while those in stages 3 and 4 are distinct. All of the stages are with
binary states. Major parameters including the availability, installation cost and repair cost
of each potential unit are given in Table 2.

Figure 8: Example 1

Table 2: Parameters for example 1

Availability Installation cost Repair cost
1 2 3 1 2 3 1 2 3

1 0.97 1 50 1 20
2 0.97 2 40 2 4
3 0.95 0.92 0.9 3 80 70 65 3 30 28 26
4 0.98 0.94 0.9 4 150 120 90 4 60 48 44

6.1.1 Net profit optimization

The rates for revenue, penalty and bonus are needed to formulate the problem that maximizes
the net profit, which are displayed in Table 3. The model has 29 equations, 26 variables with
13 discrete variables. It was solved by BARON in 0.405 s.

Table 3: Additional parameters for single objective model

rv pn bn A lo A up
1000 800 800 0.988 0.996

The design decisions for maximizing the net profit are shown in Figure 9. A colored box
indicates that the unit is selected to install, while a vacant space means that the unit is not
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selected.

Figure 9: Optimization result of example 1

In the optimized case, the system is expected to earn 988.2 of revenue with 0 bonus and 0
penalty, and 833 on investment(including installation and repair). The net profit is 155.2.

6.1.2 ε-constrained model and its linearized formulation

Next in Table 4, we present the Pareto results for the multi-objective problem. Two groups
of MINLP’s were solved with the upper bound of the total cost varying by 60 from 460 to 820
respectively. The results of the non-convex MINLP’s (P1’) and their linearized version, the
convex MINLP’s (P1’L) are identical. Since the design decisions are discrete, the calculated
values of Ctot might be less than the limit value.

Table 4: Pareto results

cost bar 460 520 580 640 700 760 820
Ctot 436 480 571 622 692 692 819
A 0.849 0.900 0.947 0.951 0.975 0.975 0.993

In Figure 10, the small charts next to each data point indicates the selected design decisions.
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Figure 10: Pareto curve

It is shown that as the upper bound of the cost increases, the maximum system availability
increases as well. From Figure (10), we can also see the impact of the budget on the selection
of the units for each stage. Generally speaking, the optimal designs for larger budgets have
more units than those for smaller budgets. However, it is not merely a process of adding on
units. As the upper bound of the total cost increases, some units are added, while some are
discarded. Also note that the kinks in the Pareto curve are due to the changes in system
configuration, and more fundamentally, the discrete nature of the problem.

Table 5 compares the computational results of single models (P1’) and (P1’L).

Table 5: Computational results of (P1’) and (P1’L)for example 1

No. Eq. No. Var No. Dis. Vars Solver Mean time
P1’ 21 22 12 BARON 0.038s
P1’ 21 22 12 SCIP 0.016s

P1’L 97 50 40 DICOPT 0.087s
P1’L 97 50 40 SBB 0.125s

If we duplicate each stage three times and consider the expanded system (example 1’)
with 12 stages in total, the computational results are as shown in Table 6.

Table 6: Computational results of (P1’) and (P1’L) for example 1’

No. Eq. No. Var No. Dis. Vars Solver Mean time
P1’ 21 22 12 BARON 0.140s
P1’ 21 22 12 SCIP 0.129s

P1’L 97 50 40 DICOPT 0.107s
P1’L 97 50 40 SBB 5.738s

Clearly, the scale of problem (P1’L) is larger than that of (P1’), and the average solving time
of (P1’L) on example 1 is longer than that of (P1’). However, the average solving time of
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(P1’L) on example 1’ is shorter than that of (P1’), which proves that the convexity of (P1’L)
brings it time efficiency that becomes more and more considerable for larger problems.

6.2 Multi-state system (ASU)

In this section we inspect again the ASU case that served as a motivating example in section
2. Non-convex MINLP(TS) is implemented for its design optimization.

Figure 11: The diagram of ASU reliability design alternatives

Table 7 shows the parameters. There are no non-identical parallel units considered.

Table 7: Parameters of ASU example

Availability Installation cost Repair cost
2-state part 3-state part 2-state part 3-state part 2-state part 3-state part

1 0.998 0.996 1 120 60 1 20 18
2 0.98 2 50 2 8
3 0.992 0.990 3 100 50 3 30 20
4 0.996 0.993 4 20 10 4 5 3

rv = 1000, pn = 800, bn = 800, A lo = 0.988, A up = 0.996

Figure 12 shows the optimization result.

