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Abstract 
The need for optimization tools for reliability design considering operational factors is 
motivated by the significance of availability of process systems and the lack of systematic 
and rigorous tools. In response to this need, this paper introduces a systematic approach 
to model the stochastic process of system failures and repairs as a continuous-time 
Markov chain, in which the impact of maintenance is incorporated in order to find the 
optimal selection of parallel units. An illustrative example is shown. 
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1. Introduction 
Plant availability has been a critical consideration for chemical processes, as it represents 
the fraction of normal operating time, which directly impacts profitability. In practice, 
discrete-event simulation tools are used to examine the availability of a few selected 
designs of different redundancy levels under various maintenance policies (Sharda and 
Bury, 2008). However, the best plan selected through simulation is usually suboptimal 
because the list of candidates is not exhaustive. Thus, there is a strong motivation for 
systematic optimization tools for redundancy design considering operational factors. 

Literature review of research in reliability engineering can be found in Ye et al. (2017) 
where a general mixed-integer framework is proposed to select standby units to maximize 
availability and minimize cost. However, for a more comprehensive optimization, it is 
also important to consider the impacts of operational factors such as maintenance. In 
particular, preventive maintenance (PM) is a major strategy to improve the availability of 
units (Ding and Kamaruddin, 2015). Pistikopoulos et al. (2001) and Goel et al. (2003) 
formulate an MILP model for the selection of units and production and maintenance 
planning for a fixed system configuration. Markov chain is a powerful mathematical tool 
being extensively used to capture the stochastic process of systems transitioning among 
different states. Bloch-Mercier (2002) models the deterioration process of a system as 
continuous-time Markov chain to optimize inspection intervals. Lin et al. (2012) model a 
simple utility system using Markov chain and carry out RAM (reliability, availability & 
maintainability) analysis iteratively to decide the optimal reliability design. 
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Given the aforementioned research gaps and knowledge basis, this work extends our 
recent mixed-integer framework Ye et al. (2017) by introducing a systematic approach to 
model the stochastic process of system failures and repairs as a continuous-time Markov 
chain, for which the impact of maintenance is incorporated in order to find the optimal 
selection of parallel units. 

2. Problem statement 
We define a general modelling framework for production systems with underlying serial 
structures for availability evaluation as shown in Figure 1. For each stage 𝑘𝑘, a set of 
potential parallel units 𝐽𝐽𝑘𝑘 are available for selection at the design phase. The goal is to 
determine which one or several potential parallel units to install, as well as the length of 
inspection intervals 𝑡𝑡𝑘𝑘𝑖𝑖 , in order to maximize the system availability (i.e. probability that 
the system performs without failures), while minimizing the total cost of the system.  

 
Figure 1 - A serial system 

Each stage 𝑘𝑘 has a set of potential units 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘, for which the following is given:  

• Availability parameters, i.e. Failure rate 𝜆𝜆𝑘𝑘,𝑗𝑗 and repair rate 𝜇𝜇𝑘𝑘,𝑗𝑗. 
• Operating priority within stage k (indicated by the order of 𝑗𝑗). A unit becomes 

active if and only if all the selected units with higher priorities have failed. 
• Cost rates, including installation, inspection, maintenance and repair. 

For each stage 𝑘𝑘, inspections are scheduled for active equipment at a certain time period 
to be determined, 𝑡𝑡𝑘𝑘𝑖𝑖 ,  called inspection interval. If the inspection indicates that the 
equipment has a deterioration, a predictive maintenance task will be carried out in time. 
In that case, there will be enough time to order the spare parts and hence reduce the 
shipping costs, with which a maintenance task is cheaper than the repair upon failure. A 
deterioration can be detected by scheduled inspections in a certain period before it 
happens, called delay time (Christer, 1999), or PF-interval (Moubray, 1997) of length 𝑇𝑇𝑘𝑘𝑑𝑑.  

Based on the parameters provided above, the availability of stage 𝑘𝑘 will depend on the 
selection of parallel units 𝑦𝑦𝑘𝑘,𝑗𝑗 and the inspection intervals of each processing stage 𝑡𝑡𝑘𝑘𝑖𝑖 . 
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Figure 2 – Timeline of inspection/maintenance/repair 

3. Modeling 
3.1. Availability calculation 
A continuous-time Markov chain is characterized by its transition rate matrix, the “Q 
Matrix”, which can be used to solve for the stationary probability vector 𝛑𝛑 through the 
linear equations, 𝛑𝛑T𝐐𝐐 = 𝟎𝟎 and 𝛑𝛑T𝟏𝟏 = 1. For the failure-repair system that we are 
considering, the availability can be obtained by adding up the probabilities of the non-
failure states. Next, we show how to construct the “Q Matrix” of the system, and model 
the impact of the selection of units and inspection intervals on the “Q Matrix”, and 
therefore on 𝛑𝛑 and system availability.  

