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Abstract: A single product maritime inventory routing problem is addressed in this paper by 
exploring the use of continuous and discrete time models. We first present a continuous time 
model based on time slots for single docks, which is enhanced by reformulating the time 
assignment constraints. Next, we present a model based on event points to handle parallel docks. 
A discrete time is also presented based on a single commodity fixed-charge network flow 
problem (FCNF). All the models are solved for multiple randomly generated instances of different 
problems to compare their computational efficiency, and to illustrate the solutions obtained. . 
 

1 Introduction 
Maritime transportation is a major mode of transportation covering more than 80% of the world 
trade by volume (Agra et al, 2013; UNCTAD, 2008). When one actor or cooperating actors in 
the maritime supply chain have the responsibility of both the transportation of goods and the 
inventories at the ports, the underlying planning problem is a maritime inventory routing 
problem (MIRP). Such problems are complex. However, improvements in the fleet utilization 
and charge/discharge amounts can translate into large cost reductions. This means that there 
is great potential and need for research in the area of MIRPs (Agra et al, 2013). 
 
Many works related to MIRP have been reported in the literatures. Ronen (1983, 1993) 
published two reviews on ship scheduling and related areas, where different levels and modes 
were discussed. Christiansen (2004) reviewed the status and perspectives of ship routing and 
scheduling in 2004. Andersson et al (2010) surveyed the combined inventory management 
and routing problem from industrial and modeling aspects, and suggested future research with 
regard to both further development of the research area and industrial needs. Agra et al (2013) 
reviewed the advances in MIRP, and studied valid inequalities for a single product MIRP to 
tighten a discrete time model. Surveys by Andersson et al (2010) and Christiansen and 
Fagerholt (2009) showed that MIRP has received increasing attention in the last decade. As 
pointed out by Agra et al (2013), the real MIRPs are of high complexity. 
 
There are many works on modeling of MIRPs. Sherali et al (1999) formulated a mixed-integer 
programming model based on a discrete time representation for the Kuwait Petroleum 
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Corporation (KPC) problem, and presented an alternative aggregate model that retains the 
main features of the KPC problem to improve the computational efficiency. Savelsbergh and 
Song (2008) developed a discrete time model for the inventory routing problem with 
continuous moves based on the integer multi-commodity flow formulation. Furman et al (2011) 
developed a mixed-integer programming formulation based on a discrete time representation 
for vacuum gas oil routing and inventory management. Song and Furman (2013) introduced a 
flexible modeling framework for inventory routing problem, which can accommodate various 
practical features using a discrete time representation. Al-Khayyal and Hwang (2007) studied 
inventory constrained maritime routing and scheduling for multi- commodity liquid bulk. They 
defined a position (𝑖𝑖,𝑇𝑇), where 𝑖𝑖 denotes a port, and 𝑇𝑇 is the arrival number of the vessels 
at that port within the planning horizon. Then, they formulated the continuous time constraints 
of different arrivals within one port and different positions related to the same vessel. Li, 
Karimi and Srinivasan (2010) addressed an inventory service problem in which a chemical 
MNC uses a fleet of multi-parcel ships with dedicated compartments to move multiple 
chemicals continuously among its internal and external production and consumption sites. 
They presented a MILP model similar to that of Al-Khayyal and Hwang (2007) at an 
operational level with finer granularity. Siswanto (2011) presented a variation of Al-Khayyal 
and Hwang’s model in which he relaxed the problem to consider an assignment of multi- 
undedicated compartments to products. Bilgen and Ozkarahan (2007) presented a MILP 
model based on a discrete time representation that integrates blending, loading and 
transportation decisions simultaneously into one model in order to obtain an optimal solution. 
As pointed out by Sherali and Al-Yakoob (2005), it is possible to solve small practical 
instances using commercial solvers. However, it is difficult to solve large scale problems due 
to the large number of binary variables. A computationally efficient model is critical for solving 
such problems. Furthermore, a discrete time model is generally much larger than continuous 
time models. Since most of the works have focused on discrete time models, we explore in this 
paper the potential of continuous time models. 
 
A single product MIRP problem is studied in this paper. There are two categories of ports: 
production ports and consumption ports. Each port has an inventory with a certain capacity. 
Vessels transport products from production ports to consumption ports to ensure that the 
inventories of ports neither exceed given capacities, nor lie below given safety levels. The 
ports have given production/consumption rates and berth capacities. The vessels have given 
capacities, speeds, preparation times and charge/discharge rates. The objective is to 
determine the times that vessels visit the ports, and the charged/discharged amounts of 
vessels at each port in order to minimize total cost while satisfying the inventory constraints.  
 
From the view point of modeling and solution, MIRP is a complex MILP problem. Model 
efficiency is a key issue, since different models usually exhibit very different computational 
requirements. We develop different models for continuous and discrete time and compare 
them by the sizes, solutions and CPU times in 6 problems. The main difference between the 
problem in this paper and that in Agra et al’s paper (2013) is that in our problem, operations 
(charges/discharges) require preparation times, and the sailing costs involve a fixed part and a 
variable part that depends on the loads. 
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The remainder of the paper is organized as follows. In section 2, we describe the maritime 
inventory routing problem. In section 3, different time presentations are discussed. Then, four 
models, for continuous time and discrete time, are presented in section 4. The computational 
results for multiple randomly generated instances of 6 problems are presented in section 5. 
Conclusions are finally given in section 6. 
 

2 Problem statement 

 

 
(The pictures of the vessels and ports come from 

http://www.zhongsou.net and http://www.nipic.com respectively) 
Figure 1 Illustrative structure of maritime route 

 
As an illustrative example of the MIRP problem addressed in this paper, we consider as shown 
in Figure 1, one production port and two consumption ports, which produce or consume 
products at a certain rate. Vessel V1 departs from the maintenance port (for convenience, we 
call it here the departure port, denoted as O), visits production port P1 and consumption ports 
C1, C2 sequentially to transport the product, and finally arrives at the maintenance port (for 
convenience, we call it here the destination port, denoted as D). Vessel V2 departs from O, 
visits production port P1 and consumption ports C2 sequentially to transport the product, and 
finally arrives at D. The task is to schedule the visiting times and charge/discharge amounts of 
every vessel to reduce transportation and operation cost with certain constraints. For more 
general problems, there are more ports and vessels, and different vessels sail by different 
routes. 
The MIRP problem can be stated as follows. 
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Given: 
The set of production ports 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝  and consumption ports 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐  with production and 
consumption rates P𝑖𝑖 and Q𝑖𝑖. The stock of each port must lie between specified lower and 
upper bounds,  
st𝑖𝑖lo, st𝑖𝑖

𝑢𝑢𝑝𝑝. The transportation times tsa𝑣𝑣𝑖𝑖𝑣𝑣 between each pair of ports (𝑖𝑖, 𝑗𝑗) are also given. 
The set of vessels 𝑣𝑣 ∈ 𝑉𝑉 with upper bound load la𝑣𝑣

up are given. For each vessel, the route is 
given by the 0-1 parameter x𝑣𝑣𝑖𝑖𝑣𝑣 . Fixed durations for charge/discharge,  tfi𝑣𝑣𝑖𝑖 , and 
charge/discharge rate rv𝑣𝑣𝑖𝑖, are given. Vessels cannot wait at a port for longer than a time limit, 
TimeWUp𝑣𝑣. The time horizon, TH is given. 
Determine: 
The charge/discharge times and amounts of the vessels at ports are to be determined. 
Goal: 
Minimize the transportation, operation and waiting cost. 
 