Figure 12: The result diagram of ASU reliability design alternatives
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6.3 Application to process synthesis problems

As stated in section 3, the previous models are based on a fixed serial diagram, and the
availability of the system is simply the product of the availabilities of each stage (5) or the
linear combination of the products (60). However, in this section, the reliability model will
be rendered a complementary part to normal process synthesis problems. In other words,
the existence of some of the unit operations are not deterministic. To elaborate, a general
disjunctive programming representation of a process synthesis problem (PS) is shown below:

min Z =
∑
i

ci + f(x)

s.t.

g(x) ≤ 0 Yi
hi(x) ≤ 0
ci = γi

 ∨
 ¬Yi
Bix = 0
ci = 0

 i ∈ D (PS)

Ω(Y ) = True

x ∈ Rn, c ≥ 0, Y ∈ {True, False}m

Here Yi are boolean variables associated with the existence of units. x stand for continuous
variables such as flowrates, temperatures, pressures, etc. ci represent fixed costs and f(x)
are costs related to x.
To apply reliability evaluations, each unit in (PS) is taken as a stage, and parallel units are
assigned for certain stages i ∈ DR. Let boolean variables W and their corresponding binary
variables w represent the existence of the parallel units. xR are continuous variables related
to stage and system availabilities including γi and Pi. AVi is the availability of stage i. Then
AVi = Pi when stage i exists, and 1 when it does not. Below is the general representation
of a process synthesis problem considering reliability (PSR).

min Z =
∑
i

ci + Af(x)

s.t.

g(x) ≤ 0

gR(xR, w) ≤ 0 Yi
hi(x) ≤ 0
ci = γi

 ∨
 ¬Yi
Bix = 0
ci = 0

 i ∈ D/DR (PSR)
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
Yi

hi(x) ≤ 0
ci = γi
AVi = Pi

 ∨

¬Yi

Bix = 0
ci = 0
AVi = 1

 i ∈ DR

Ω(Y ) = True

Φ(W ) = True

A =
∏
i∈DR

AVi

x ∈ Rn, c ≥ 0, Y ∈ {True, False}m

xR ∈ Ra,W ∈ {True, False}b

6.3.1 Methanol synthesis

In this section an example is presented to show the implementation of the availability mod-
eling in the process design based on flowsheet superstructure.

Figure 13: Supper structure of methanol synthesis process

The process synthesis problem of methanol synthesis process was solved as an MINLP by
Türkay and Grossmann (1996) without reliability considerations based on the superstructure
shown in Figure 13. Single choices have to be made regarding two feeds and two reactors.
Feed 2 is more expensive but has less inert species than feed 1. Reactor 2 is more expensive
but has higher conversion than reactor 1. In addition, it has to be determined whether to
use a single-stage compressors or a two-stage compressor with intercooling for the two pres-
surization process respectively. A locally optimal flowsheet was obtained as shown in Figure
14. The problem has 269 equations, 280 variables and 6 discrete variables and was solved
by DICOPT in 0.56s to the optimal profit of $4662.1K.
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Figure 14: Result of original methanol synthesis problem

In order to apply availability evaluation, 3 identical potential parallel units are assigned
to each selected unit operations such as compressors, heat exchangers and valves. Table 8
shows the selected unit operations, their incoming streams and parameters of availabilities
and costs. The extended problem has 390 equations, 379 variables and 56 discrete variables
and was solved by DICOPT in 0.94s to the optimal profit of $3964.4 K.

Table 8: Additive availability evaluation module
Unit operations Stages Incoming streams Installation

costs (103yr−1)
Repair costs
(103yr−1)

Availability

compressor 1 1 4

0.068*power
(kw) + 5.6

Installation cost/6

0.987
2 2 5 0.987
3 3 5 0.987
4 4 27 0.987
5 5 28 0.987
6 6 28 0.987

cooler 1 7 5
0.0167*heat
(kw) + 0.47

Installation cost/6

0.992
2 8 11 0.992
3 9 12 0.992
4 10 19 0.992

heater 1 11 22
0.0167*heat
(kw) + 0.47

Installation cost/6
0.992

2 12 24 0.992
3 13 30 0.992

valve 1 14 18 0.001 0.000 0.983

The solution to the model with availability evaluation is as shown in Figure 15. A flowsheet
is selected and certain numbers of parallel units are kept for the stages being considered and
remain in the resulting flowsheet.
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Figure 15: Result of methanol synthesis process considering reliability

The two-stage compressor before the recycle point is replaced by a single stage compressor
to lower the probability of failure. The switch from expensive feed and reactor to cheaper
ones can only be explained has a side product of the changes resulted by the extended
part. It may have caught attention that the profit has dropped sharply after reliability
module is introduced. However, with the same reliability data, the availability of the optimal
configuration without redundant units is only 0.8591, and its real profit considering failure
is $3949.8 K, which is lower than that of the problem with reliability part.