First, for single stages, as we are making selections among the potential parallel units 
within stage k, there are several exclusive designs indexed by h, and each of them has a 
corresponding “Q Matrix” constructed as follows: 

• A state space 𝑇𝑇𝑘𝑘,ℎ is enumerated where the transition from state i to state j (𝑖𝑖, 𝑗𝑗 ∈ 𝑇𝑇𝑘𝑘,ℎ) is 
due to the happening of a failure or a repair. For example, the design decision of installing 
two units has the following 4 states:  

Table 1 - State space example 
Unit 1 Active Active Being repaired Being repaired 
Unit 2 Standby Being repaired Active Being repaired 

• Then the Q Matrix of design h is a 4×4 matrix where the element in row i and column j 
is equal to the failure rate or repair rate of the transition from state i to state j. 

• And the element on the diagonal is equal to the opposite number of the sum of the other 
elements in the same row. 

After the Q Matrices for the designs in stage k are formulated, they are put together to 
form a block-diagonal matrix 𝐐𝐐𝐐𝐐𝑘𝑘 called the “pseudo Q matrix” of stage k, which include 
all possible states for stage k. Following from that, the “pseudo Q matrix” of the 
system,𝐖𝐖𝐐𝐐𝑘𝑘 is calculated using the following formula, where ⨂ is the Kronecker 
product and satisfies the associative law of addition. 

| | | | 1 2 | | | | 1 3 1 | | | | 1 4 2 1

| | | | 2 | | 3 1 | | 1 | | 2 1

1 2 3

| | 1 | |

K K K K K K

K K K K K

n n n n n n n n n n n n

n K n n n K n n n

WM I QM I QM I I QM I

I QM I QM I
− − −

− − − −−

= ⊗ + ⊗ ⊗ + ⊗ ⊗ +

+ ⊗ ⊗ + ⊗
  

 

  

The following constraints are used to manipulate the elements in 𝐖𝐖𝐐𝐐𝑘𝑘. The values of 
binary variables 𝑦𝑦𝑘𝑘,𝑗𝑗 decide which columns and rows are eliminated from 𝐖𝐖𝐐𝐐𝑘𝑘 to find 
the actual Q matrix through equations (1)-(11). The variables 𝑡𝑡𝑘𝑘𝑖𝑖  will affect the failure 
rates of single units, and therefore the values of the elements in 𝐖𝐖𝐐𝐐𝑘𝑘 ((12)-(18)). 
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𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = ��𝑦𝑦𝑘𝑘,𝑗𝑗𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘,𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑘𝑘𝑘𝑘∈𝐾𝐾

 (1) 

�𝑦𝑦𝑘𝑘,𝑗𝑗
𝑗𝑗∈𝐽𝐽𝑘𝑘

≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾 ,         ∀𝑘𝑘 ∈ 𝐾𝐾 (2) 

𝑍𝑍𝑘𝑘,ℎ ⇔ � 𝑌𝑌𝑘𝑘,𝑗𝑗
𝛼𝛼𝑗𝑗,𝑘𝑘,ℎ=1

� ¬𝑌𝑌𝑘𝑘,𝑗𝑗
𝛼𝛼𝑗𝑗,𝑘𝑘,ℎ=0

,        ∀𝑘𝑘 ∈ 𝐾𝐾, ℎ ∈ 𝐻𝐻𝑘𝑘 (3) 

� 𝑍𝑍𝑘𝑘,ℎ

ℎ∈𝐻𝐻𝑘𝑘

,        ∀𝑘𝑘 ∈ 𝐾𝐾 (4) 

𝑍𝑍𝑍𝑍𝑘𝑘,𝑠𝑠 ⇔ 𝑍𝑍𝑘𝑘,ℎ ,        ∀𝑘𝑘 ∈ 𝐾𝐾 (5) 

�̅�𝑍ℎ� ⇔ � 𝑍𝑍𝑘𝑘,ℎ
𝑘𝑘∈𝐾𝐾,ℎ∈𝐻𝐻𝑘𝑘,|ℎ|=ℎ𝑐𝑐𝑘𝑘,ℎ�

,        ∀ℎ� ∈ 𝐻𝐻� (6) 

𝑍𝑍𝑍𝑍�����̅�𝑠 ⇔ �̅�𝑍ℎ� ,        ∀ℎ� ∈ 𝐻𝐻�, 𝑖𝑖̅ ∈ 𝑇𝑇�ℎ� (7) 