Consider the following illustrative problem and its solution with two vessels, one production 
port and two consumption ports. The profiles of the loads of the two vessels are depicted in 
Figures 2 and 3. As seen in Figure 2, V1 departs from the departure port O and arrives at the 
production port P1 at the beginning of the schedule period, and starts to charge. When a 
certain amount of product is charged, V1 departs from P1 for the first consumption port C1. 
After a certain time of sailing, V1 arrives at C1 and waits for operation, then discharges. After 
that, V1 sails to C2, and discharges at C2 without waiting. Finally, V1 departs from C2 and 
sails to the destination port D. In Figure 3, a similar scenario for V2 is depicted. V2 visits P1 
and C2 only. 
In Figures 4 to 6, the profiles of stocks of the three ports are depicted. For P1, the stock 
increases constantly at a certain rate, except when there is vessel charging. The stock will 
decrease rapidly when a vessel is charging at P1. For C1 and C2, the stocks decrease with 
certain rates except when there is vessel discharging. 
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Figure 2 Load profile for vessel V1 

 

 
Figure 3 Load profile for vessel V2 
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Figure 4 Inventory profile for production port P1 

 
Figure 5 Inventory profile for consumption port C1 

 

 
Figure 6 Inventory profile for consumption port C2 

 

3 Time representation 
For scheduling problems, there are two kinds of time representations, discrete time and 
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continuous time representations. As pointed out by Floudas et al (2004), the continuous time 
representation can be classified into two groups, time slots and event points. We first describe 
the time representations before developing the models. 
a) Time slot representation 
Assuming first the case of single docks, we define time slots for each port. At every port, the 
operation of each vessel, including preparation to operate, is assigned a time slot as seen in 
Figure 7. 

 

Figure 7 Time slot representation 
 
For port 𝑖𝑖, time slots are defined with the start and end times as continuous variables. The 
vessels’ continuous times for starting to prepare at and departing from the port (finishing 
operation) must match with the start and end times of a time slot, respectively. If there are 
𝑁𝑁𝑢𝑇𝑇𝑖𝑖   vessels visiting port 𝑖𝑖, then 𝑁𝑁𝑢𝑇𝑇𝑖𝑖  time slots are defined for port 𝑖𝑖. In the illustrative 
problem, there are two vessels, V1 and V2, visiting ports P1 and C2, so two time slots, k1 and 
k2, are defined for P1 and C2, respectively, involving start times 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and end times 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖. For 
C1, only one time slot is defined. According to Figure 7, the start and end points of the two time 
slots are assigned to the two vessels respectively, with the start points assigned to the start to 
prepare times, and the end times to the departure times.  
 
Consider now the time slots for the vessels. Recall the example illustrated in Figures 2-6. In 
Figure 2, vessel V1 visits all the three ports, so it is assigned three time slots (each slot 
corresponds to one port), and the three oblique line sections correspond to the slots. In Figure 
3, vessel V2 visits two ports, so it is assigned two time slots, and there are two oblique line 
sections. The horizontal sections indicate that the vessels are sailing in the sea, or staying in 
some port without operating. In Figures 4 and 6, there are two time slots. In Figure 6, the four 
turning points correspond to the two couples of start and end points. The actual start points are 
a bit earlier than the corresponding turning points because there are preparation times for 
charge/discharge. But the difference cannot be seen clearly since the preparation time (0.5 
day) is much smaller. In Figure 4, the end time of the first slot and start time of second slot 
coincides with each other. This means that the middle turning point corresponds to both the 
end time of first slot and start time of second slot. In Figure 5, since only one vessel visits Port 
C1, only one time slot is defined. 
b) Event point representation 
In order to be able to handle parallel docks, we define event points 𝑇𝑇𝑖𝑖𝑖𝑖  for each port. Starting 
to prepare for operation, starting to operate and departing from the port (finishing operation) 
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matches with different event points as seen in Figure 8. The number of the points is three 
times that of the vessels (e.g. six event points for two vessels). There are similar descriptions 
on the profiles of the ports stocks and the vessels loads as in the case of the time slots. 

 

Figure 8 Event point representation 
 

In Figure 8, the operation times (including the preparation time) of vessels V1 and V2 at port i 
overlap each other, that is, the two vessels operate simultaneously during time period 
[tov2,i, tev1,i], since the time of starting to prepare for operation of vessel V2 is later than that of 
V1, and earlier than the time of finishing operation of V1. That is tov1,i < tov2,i and tev1,i >
tov1,i. Hence, berth capacity of port i can be greater than one. 
c) Discrete time representation 

 
Figure 9 Discrete time representation 

 
For the discrete time representation, we discretize the time horizon into a number of uniform 
time intervals (Figure 9). All the vessels and ports use the same time axis. Because all the 
events (departure, arrival, start and finish preparing, start and finish operation) occur at the 
fixed time intervals, the greatest common factor (GCF) of the preparation times and sailing 
times is adopted as the size of time intervals. 
 

4 Scheduling models 

4.1 Continuous time model based on time slots 
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Figure 10 Sketch of the assignment of the operations to the corresponding ports 

 
The basic idea of the time slot based model is to assign the operations to the corresponding 
ports. Figure 10 illustrates the basic idea, where xvij is a 0-1 parameter indicating whether 
vessel 𝑣𝑣 visits port 𝑖𝑖 and 𝑗𝑗 in succession. The 0-1 binary variables 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖  are defined to 
denote whether vessel 𝑣𝑣 visits port 𝑖𝑖 at time slot 𝑘𝑘. If a vessel arrives at a port from another 
port, a time slot is assigned to it, and each slot can be assigned to it, but a slot can only be 
assigned to no more than one vessel, and no more than one slot can be assigned to one 
vessel. Then, we have the following constraints. 
Time slot constraints 
The subsequent slot cannot start before the preceding one ends, and the end time of a slot 𝑘𝑘 
of port 𝑖𝑖 is later than the start time. 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1 ≥ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖\𝑘𝑘𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (1) 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (2) 

where 𝑘𝑘𝑖𝑖𝑖𝑖 indicates the last time slot of port 𝑖𝑖. 
Assignment constraints 
If vessel 𝑣𝑣 visits port 𝑗𝑗, a time slot of port 𝑗𝑗 is assigned to vessel 𝑣𝑣. Except for the departure 
port, vessel 𝑣𝑣 visits port 𝑗𝑗 means that it must come from a preceding port. 

∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑗𝑗 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (3) 
No more than one vessel can operate at any port at the same time. 

∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣∈𝑉𝑉 ≤ 1, ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (4) 
If a time slot is assigned to a vessel, it means that its start time to prepare for operation at and 
departing time from the port are forced to the start and end time of the slot, respectively. 
Otherwise, if the time slot is not assigned to a vessel, the constraints are ignored. 