6.3.2 Hydrodealkylation of toluene (HDA)

In this section another example is presented to show the implementation of the availability
modeling in the process design based on flowsheet superstructure.
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Figure 16: Super structure of HDA process

The process synthesis problem of hydrodealkylation of toluene (HDA) process was solved by
Kocis and Grossmann (1989) without reliability considerations based on the superstructure
shown in Figure 16. A locally optimal flowsheet was obtained as shown in Figure 17. Accord-
ing to the solution, it is decided to purify the hydrogen feed before mixing with toluene feed.
The isothermal reactor is preferred rather than the adiabatic reactor. The separation train
of the products includes stabilizing column, benzene column and flash 3. And the overhead
of flash 1 rich with hyodrogen is directly recycled without any further purification, while the
hydrogen in the overhead of the stabilizing column is purged with methane. The problem
has 719 equations, 723 variables and 13 discrete variables and was solved by DICOPT in
2.05s.
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Figure 17: HDA process original result

In order to apply availability evaluation, 3 identical potential parallel units are assigned to
each selected unit operations such as compressors, heat exchangers, pumps and valves. Table
9 shows the selected unit operations, their incoming streams and parameters of availabilities
and costs. The extended problem has 892 equations, 858 variables and 89 discrete variables
and was solved by DICOPT in 2.95s.
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Table 9: Additive availability evaluation module
Unit operations Stages Incoming streams Installation

costs (103yr−1)
Repair costs
(103yr−1)

Availability

compressor 1 1 5
0.815*power
(kw) + 7.155

Installation cost/6

0.987
2 2 59 0.987
3 3 64 0.987
4 4 56 0.987

cooler 1 5 71 1 0.167 0.97
2 6 45 1 0.167 0.97

heater 1 7 24 1 0.167 0.97
2 8 23 1 0.167 0.97
3 9 37 1 0.167 0.97
4 10 61 1 0.167 0.97

heat exchanger 1 11 8 1.5 0.25 0.989
pump 1 12 42 0.2 0.033 0.975

2 13 68 0.2 0.033 0.975
valve 1 14 44 0.05 0.008 0.96

2 15 38 0.05 0.008 0.96
3 16 14 0.05 0.008 0.96
4 17 47 0.05 0.008 0.96
5 18 29 0.05 0.008 0.96
6 19 73 0.05 0.008 0.96

The solution to the model with availability evaluation is as shown in Figure 18. A flowsheet
is selected and certain numbers of parallel units are kept for the stages being considered and
remain in the resulting flowsheet.

Figure 18: Result of HDA process considering reliability
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Comparing to result shown in Figure 17, now the purification step for hydrogen feed is
skipped, and flash 3 is replaced by toluene column. Curious enough, it appears that all the
routes selected here tend to have fewer stages bearing availability considerations than their
competitors. Arguably, it is because the more complex routes won’t provide excess profits
enough to balance the loss from higher possibility of failures and the costs from installing
more parallel units. Thus, the system tends to adopt simpler flowsheet to reduce failure and
to retain sales revenue as much as possible. The original problem is solved to a profit of
$4619.2 K and will drop to $3842.1 K considering failures, comparing to $4580.1 K by the
model with reliability part.

7 Conclusion

Assuming that single units are given with fixed probabilities of being available, MINLP mod-
els have been presented for selecting designs in serial systems to optimize their availability.
Two kinds of situations are investigated. For the first situation, all the stages need only one
unit to work properly. For the other situation being investigated, some of the stages have
two units sharing the workload. These stages will provide half of the normal capacity when
only one unit is left available, which gives the system an intermediate state besides merely up
and down. Two non-convex MINLP models maximizing system net profit are discussed re-
garding the two situations respectively. In addition, another non-convex ε-constraint MINLP
model maximizing availability and minimizing cost separately is posed for the first senario.
It can be reformulated to a convex MINLP. What’s more, the availability evaluation part
is added to process synthesis optimization problems over flowsheet superstructure. As for
future work, storage has not yet considered, which plays important part in guaranteeing
the availability of a chemical plant. Furthermore, we will introduce Markov chain theory to
account for the time-dependence of the system, in order to design storage capacities as well
as taking care of various options at the process level.
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