� 𝑍𝑍𝑍𝑍�����̅�𝑠
0 ≤ 𝜋𝜋�̅�𝑠 ≤ 1� ∨ �

¬𝑍𝑍𝑍𝑍�����̅�𝑠
𝜋𝜋�̅�𝑠 = 0� ,        ∀𝑖𝑖̅ ∈ 𝑆𝑆̅ (8) 

�
𝑍𝑍𝑍𝑍�����̅�𝑟

�𝜋𝜋�̅�𝑠𝑊𝑊𝑀𝑀(𝑖𝑖̅, �̅�𝑟)
�̅�𝑠

= 0� ∨ �
¬𝑍𝑍𝑍𝑍�����̅�𝑟

�𝜋𝜋�̅�𝑠𝑊𝑊𝑀𝑀(𝑖𝑖̅, �̅�𝑟)
�̅�𝑠

< ∞� ,         ∀�̅�𝑟 ∈ 𝑅𝑅� 
(9) 

�𝜋𝜋�̅�𝑠
�̅�𝑠

= 1 (10) 

𝐴𝐴 = 1− � 𝜋𝜋�̅�𝑠
�̅�𝑠∈�̅�𝑆𝑓𝑓

 (11) 

𝜆𝜆𝑘𝑘,𝑗𝑗
0 − 𝜆𝜆𝑘𝑘,𝑗𝑗 =

𝑒𝑒−𝜆𝜆𝑘𝑘,𝑗𝑗
0 𝑡𝑡𝑘𝑘

𝑖𝑖
− 𝑒𝑒−𝜆𝜆𝑘𝑘,𝑗𝑗

0 �𝑡𝑡𝑘𝑘
𝑖𝑖 +𝑇𝑇𝑘𝑘

𝑑𝑑�

𝑡𝑡𝑘𝑘𝑖𝑖
,        ∀𝑘𝑘 ∈ 𝐾𝐾, 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 

(12) 

�𝑥𝑥𝑘𝑘,𝑙𝑙
𝑙𝑙∈𝐿𝐿

= 1,         ∀𝑘𝑘 ∈ 𝐾𝐾 (13) 

�𝑥𝑥𝑘𝑘,𝑙𝑙𝑇𝑇𝑙𝑙𝑖𝑖

𝑙𝑙∈𝐿𝐿

= 𝑡𝑡𝑘𝑘𝑖𝑖 ,         ∀𝑘𝑘 ∈ 𝐾𝐾 (14) 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = �
𝑇𝑇
𝑡𝑡𝑘𝑘𝑖𝑖
𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

 (15) 

𝑟𝑟𝑒𝑒𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 =  𝑇𝑇 � −𝑊𝑊𝑀𝑀(𝑖𝑖̅, 𝑖𝑖̅)𝜋𝜋�̅�𝑠 � 𝑐𝑐_𝑟𝑟𝑒𝑒𝑖𝑖𝑟𝑟𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑠𝑠�

𝑓𝑓�̅�𝑠∈�̅�𝑆𝑓𝑓
 (15) 

𝑖𝑖𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ≥ 𝑇𝑇 � −𝑊𝑊𝑀𝑀(𝑖𝑖̅, 𝑖𝑖̅)𝜋𝜋�̅�𝑠 � 𝑦𝑦𝑘𝑘,𝑗𝑗𝑐𝑐_𝑖𝑖𝑟𝑟𝑒𝑒𝑝𝑝𝑘𝑘�𝜆𝜆𝑘𝑘,𝑗𝑗
0 − 𝜆𝜆𝑘𝑘,𝑗𝑗�

𝑘𝑘∈𝐾𝐾𝑠𝑠�
𝑓𝑓�̅�𝑠∈�̅�𝑆𝑓𝑓

/𝜆𝜆𝑘𝑘,𝑗𝑗 
(16) 

𝑖𝑖𝑟𝑟𝑒𝑒𝑝𝑝𝑇𝑇𝑖𝑖𝑝𝑝𝑒𝑒 ≥ 𝑇𝑇 � −𝑊𝑊𝑀𝑀(𝑖𝑖̅, 𝑖𝑖̅)𝜋𝜋�̅�𝑠 � 𝑦𝑦𝑘𝑘,𝑗𝑗𝑇𝑇𝑘𝑘
𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝�𝜆𝜆𝑘𝑘,𝑗𝑗

0 − 𝜆𝜆𝑘𝑘,𝑗𝑗�
𝑘𝑘∈𝐾𝐾𝑠𝑠�

𝑓𝑓�̅�𝑠∈�̅�𝑆𝑓𝑓
/𝜆𝜆𝑘𝑘,𝑗𝑗 

(17) 

𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡 = 𝐴𝐴 −
𝑖𝑖𝑟𝑟𝑒𝑒𝑝𝑝𝑇𝑇𝑖𝑖𝑝𝑝𝑒𝑒

𝑇𝑇
 (18) 

3.2. Economic dependence 

The net profit is the sum of the revenue, penalty and bonus minus the sum of costs. The 
total revenue is considered proportional to the availability of the system.  Generally, in 
the contract between the plant and the customer, two reference bounds are set for the 
availability of the plant. If the actual availability of the plant does not meet the lower 
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bound, the plant that supplies products for the customer will be charged proportional to 
the difference. Conversely, if the actual availability exceeds the upper bound, the 
customer reward the plant with a bonus that is also proportional to the difference. 

max 𝑀𝑀𝑁𝑁 = 𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑀𝑀 + 𝐵𝐵𝑀𝑀 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑟𝑟𝑒𝑒𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑖𝑖𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  (19) 
𝑅𝑅𝑅𝑅 = 𝑟𝑟𝑝𝑝𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡 (20) 

1 2 3    W W W∨ ∨   (21) 

�

𝑊𝑊1
𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡 ≤ 𝐴𝐴_𝑙𝑙𝑖𝑖

𝑁𝑁𝑀𝑀 = (𝐴𝐴_𝑙𝑙𝑖𝑖 − 𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡)𝑖𝑖𝑖𝑖
𝐵𝐵𝑀𝑀 = 0

� ∨ �

𝑊𝑊2
𝐴𝐴_𝑙𝑙𝑖𝑖 ≤ 𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡 ≤ 𝐴𝐴_𝑢𝑢𝑖𝑖

𝑁𝑁𝑀𝑀 = 0
𝐵𝐵𝑀𝑀 = 0

� ∨ �

𝑊𝑊1
𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡 ≥ 𝐴𝐴_𝑢𝑢𝑖𝑖
𝑁𝑁𝑀𝑀 = 0

𝐵𝐵𝑀𝑀 = (𝐴𝐴𝑛𝑛𝑝𝑝𝑡𝑡 − 𝐴𝐴_𝑢𝑢𝑖𝑖)𝑏𝑏𝑖𝑖

� 

(22) 

4. Example 
In this section, a small example is shown featuring the system in Figure 3 that has 2 serial 
stages each with 2 identical potential units. Both of the two stages require at least 1 unit 
to function properly. Table 2 displays the parameters for the case study. A 10-year time 
horizon is considered. 

 
Figure 3 - Two stage-two unit system 

Table 2 - Parameters 

Stage MTBF 
(day) 

MTTR 
(day) 

Fixed 
cost 
(k$) 

Repair cost 
rate (k$ per 

time) 

Inspection 
cost rate (k$ 

per time) 

Maintenance 
cost rate (k$ 

per time) 

Maintenance 
time (day) 

Delay 
time (day) 

1 66.7 7 24 12 0.1 0.6 1 10 
2 50 7 20 10 0.1 0.5 1 12 
 
The MINLP model without maintenance is solved first with BARON in 0.480 CPUs ((1)-
(9) and (17) -(19)). There are 1568 equations and 1477 variables with 15 binary variables. 
The optimal design is to have all potential units installed. The expected system availability 
is 0.986, and the net profit is $5822.38 k, with a revenue of $6902.27 k, zero bonus, and 
zero penalty. $88 k is spent on unit investment, and $180.27 k is spent on repair.  

Then the entire MINLP model with maintenance ((1)-(19)) is solved with BARON in 
3.810 CPUs, which has 1576 equations, 1489 variables with 15 binary variables. The 
optimal design is also to have all potential units installed. The expected system 
availability is 0.996. The expected net profit is $5966.61 k, with a revenue of $6972.32 k 
and no bonus or penalty. $88 k is spent on unit investment, $52.14 k on inspections, 
$38.68 k on maintenance, and $34.89k on repair. Other results are shown in Table 3. 

Table 3 - Optimization results 

Stage Inspection interval (day) Equivalent MTBF (day) 
1 14 142.9 
2 14 125 



6  Yixin Ye et al. 

From the above results we can see that when maintenance is considered, the model 
predicts a higher availability and revenue, which together with the decrease of repair cost, 
successfully compensate for the additional costs on inspection and maintenance, and leads 
to a higher net profit. Hopefully with a larger model of more degrees of freedom, the 
impact of maintenance on design decision will be better revealed. 

5. Conclusion 
In this paper, we have proposed a general modeling framework to represent the failure-
repair process of a multi-unit system as a continuous-time Markov Chain, and to 
incorporate the design decision of selecting one or more standby units, as well as the 
operation decision of determining inspection intervals. The resulting MINLP model was 
implemented and solved for an illustrative example. 
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