�
𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖

� ∨ [¬𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣], ∀𝑣𝑣 ∈ V,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(5) 

We usually reformulate the disjunction in (5) into the following big-M inequalities: 
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−M(1−𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣) ≤ 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀(1−𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣), 
∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 

(6) 

−M(1−𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣) ≤ 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀(1−𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣), 
∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 

(7) 

Operational time constraints 
If a vessel departs from port 𝑖𝑖 to port 𝑗𝑗, its arrival time at 𝑗𝑗 equals to its departure time at 𝑖𝑖 
plus the sailing time. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣�𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + tsa𝑣𝑣𝑣𝑣𝑣𝑣�𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (8) 
A vessel can only start to prepare for charge/discharge operation after it arrives at a port. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≥ 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (9) 
If xvij = 0, equality holds for an optimal solution because waiting incurs in a cost. 
The interval between the arrival time and the start time to prepare for operation is the waiting 
time. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (10) 
If a vessel visits a port, it departs after a certain operation time, involving the preparation and 
variable operation time, which depends on the amount of charged/discharged product. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 𝑞𝑞𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣⁄ )𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 (11) 
At the departure and destination ports, any vessel departs immediately after it operates. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 0, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑂𝑂 ∪ 𝐷𝐷 (12) 
A vessel cannot wait longer than for a specified time limit. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (13) 
Any vessel must depart from the destination port before the time horizon ends 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑇𝑇𝑇𝑇, ∀𝑣𝑣 ∈ 𝑉𝑉 (14) 
Stock balance constraints 
A port’s stock at the end of a slot equals to that at the beginning plus/minus the amount of 
production/consumption and that discharged/charged by the vessel. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 − ∑ (𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑞𝑞𝑣𝑣𝑣𝑣)𝑣𝑣∈𝑉𝑉 + 𝑃𝑃𝑖𝑖(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) =  𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒  , ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (15) 
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖s + ∑ (𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣)𝑣𝑣∈𝑉𝑉 − 𝑄𝑄𝑖𝑖(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 , ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (16) 

A port’s stock at the beginning of the subsequent slot equals to that at the end of the preceding 
slot plus/minus the amount of production/consumption. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 + 𝑃𝑃𝑖𝑖(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) =  𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖+1𝑠𝑠  , ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖\𝑘𝑘𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (17) 
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 − 𝑄𝑄𝑖𝑖(𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖+1 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) = 𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖+1𝑠𝑠 , ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖\𝑘𝑘𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (18) 

A port’s stock at the beginning of the first time slot equals to the initial stock plus/minus the 
production/consumption amount. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖1𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑖𝑖0 + 𝑃𝑃𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1,  ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (19) 
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖1𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑖𝑖0 − 𝑄𝑄𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖1,  ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (20) 

where 𝑘𝑘1 indicates the first time slot of port 𝑖𝑖. 
A port’s stock at the end of time horizon equals to that at the end of the last slot plus/minus the 
amount of production/consumption 

𝑠𝑠𝑠𝑠𝑖𝑖
𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 + 𝑃𝑃𝑖𝑖(TH− 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖),  ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (21) 

𝑠𝑠𝑠𝑠𝑖𝑖
𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 − 𝑄𝑄𝑖𝑖(TH− 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖)  ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (22) 

The ports’ stock must lie between lower and upper bounds. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖
𝑓𝑓 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖

𝑢𝑢𝑢𝑢, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 (23) 
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𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖
𝑢𝑢𝑢𝑢, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (24) 

𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑒𝑒 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖
𝑢𝑢𝑢𝑢, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 (25) 

Load balance constraints 

 
Figure 11 Sketch of vessel’s load calculation 

 
Generally, a vessel visits more than one port. When a vessel visits a port, its load changes 
according to the operations. Calculation of a vessel’s load involves different ports as seen in 
Figure 11. The load of V1 increases after visiting P1, and decreases after visiting C1 and C2. 
The amounts of increase/decrease depend on the operation times. 
If vessel 𝑣𝑣 visits ports 𝑖𝑖 and 𝑗𝑗 successively, its load before operation at port 𝑗𝑗 equals to that 
at port 𝑖𝑖 plus/minus the charge/discharge amounts at port 𝑖𝑖. 

�∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑖𝑖∈∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 + 𝑞𝑞𝑣𝑣𝑣𝑣�∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝐷𝐷 (26) 
�∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑖𝑖∈∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 − 𝑑𝑑𝑣𝑣𝑣𝑣�∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (27) 

Since 𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖 , 𝑞𝑞𝑣𝑣𝑣𝑣 , 𝑑𝑑𝑣𝑣𝑣𝑣  and 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖  are variables, constraints (26) and (27) are nonlinear. To 
linearize them, we introduce new continuous variables 𝑤𝑤𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖 , 𝑤𝑤𝑡𝑡𝑡𝑡1𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖 , 𝑤𝑤𝑞𝑞𝑣𝑣𝑣𝑣𝑖𝑖 , 𝑤𝑤𝑞𝑞1𝑣𝑣𝑣𝑣𝑖𝑖 
𝑤𝑤𝑑𝑑𝑣𝑣𝑣𝑣𝑖𝑖 , 𝑤𝑤𝑑𝑑1𝑣𝑣𝑣𝑣𝑖𝑖, and new constraints as follows. 

𝑤𝑤𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑤𝑤𝑤𝑤𝑤𝑤1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, 
∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 

(28-1) 

𝑤𝑤𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣
𝑢𝑢𝑢𝑢𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 ,∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,

𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 
(28-2) 

𝑤𝑤𝑤𝑤𝑤𝑤1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣
𝑢𝑢𝑢𝑢�1−𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣�, 

∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 
(28-3) 

𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑤𝑤𝑤𝑤1𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑞𝑞𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝐷𝐷 (29-1) 
𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑞𝑞𝑣𝑣𝑣𝑣

𝑢𝑢𝑢𝑢𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝐷𝐷 (29-2) 
𝑤𝑤𝑤𝑤1𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑞𝑞𝑣𝑣𝑣𝑣

𝑢𝑢𝑢𝑢�1−𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣�, ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝐷𝐷 (29-3) 
𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑤𝑤𝑤𝑤1𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑑𝑑𝑣𝑣𝑣𝑣 ,∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (30-1) 
𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑑𝑑𝑣𝑣𝑣𝑣

𝑢𝑢𝑢𝑢𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (30-2) 
𝑤𝑤𝑤𝑤1𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑑𝑑𝑣𝑣𝑣𝑣

𝑢𝑢𝑢𝑢(1−𝑤𝑤𝑣𝑣𝑣𝑣), ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (30-3) 
The equations in (26) and (27) are then replaced by the new constraints 

∑ ∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖𝑖𝑖∈∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 +∑ 𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, 
∀v ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝐷𝐷 

(31) 

∑ ∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖𝑖𝑖∈∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 − ∑ 𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, 
∀v ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 

(32) 

Loads must lie between lower and upper bounds (the lower bound is generally zero). 
𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣

𝑢𝑢𝑢𝑢, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (33) 
Objective function 
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The objective is to minimize the total cost 𝑇𝑇𝐶𝐶, including the sailing cost (fixed sailing cost and 
variable sailing cost dependent on the load), waiting cost, and operation cost.  

𝑇𝑇𝐶𝐶 = � x𝑣𝑣𝑣𝑣𝑣𝑣�𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣�
𝑣𝑣∈𝑉𝑉,𝑖𝑖,𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂∪𝐷𝐷

tsa𝑣𝑣𝑣𝑣𝑣𝑣

+ � 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣)
𝑣𝑣∈𝑉𝑉,𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂∪𝐷𝐷

 

+ � 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣)
𝑣𝑣∈𝑉𝑉,𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂∪𝐷𝐷

 

(34) 

where 𝐶𝐶𝑡𝑡𝑡𝑡𝑣𝑣, 𝐶𝐶𝑡𝑡𝑣𝑣𝑣𝑣, 𝐶𝐶𝑤𝑤𝑣𝑣𝑖𝑖 and 𝐶𝐶𝑡𝑡𝑣𝑣𝑖𝑖 are the corresponding cost coefficients. In this way, the 
continuous time model based on time slots is as follows: 

S: minimize  𝑇𝑇𝐶𝐶 
Subject to (1)-(4), (6)-(25) and (28)-(33). 

4.2 Reformulation of the continuous time model based on time slot 
Pinto and Grossmann (1996) presented a reformulation method of the time slot assignment 
constraints of a short term scheduling problem of multistage batch plants, which is similar to 
the big-M inequalities in (6) and (7). Instead of using equations (5), the reformulations is as 
follows. First, equation (4) is reformulated as, 

∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣∈𝑉𝑉 + 𝑦𝑦𝑖𝑖𝑖𝑖 = 1, ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (35) 
where 𝑦𝑦𝑖𝑖𝑖𝑖 is an auxiliary continuous variable. 
Define new variables 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 and 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖, 𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 
to reformulate the disjunction in (5) in nonlinear form. 

𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) = 0,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (36) 
⇔ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (37) 
𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖) = 0,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (38) 
⇔ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (39) 

Add equations (37) and (39) over the time slots 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖. 
∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 = ∑ 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 , ∀𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (40) 
∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 = ∑ 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 , ∀𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (41) 

Recall ∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖∈𝐾𝐾𝑖𝑖 = ∑ xvij𝑖𝑖∈Np∪Nc∪O . Then, 
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ∑ 𝑥𝑥𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 = ∑ 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 , ∀𝑣𝑣 ∈ V, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (42) 
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ∑ 𝑥𝑥𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 = ∑ 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘∈𝐾𝐾𝑖𝑖 , ∀𝑣𝑣 ∈ V, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (43) 

Adding equations (37) and (39) over vessels 𝑣𝑣 ∈ V, yields, 

� 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣
𝑣𝑣∈𝑉𝑉

= � 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝑣𝑣∈V

,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(44) 

� 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣
𝑣𝑣∈V

= � 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖
𝑣𝑣∈V

,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(45) 

Since 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 
𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (46) 
𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (47) 

 
 
then, 

� 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V

= 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖� 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V

,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(48) 
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� 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V

= 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖� 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V

,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(49) 

Also recall  ∑ 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣∈V + 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 

� 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V

= 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(1− 𝑦𝑦𝑖𝑖𝑖𝑖),∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(50) 

� 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V

= 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(1− 𝑦𝑦𝑖𝑖𝑖𝑖),∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(51) 

Defining 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 and 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖, yields, 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = � τs𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V,𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂∪𝐷𝐷

+ 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (52) 

𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 = � τe𝑣𝑣𝑣𝑣𝑣𝑣
𝑣𝑣∈V,𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂∪𝐷𝐷

+ 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 ,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (53) 

Finally, considering the definition of 𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 ,  𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖  and 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 , we have the following 
constraints: 

0 ≤ 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣M,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (54) 
0 ≤ 𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣M,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 , 𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (55) 
0 ≤ 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖M,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (56) 
0 ≤ 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖M,∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖 ,𝑣𝑣 ∈ V, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (57) 

 
In this way, the disjunction in (5) is replaced by equations (42), (43), and (52)- (57). 
Hence, the reformulation of the continuous time model based on time slot is as follows: 

RS: minimize  𝑓𝑓(𝑥𝑥, 𝑦𝑦) 
Subject to (1)-(3), (8)-(25), (28)-(33), (42), (43) and (52)-(57). 

 
Number of variables and constraints of 𝐒𝐒 and 𝐑𝐑𝐑𝐑 
Consider that ∑ 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣∈V ≤ 1 in model S is reformulated as ∑ 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣∈V + 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 in model RS, 
in which new variables 𝑦𝑦𝑖𝑖𝑖𝑖 are introduced in model RS. Consider variables 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 and 
𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖, 𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 and 𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 . By matching 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 one by one, 
the numbers of them are the same. Similarly, the number of 𝛾𝛾𝑡𝑡𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖, 
𝜏𝜏𝑡𝑡𝑣𝑣𝑖𝑖𝑖𝑖 and 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 are the same as each other. All the other variables in models S and RS are 
the same. Therefore, the total number of continuous variables in model RS is larger that in 
model S by the number of 𝑦𝑦𝑖𝑖𝑖𝑖 variables, while the number of binary variables in models S 
and RS  are the same. Consider constraints (6) and (7) in model RS.  The number is 
4∗ |V| ∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 , where 𝐾𝐾𝑖𝑖 indicates the set of time slots of port 𝑖𝑖. Consider constraint (4), the 
number is ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 . The total number is (4 ∗ |V| + 1) ∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 . Consider constraints (42) and (43) 
in model S, the number is 2∗ |V||I|. With constraints (52) and (53) in model RS, the number is 
2∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 . Consider constraints (54)-(57) in model RS, the number is 2∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 |V| + 2 ∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 . 
Adding all the above, we have that the number of the special constraints in RS is 2∗ |V||I|+2∗
∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 +2 ∗ |V| ∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 + 2 ∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 .  Compared with (4 ∗ |V| + 1) ∗ ∑ |𝐾𝐾𝑖𝑖|𝑖𝑖 ,  it depends on the 
parameters which is lager between the two numbers of the equations of S and RS.  
 
S and RS are both time slot based models, for which, if some of the slots overlap with each 
other, it means that there are parallel docks. However, for instance, the stock constraints (15) 
and (16) are not correct. Since it is difficult to develop the correct set of stock constraints, 
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models S and RS can only be applied for cases when there are no parallel docks. 
 
4.3 Continuous time model based on event points  
To formulate the problem for parallel docks, we develop a continuous time model based on 
event points.  
First, we define the following 0-1 binary variables as follows. 
𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖𝑠𝑠 , vessel 𝑣𝑣 starts to prepare at port 𝑖𝑖 at time point 𝑇𝑇𝑖𝑖𝑖𝑖 
𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖
𝑓𝑓 , vessel 𝑣𝑣 finishes preparation and starts to operate at port 𝑖𝑖 at time point 𝑇𝑇𝑖𝑖𝑖𝑖 

𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒 , vessel 𝑣𝑣 finishes operation at port 𝑖𝑖 at time point 𝑇𝑇𝑖𝑖𝑖𝑖 
Time point constraints 
Time points keep an increasing order. 

𝑇𝑇𝑖𝑖,𝑘𝑘+1 ≥ 𝑇𝑇𝑖𝑖𝑖𝑖, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖\𝑘𝑘𝑖𝑖𝑖𝑖 (58) 
where 𝑘𝑘𝑖𝑖𝑖𝑖 indicates the last time point for port 𝑖𝑖. 
Assignment constraints 
Event points are assigned to different operation times as follows. 

� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣

� ∨ [¬𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠 ], ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(59) 

� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣
𝑓𝑓

𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣
� ∨ �¬𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣

𝑓𝑓 �, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(60) 

� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒
𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣

� ∨ [¬𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒 ], ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(61) 

Equations (59)-(61) state that if an event point is assigned to an operation, it equals to the 
corresponding variable. 
We reformulate equations (59)-(61) using big-M constraints, 
−M(1− 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠 ) ≤ 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠 ), ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (62) 

−M�1− 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣
𝑓𝑓 � ≤ 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑀𝑀�1− 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣

𝑓𝑓 �, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (63) 
−M(1− 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒 ) ≤ 𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑀𝑀(1 − 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒 ), ∀𝑣𝑣 ∈ 𝑉𝑉,𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (64) 
 
Visiting constraints 
At any port and at any time, the number of vessels, which have started to prepare, and have 
not finished operation, cannot exceed its upper bound. 

� �� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠
𝑘𝑘∈𝐾𝐾𝑖𝑖

−� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒
𝑘𝑘∈𝐾𝐾𝑖𝑖

�
𝑣𝑣∈𝑉𝑉

≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ,∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 
(65) 

where Cap𝑖𝑖 indicates the berth capacity of port 𝑖𝑖. 
Vessel 𝑣𝑣 at port i can only start and finish operation once if it visits that port. 

� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠
𝑘𝑘∈𝐾𝐾𝑖𝑖

= � 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒
𝑘𝑘∈𝐾𝐾𝑖𝑖

= � x𝑣𝑣𝑣𝑣𝑣𝑣
𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂

,∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (66) 

Vessel 𝑣𝑣 at departure port can only start to prepare and finish operation once. 

� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠

𝑘𝑘∈𝐾𝐾𝑖𝑖
= � 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒

𝑘𝑘∈𝐾𝐾𝑖𝑖
= 1,∀𝑣𝑣 ∈ 𝑉𝑉 (67) 

 
 
Operation time constraints 
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If a vessel departs from port 𝑖𝑖 to port 𝑗𝑗, its arrival time at 𝑖𝑖 equals to its departure time at 𝑗𝑗 
plus the sailing time. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣�𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣�𝑖𝑖∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝐷𝐷 (68) 
The interval between the arrival time and the starting to prepare time is the waiting time. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (69) 
If vessel 𝑣𝑣 visits port 𝑖𝑖, there is a fixed preparation time 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣tfi𝑣𝑣𝑣𝑣𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 (70) 
If vessel 𝑣𝑣 visits port 𝑖𝑖, the variable operation time depends on the charged/discharged 
amount. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣 𝑞𝑞𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣⁄𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (71) 
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣⁄𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (72) 

At the departure and destination ports, vessel 𝑣𝑣 departs when it starts the operation of 
charge/discharge. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = 0, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑂𝑂 ∪ 𝐷𝐷 (73) 
The waiting time cannot exceed its upper bound. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (74) 
Vessels must depart from the destination port before the time horizon ends. 

𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 ≤ 𝑇𝑇𝑇𝑇, ∀𝑣𝑣 ∈ 𝑉𝑉 (75) 
Stock balance constraints 
A port’s stock at the first event point equals to the initial stock plus/minus the production/ 
consumption amount. 

𝑠𝑠𝑠𝑠𝑖𝑖0 + 𝑃𝑃𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖1 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖1, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (76) 
𝑠𝑠𝑠𝑠𝑖𝑖0 − 𝑄𝑄𝑖𝑖𝑇𝑇𝑖𝑖𝑖𝑖1 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖1, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (77) 

The difference between the stocks of the successive event points is the summation of the 
production/consumption amount and the charged/discharged amount. If vessel 𝑣𝑣 finishes 
preparation and does not finish operation at port i, the product is charged/discharged at a 
certain rate. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 −� �� 𝑦𝑦𝑣𝑣𝑣𝑣𝑘𝑘′
𝑓𝑓

𝑘𝑘′≤𝑘𝑘
−� 𝑦𝑦𝑣𝑣𝑣𝑣𝑘𝑘′

𝑒𝑒

𝑘𝑘′≤𝑘𝑘
� �𝑇𝑇𝑖𝑖,𝑘𝑘+1 − 𝑇𝑇𝑖𝑖𝑖𝑖�𝑞𝑞𝑣𝑣𝑣𝑣

𝑣𝑣
 

+𝑃𝑃𝑖𝑖�𝑇𝑇𝑖𝑖,𝑘𝑘+1 − 𝑇𝑇𝑖𝑖𝑖𝑖� =  𝑠𝑠𝑠𝑠𝑖𝑖,𝑘𝑘+1  , ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖\𝑘𝑘𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 

(78) 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 −� �� 𝑦𝑦𝑣𝑣𝑣𝑣𝑘𝑘′
𝑓𝑓

𝑘𝑘′≤𝑘𝑘
−� 𝑦𝑦𝑣𝑣𝑣𝑣𝑘𝑘′

𝑒𝑒

𝑘𝑘′≤𝑘𝑘
� �𝑇𝑇𝑖𝑖,𝑘𝑘+1 − 𝑇𝑇𝑖𝑖𝑖𝑖�𝑑𝑑𝑣𝑣𝑣𝑣

𝑣𝑣
 

−𝑄𝑄𝑖𝑖�𝑇𝑇𝑖𝑖,𝑘𝑘+1 − 𝑇𝑇𝑖𝑖𝑖𝑖� =  𝑠𝑠𝑠𝑠𝑖𝑖,𝑘𝑘+1  , ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖\𝑘𝑘𝑖𝑖𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 

(79) 
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Figure 12 An illustrative profile of a production port 
 

The stock at the end of the time horizon equals to that at the last point, plus/minus the 
production/consumption amount. 

𝑠𝑠𝑠𝑠𝑖𝑖
𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (80) 

𝑠𝑠𝑠𝑠𝑖𝑖
𝑓𝑓 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑄𝑄𝑖𝑖(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (81) 

Stocks must lie between lower and upper bounds. 
𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖

𝑢𝑢𝑢𝑢, ∀𝑘𝑘 ∈ 𝐾𝐾𝑖𝑖, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐  (82) 

𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖
𝑓𝑓 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖

𝑢𝑢𝑢𝑢, ∀ 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 (83) 
 
Load balance constraints 
If vessel 𝑣𝑣 visits port 𝑖𝑖 and 𝑗𝑗 successively, its load before operation at port 𝑗𝑗 equals to that 
at port 𝑖𝑖 plus/minus the charge/discharge amount at port 𝑖𝑖. 

�∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑖𝑖∈∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 + 𝑞𝑞𝑣𝑣𝑣𝑣�∑ 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣
𝑓𝑓

𝑘𝑘∈𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 
(84) 

�∑ x𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣𝑖𝑖∈∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 − 𝑑𝑑𝑣𝑣𝑣𝑣�∑ 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣
𝑓𝑓

𝑘𝑘∈𝐾𝐾 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑗𝑗 ∈ 𝑁𝑁𝑐𝑐 
(85) 

The charge/discharge time depends on the amount. 
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣 𝑞𝑞𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣⁄𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 (86) 
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 − 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 = ∑ x𝑣𝑣𝑣𝑣𝑣𝑣 𝑑𝑑𝑣𝑣𝑣𝑣 𝑟𝑟𝑟𝑟𝑣𝑣𝑣𝑣⁄𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐 , ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 (87) 

The vessel’s load cannot exceed its lower and upper bounds 
𝑙𝑙𝑙𝑙𝑣𝑣𝑙𝑙𝑙𝑙 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣

𝑢𝑢𝑢𝑢, ∀𝑣𝑣 ∈ 𝑉𝑉, 𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 (88) 
Objective function 
The objective function is the same as equation (34) in the time slot based models. Hence, the 
model is as follows: 

E: minimize  𝑇𝑇𝑇𝑇 
Subject to (58), (62)-(88). 

 
The event point based model can handle parallel docks. However, the size of the model 
becomes much larger due to a large number of 0-1 assignment binary variables. 
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4.4 Discrete time model 
Agra et al. (2013) developed a discrete time model for the maritime inventory routing problem. 
We present in this section a similar discrete time model, but in contrast to Agra et al. (2013) 
who consider only variable costs for operation and fixed costs for sailing, we consider fixed 
and variable costs for operation as well as fixed and variable costs for sailing. As shown below, 
the model corresponds to a fixed-charge network flow (FCNF) problem.  

 

Figure 13 Operation at consumption port 𝑖𝑖 for vessel 𝑣𝑣 in the fixed charge flow network 
 

In Figure 13, the squares indicate connections between the stocks at successive time points, 
and the discharged and consumed amounts in current time interval. The circles indicate the 
connections between the binary operation variables 𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣, 𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣, 𝑤𝑤𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣, and 𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣. We then 
have the following constraints. 
Routing constraints 
Vessel 𝑣𝑣 can only sail between ports 𝑖𝑖 and 𝑗𝑗 if there is a route planned from port 𝑖𝑖 to 𝑗𝑗 for 
vessel 𝑣𝑣. 

𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑥𝑥𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ V, 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (89) 
where savijt indicates that vessel 𝑣𝑣 is sailing between ports i and j at time t. 
The number of 𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣 with value 1 for any (𝑣𝑣, 𝑖𝑖, 𝑗𝑗) equals to the total time vessel 𝑣𝑣 sailing 
between ports 𝑖𝑖 and 𝑗𝑗. 

∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡∈𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 ∗ x𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, ∀𝑣𝑣 ∈ V, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ∪ 𝑂𝑂 ∪ 𝐷𝐷 (90) 
where 𝑇𝑇𝑑𝑑𝑣𝑣𝑖𝑖𝑣𝑣 is a parameter which indicates the transportation time between ports 𝑖𝑖 and 𝑗𝑗 for 
vessel 𝑣𝑣. 
Any vessel must start and finish a schedule. 

∑ ∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡∈𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖∈𝑂𝑂,𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝐷𝐷 = 1 ∀𝑣𝑣 ∈ 𝑉𝑉 (91) 
∑ ∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡∈𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖∈𝑂𝑂𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪,𝑗𝑗∈𝐷𝐷 = 1 ∀𝑣𝑣 ∈ 𝑉𝑉 (92) 

Fixed charge network flow constraints 
A vessel cannot charge/discharge and prepare simultaneously. 

∑ (𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣)𝑣𝑣∈𝑉𝑉 ≤ 1, ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 (93) 
Flow conservation I. Vessel 𝑣𝑣 departs or operates at time 𝑡𝑡 if it operates or prepares to 
operate at time 𝑡𝑡 − 1. 

𝑜𝑜𝑣𝑣𝑣𝑣,𝑡𝑡−1 + 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣,𝑡𝑡−1 = ∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝐷𝐷 + 𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 , ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡1 (94) 
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Flow conservation II. Vessel 𝑣𝑣 waits or prepares for operation at time 𝑡𝑡 if it waits at time 
𝑡𝑡 − 1, or departs from the preceding port at time 𝑡𝑡 − 𝑇𝑇𝑑𝑑𝑣𝑣𝑖𝑖𝑣𝑣. 
∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣,𝑡𝑡−𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝑂𝑂 + 𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣,𝑡𝑡−1 = 𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 , 

∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡1,𝑣𝑣 ∈ V 
(95) 

Vessel 𝑣𝑣 cannot wait after operation. 
𝑜𝑜𝑣𝑣𝑣𝑣,𝑡𝑡−1 + 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣,𝑡𝑡−1 ≤ 𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 + ∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝐷𝐷 , 
∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡1 

(96) 

Vessel 𝑣𝑣 can only depart after operation. 
𝑜𝑜𝑣𝑣𝑣𝑣,𝑡𝑡−1 ≥ ∑ 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗∈𝑁𝑁𝑝𝑝∪𝑁𝑁𝑐𝑐∪𝐷𝐷 , ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡1 (97) 

where 𝑡𝑡1 is the first time point of the discrete time point. 
Vessel 𝑣𝑣 can only operate after preparing to operate. 

� 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣,𝑡𝑡1
𝑡𝑡1≥𝑡𝑡+1

+ 𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 1,∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡1 
(98) 

Stock balance constraints 
Stock of port 𝑖𝑖  at time 𝑡𝑡 + 1  equals to that at time 𝑡𝑡  minus/plus the charge/discharge 
amount plus/minus the production/consumption amount. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 − ∑ (𝑞𝑞𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣)𝑣𝑣∈𝑉𝑉 + 𝑃𝑃𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖+1, ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝, 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡𝑚𝑚 (99) 
𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + ∑ (𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣)𝑣𝑣∈𝑉𝑉 − 𝑄𝑄𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖+1, ∀𝑖𝑖 ∈ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡𝑚𝑚 (100) 

where 𝑡𝑡𝑚𝑚 is the last time point of the discrete time point. 
Any stock must lie between specified lower and upper bounds. 

𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 𝑠𝑠𝑠𝑠𝑖𝑖
𝑢𝑢𝑢𝑢, ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 (101) 

Load balance constraints 
Load of vessel 𝑣𝑣 at time 𝑡𝑡 + 1 equals to that at time 𝑡𝑡 plus the charge amount minus the 
discharge amount. 

𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣 + ∑ 𝑞𝑞𝑞𝑞𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖∈𝑁𝑁𝑝𝑝 − ∑ 𝑑𝑑𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖∈𝑁𝑁𝑐𝑐 = 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣+1, ∀𝑣𝑣 ∈ V, 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑\𝑡𝑡𝑚𝑚 (102) 
Load of any vessel at any time must lie between lower and upper bounds. 

𝑙𝑙𝑙𝑙𝑣𝑣𝑙𝑙𝑙𝑙 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣 ≤ 𝑙𝑙𝑙𝑙𝑣𝑣
𝑢𝑢𝑢𝑢, ∀𝑣𝑣 ∈ V, 𝑡𝑡 ∈ 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 (103) 

Upper bounds for waiting time 
The waiting time cannot exceed its upper bound 

∑ 𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡∈𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑣𝑣, ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 (104) 
Preparation time for charging/discharging 
The number of ofvit with value 1 equals to the total preparation time 

∑ 𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡∈𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 , ∀𝑖𝑖 ∈ 𝑁𝑁𝑝𝑝 ∪ 𝑁𝑁𝑐𝑐 ,𝑣𝑣 ∈ V (105) 
Objective function 
The objective is to minimizing the total cost 𝑇𝑇𝐶𝐶′, including the sailing cost (fixed sailing cost 
and variable sailing cost dependent on the load), waiting cost, and operation cost.  

𝑇𝑇𝐶𝐶′ = � 𝑠𝑠𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑙𝑙𝑙𝑙𝑣𝑣𝑣𝑣�
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

+ � 𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
 

             +∑ (𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣𝑣𝑣𝑜𝑜𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐶𝐶𝐶𝐶𝑣𝑣𝑖𝑖𝑜𝑜𝑣𝑣𝑣𝑣𝑣𝑣)𝑣𝑣𝑣𝑣𝑣𝑣   

(106) 

 
The discrete time model is as follows 

D: minimize 𝑇𝑇𝐶𝐶′ 
Subject to (89)-(105). 
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Even though the discrete time model is relatively straightforward to formulate, the size can be 
much larger because of a large number of potential event time interval assignments due to the 
time discretization. Furthermore, the quality of the solution will be worse if the time is 
discretized with longer intervals. 
 
5 Numerical results 
To test the four models, we considered multiple randomly generated instances of the six test 
problems indicated in Table 1. Specifically, Tten feasible instances for each problem were 
selected among dozens of instances that were generated with random original stocks of the 
ports. Since the random generation does not always lead to feasible instances, only feasible 
ones are selected for each problem. We solve the different models on all the instances using 
CPLEX 12.5.0.0 within 10 hours limit of CPU time. In the discrete time models, the time is 
discretized uniformly with time intervals of 0.5 days. For the discrete time model as well as for 
the continuous time models we do not consider the addition of valid inequalities. While these 
have been developed for the discrete case (see Agra et al., 2013), at present none have been 
developed for the continuous case. Therefore, we have conducted the comparison without 
valid inequalities since our major goal is to establish the scope and potential of the continuous 
time models. The Aall models are solved in GAMS 24.01 using a CPU Inter Xron E3110 
@3.0GHz with RAM 8.0Gb. 
 
Table 1 Sizes of problems 
 Problem 

1 

Problem 

2 

Problem 

3 

Problem 

4 

Problem 5 Problem 

6 

Number of production ports 1 2 4 3 2 4 
Number of consumption 

ports 

2 4 2 7 4 2 

Number of vessels 2 3 3 6 3 3 
Berth capacity 1 1 1 1 2 2 
Time horizon/days 60 70 70 80 70 70 

 
5.1 Problem 1 
All the four models for problem 1 are solved for 10 random instances. The statistics and 
solutions are shown in Table 2. 
 

Table 2 Statistics and solutions of different models for problem 1 
Model S RS E D 
Number of constraints 605 630 2,599 73,483 
Number of variables 478 546 1,613 53,041 
Number of binary variables 18 18 162 21,120 

Average optimal objective 6903 6903 6963 7386 
Average optimal objective 
of LP Relaxation 

6673 6673 1673 1850 

Average CPU time/s 0.026 0.025 55.779 12.163 
Average number of nodes 2.6 3 14491 3987 
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From Table 2, we can see that the size of model E is much larger than those of models S and 
RS, and that of model D is much larger than that of model E. As a result, the CPU times 
required by models S and RS are quite small, and those of models E and D are much 
longer. The optimal objective of model D is 7.1% higher than that of model E, because the 
time domain is discretized. And as seen in Table 2, models S and RS are tighter than models 
E and D. The schedule obtained by model S for one of the instances of Problem 1 is 
illustrative in Figure 12. 

 
Figure 12 Gantt chart of model S for problem 1 

5.2 Problem 2 
All the four models for problem 2 are solved for 10 random instances. The statistics and 
solutions are shown in Table 3. 
 

Table 3 Statistics and solutions of different models for problem 2 
Model S RS E D 
Number of constraints 1,281 1,308 7,003 126,621 
Number of variables 878 1,021 4,399 92,261 
Number of binary variables 45 45 405 36,960 

Average optimal objective 12818 12818 12818 14755 
Average optimal objective 
of LP Relaxation 

12054 12054 2721 3108 

Average CPU time/s 0.046 0.043 1144 11952 
Average number of nodes 12.2 4.1 151738 3591519 

 
There are similar trends as in problem 1. The number of nodes for model RS is one third as 
that of model S. This means RS performs better than S. The required CPU time of model D 
is ten times as long as that of model E. The optimal objective of D is 15.1% higher than the 
ones of the other models. 
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5.3 Problem 3 
All the four models for problem 3 are solved for 10 random instances. The statistics and 
solutions are shown in Table 4. 
 

Table 4 Statistics and solutions of different models for problem 3 
Model S RS E D 
Number of constraints 1,287 1,314 7,009 126,621 
Number of variables 878 1,021 4,399 92,261 
Number of binary variables 45 45 405 36,960 

Average optimal objective 8934 8934 8944 11081 
Average optimal objective 
of LP Relaxation 

7891 7891 2717 3046 

Average CPU time/s 0.055 0.045 4053 9278 
Average number of nodes 18.1 10 507901 2502848 

For problem 3, there are similar trends as in problem 2. It should be noted is that the CPU time 
required by model D is more than twice as large as that of model E, while the optimal 
objective of model D is 23.9% higher than that of model E, and one of the instances for model 
D is infeasible due to time discretization. Also, the CPU time for models S and RS are 
several orders of magnitude smaller. 
 
5.4 Problem 4 
All the 4 models on problem 4 are solved For 10 random instances. The statistics and 
solutions are shown in Table 5. 
 

Table 5 Statistics and solutions of different models for problem 4 
Model S RS E D 
Number of constraints 6,382 6,290 43,188 613,927 
Number of variables 4,097 4,589 27,811 452,161 
Number of binary variables 192 192 1,728 172,800 

Optimal objective 15826 15826 No feasible 
Solutions 

No feasible 
solutions 

Average optimal objective 
of LP Relaxation 

8189 8189 2901 3482 

CPU time/s 0.311 0.201 360000 360000 
Number of nodes 141.8 20.8   

 
Problem 4 is a larger scale problem. Note that models E and D cannot be solved within the 
time limit of 360000 seconds (100 hours), and no feasible solutions can be found with that time 
limit. In Table 5, we can see that models S and RS are very efficient, with RS being faster 
than S. 
 
5.5 Problems 5 and 6 
Problems 5 and 6 involve parallel docks. Therefore, models S and RS do not apply. Tables 6 
and 7 show the statistics and solutions of models E and D for 10 random instances. The 
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results show that model D takes longer time than model E for problem 5, while model E 
takes longer time than model D  for problem 6. In both cases model E obtains a lower cost 
objective than model D. The schedule of one of the instances of problem 5 is shown in Figure 
13. 
 

Table 6 Statistics and solutions of different models for problem 5 
       with 2 parallel docks 

Model E D 
Number of constraints 7,003 126,621 
Number of variables 4,399 92,261 
Number of binary variables 405 36,960 

Average optimal objective 12475 14546 
Average optimal objective 
of LP Relaxation 

2721 3102 

Average CPU time/s 15084 23088 
Average number of nodes 2473794 6615928 

 
Table 7 Statistics and solutions of different models for problem 6 

 with 2 parallel docks 
Model E D 
Number of constraints 7,009 126,621 
Number of variables 4,399 92,261 
Number of binary variables 405 36,960 

Average optimal objective 9011 11164 
Average optimal objective 
of LP Relaxation 

2717 3049 

Average CPU time/s 17452 8556 
Average number of nodes 2435492 2422197 

 

 
Figure 13 Gantt chart of problem 5 
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From all the above results, we can conclude that for single dock problems the time slot models 
S and RS are solved much faster than event point model E and discrete time model D, and 
RS performs best for larger instances. For the cases with parallel docks, only models E and 
D  apply, with the continuous time models E obtaining significantly better objective function 
values than the discrete time model D. On the other hand, the CPU time required depends on 
the particular instances. 
 
6 Conclusions 
A single product maritime inventory routing problem has been addressed in this paper. Three 
continuous time models and one discrete time model were presented. The first continuous time 
model S S is based on time slots. By reformulating the slot assignment constraints, we 
obtained a second continuous model RSR. The statistics and solutions of the problems have 
shown that the reformulation can improve the computational efficiency. However, the two time 
slot based models cannot handle parallel docks. Therefore, we developed the third continuous 
time model EE, an event point based model, which can deal with parallel docks but introduces 
a large number of 0-1 binary variables. A discrete time model DD based on fixed-charge 
network flow was also developed that can deal with single/parallel docks. From the numerical 
results, the discrete time model DD was shown to lead to higher objective values than the 
continuous time event point based models since the latter do not involve an approximation of 
the timing of the events. 
 
In summary, for the maritime inventory model, the computational results have shown that 
continuous time models have the potential of being more efficient than discrete time models. 
The time slot based models can be solved effectively for the problem with single docks. 
However, for large sized problems with parallel docks, even the continuous time event point 
model can require long CPU times. Hence, valid inequalities and/or decomposition algorithms 
may be required to effectively solve these problems. 
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Nomenclature  
Sets 
𝐷𝐷 Set of destination ports containing 1 element 
𝑁𝑁𝑐𝑐 Set of consumption ports with indices 𝑖𝑖 and 𝑗𝑗 
𝑁𝑁𝑝𝑝 Set of production ports with indices 𝑖𝑖 and 𝑗𝑗 
𝑂𝑂 Set of departure ports containing 1 element 
𝑉𝑉 Set of vessels with index 𝑣𝑣 
𝐾𝐾𝑖𝑖  Set of time slots for port 𝑖𝑖 with index 𝑘𝑘𝑖𝑖, 𝑘𝑘𝑖𝑖1 and 𝑘𝑘𝑖𝑖𝑖𝑖 indicate the first and last 

slots, respectively.. 
𝑇𝑇𝑖𝑖  Set of event points for port 𝑖𝑖 with index 𝑇𝑇𝑖𝑖𝑖𝑖 
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𝑇𝑇𝑣𝑣𝑖𝑖𝑠𝑠  Set of time points for discrete time representation with index 𝑡𝑡𝑙𝑙, 𝑡𝑡1 and 𝑡𝑡𝑖𝑖 
indicate the first and last points, respectively. 

Binary variables 
𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣 1 if vessel 𝑣𝑣 operating at port 𝑖𝑖 in time period 𝑡𝑡 
𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣 1 if vessel 𝑣𝑣 preparing to operate at port 𝑖𝑖 in time period 𝑡𝑡 
𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣 1 if vessel 𝑣𝑣 sailing from 𝑖𝑖 to 𝑗𝑗 in time period 𝑡𝑡 
𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖 1 if vessel 𝑣𝑣 visits port 𝑖𝑖 at time slot 𝑘𝑘 
𝑤𝑤𝑡𝑡𝑣𝑣𝑖𝑖𝑣𝑣 1 if vessel 𝑣𝑣 waiting at port 𝑖𝑖 in time period 𝑡𝑡 
𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖𝑠𝑠  1 if vessel 𝑣𝑣 starts to prepare at port 𝑖𝑖 at time point 𝑇𝑇𝑖𝑖𝑖𝑖 
𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖
𝑓𝑓  1 if vessel 𝑣𝑣 finishes preparation and starts to operate at port 𝑖𝑖 at time point 

𝑇𝑇𝑖𝑖𝑖𝑖 
𝑦𝑦𝑣𝑣𝑖𝑖𝑖𝑖𝑒𝑒  1 if vessel 𝑣𝑣 finishes operation at port 𝑖𝑖 at time point 𝑇𝑇𝑖𝑖𝑖𝑖 
Continuous variables 
𝑑𝑑𝑣𝑣𝑖𝑖  Discharge amount of vessel 𝑣𝑣 at port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖  Load of vessel 𝑣𝑣 at port 𝑖𝑖 before operation 
𝑞𝑞𝑣𝑣𝑖𝑖  Charge amount of vessel 𝑣𝑣 at port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑖𝑖𝑣𝑣 Stock of port 𝑖𝑖 at the beginning of time period 𝑡𝑡 for discrete time model 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑒𝑒  Stock of port 𝑖𝑖 at the end of time slot 𝑘𝑘 
𝑡𝑡𝑡𝑡𝑖𝑖

𝑓𝑓 Stock of port 𝑖𝑖 at the end of time horizon 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑠𝑠  Stock of port 𝑖𝑖 at the beginning of time slot 𝑘𝑘 
𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖  Arrival time of vessel 𝑣𝑣 at port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖  End time of slot 𝑘𝑘 of port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑣𝑣𝑣𝑣 Starting time of vessel 𝑣𝑣 to operate at port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖  Departure of time vessel 𝑣𝑣 from port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑣𝑣𝑖𝑖  Starting time of vessel 𝑣𝑣 to prepare for operation at port 𝑖𝑖 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖  Starting time of slot 𝑘𝑘 of port 𝑖𝑖 
𝑡𝑡𝑤𝑤𝑣𝑣𝑖𝑖  Time duration of vessel 𝑣𝑣 waits for at port 𝑖𝑖 
𝑇𝑇𝑖𝑖𝑖𝑖  the 𝑘𝑘𝑣𝑣ℎ time point of port 𝑖𝑖 
𝑇𝑇𝐶𝐶, 𝑇𝑇𝐶𝐶′ Total cost 
Parameters 
Cap𝑖𝑖  Berth capacity of port 𝑖𝑖 
Co𝑣𝑣i Operation cost of vessel 𝑣𝑣 at port 𝑖𝑖 
Csf𝑣𝑣 Fixed cost of vessel 𝑣𝑣 for sailing 
Csv𝑣𝑣 Coefficient of variable cost of vessel 𝑣𝑣 for sailing 
Cw𝑣𝑣𝑖𝑖  Coefficient of waiting cost of vessel 𝑣𝑣 at port 𝑖𝑖 
dr𝑣𝑣𝑖𝑖𝑣𝑣  Discharge rate of vessel 𝑣𝑣 at port 𝑖𝑖 for discrete time model 
la𝑣𝑣lo Lowerbound of vessel 𝑣𝑣’s load 
la𝑣𝑣
up Upperbound of vessel 𝑣𝑣’s load 

P𝑖𝑖  Production rate of port 𝑖𝑖 
qr𝑣𝑣𝑖𝑖𝑣𝑣  Charge rate of vessel 𝑣𝑣 at port 𝑖𝑖 for discrete time model 
Q𝑖𝑖  Consumption rate of port 𝑖𝑖 
rv𝑣𝑣𝑖𝑖  Charge/discharge rate of vessel 𝑣𝑣 at port 𝑖𝑖 
st𝑖𝑖lo Lowerbound of stock of port 𝑖𝑖 
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st𝑖𝑖
up Upperbound of stock of port 𝑖𝑖 

Td𝑣𝑣𝑖𝑖𝑣𝑣  Transportation time between port 𝑖𝑖 and 𝑗𝑗 for vessel 𝑣𝑣 for discrete time model 
tfi𝑣𝑣𝑖𝑖  Preparation time for charging/discharging of vessel 𝑣𝑣 at port 𝑖𝑖 
TH Time horizon 
TimeWUp𝑣𝑣  Upperbound of vessel 𝑣𝑣’s waiting time 
tsa𝑣𝑣𝑖𝑖𝑣𝑣  Transportation time between port 𝑖𝑖  and 𝑗𝑗 for vessel 𝑣𝑣  for continuous time 

model, in days 
x𝑣𝑣𝑖𝑖𝑣𝑣  1 indicates that vessel 𝑣𝑣 departs from 𝑖𝑖 to 𝑗𝑗 
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