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Abstract 

This paper is concerned with the optimal design of multi-echelon process supply chains 

(PSCs) under economic and responsive criteria with considerations of inventory management 

and demand uncertainty. The multi-echelon stochastic inventory systems are modeled with the 

guaranteed service approach and the maximum guaranteed service time of the last echelon of 

the PSC is proposed as a measure of a PSC’s responsiveness. We compare the proposed 

measure with the expected lead time, and formulate a bi-criterion mixed-integer nonlinear 

program (MINLP) with the objectives of minimizing the annualized cost (economic objective) 

and minimizing the maximum guaranteed service times of the markets (responsiveness 

objective) for the optimal design of responsive process supply chains with inventories. The 

model simultaneously predicts the optimal network structure, transportation amounts and 

inventory levels under different specifications of the PSC responsiveness. An example on 

acetic acid supply chain is presented to illustrate the application of the proposed model and to 

comprehensively compare different measures of PSC responsiveness. 
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1. Introduction 

Due to the pressures from global competition, responsiveness is becoming a critical issue 

for the success of process supply chains (PSCs) since it allows chemical companies to achieve 

the best performance in the global marketplace.1-5 Quick response enables supply chains to 

meet the customer demands with short lead times, and to synchronize the supply to meet the 

peaks and troughs of demand.6 A major concern for chemical process companies has become 

how to effectively leverage the PSC design and operation to quickly satisfy the customer 

demands and achieve profitability.7, 8 This challenge requires addressing the optimal design 

and development of “responsive” PSCs with effective inventory management to deal with the 

demand uncertainty.9-11 You and Grossmann5 have recently addressed this problem with a 

bi-criterion optimization framework by considering the optimal PSC design and operation 

under responsive and economic criteria. In their work, the economic criterion is measured by 

the net present value, while the criterion for responsiveness is measured by the lead time or 

expected lead time, which accounts for transportation times, residence times, cyclic schedules 

in multiproduct plants, and safety stocks in the distribution centers (DCs). Although the 

definition of the expected lead time integrates PSC responsiveness with safety stocks in DCs 

by using a probabilistic model for stockout, that model4, 5 was restricted to a single stage 

inventory model. The extension to multi-echelon inventory systems is nontrivial and therefore 

it is addressed in this paper. 

We consider the optimal design of multi-echelon PSCs and the associated inventory 

systems under demand uncertainty with considerations of economic performance and supply 

chain responsiveness. The guaranteed service approach12-20 is used to model the multi-echelon 

stochastic inventory system in the PSC. Furthermore, the maximum of the guaranteed service 

times over all the markets (last echelon of the PSCs) is proposed as a quantitative measure of 

the responsiveness of the PSCs. For the case of a PSC with fixed network structure, this 

measure is compared with the expected lead time proposed by You and Grossmann.5 We 

incorporate the proposed responsiveness measure into the joint multi-echelon supply chain 

design and inventory management model,20 and formulate the problem as a bi-criterion 
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mixed-integer nonlinear programming (MINLP) model with the objectives of minimizing the 

annualized cost (economic objective) and minimizing the maximum guaranteed service times 

of the markets (responsiveness objective). The model simultaneously determines the optimal 

network structure, transportation amounts, and inventory levels for different levels of 

responsiveness of the PSC. An example for a specialty chemical supply chain is presented to 

illustrate the application of the proposed model to measure the PSC’s responsiveness. 

The rest of this paper is organized as follows. In Section 2, we propose our new measure 

for PSC responsiveness and compare it with the expected lead time for a PSC with a fixed 

design. A formal problem statement is given in Section 3. We present a multi-objective MINLP 

model for this problem in Section 4. In Section 5, we consider an illustrative example on acetic 

acid supply chain, and compare different measures of responsiveness for the PSC design 

problem. Section 6 concludes this paper. 

2. Guaranteed Service Time and PSC Responsiveness  

Our proposed measure for PSC responsiveness is the maximum guaranteed service time of 

the last echelon of PSCs. This measure is integrated with multi-echelon inventory control and 

uncertain demands. We first discuss the guaranteed service approach and then introduce the 

concepts for PSC responsiveness. 

2.1.  Multi-echelon Stochastic Inventory Model: Guaranteed Service Approach 

In this section, we briefly review some inventory management models that are related to 

the problem addressed in this work. Detailed discussion on these models are given in our 

previous work,20, 21 as well as in Zipkin22 and in Graves and Willem.17, 18 

[Figure 1] 

For an inventory system controlled by base stock policy under demand uncertainty, the 

total inventory cost includes safety stock cost and pipeline inventory cost (Figure 1). The 

accepted practice in this field is to assume a normal distribution of the demand, although of 

course other distribution functions can be specified. If the demand rate at each unit of time is 

normally distributed with mean   and standard deviation  , the total demand over review 

period p and the replenishment lead time l is also normally distributed with mean ( )p l   
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and standard deviation p l  . It is convenient to measure safety stock in terms of the 

number of standard deviations of demand, denoted as safety stock factor,  . Then the optimal 

base stock level is given by, 

( )S p l p l                        (1) 

We should note that if   is the Type I service level (the probability that the total inventory 

on hand is more than the demand), the safety stock factor   corresponds to the α-quantile of 

the standard normal distribution, i.e. Pr( )x    . 

In equation (1), the safety stock factor   and uncertain demand rate (mean   and 

standard deviation  ) are usually given parameters, or else they can be easily inferred. Thus, 

as long as we can quantify lead time l, the optimal base stock level can be obtained. For single 

stage inventory system, lead time, which may include material handling time and 

transportation time, is exogenous and generally can be treated as a constant. However, for a 

multi-echelon inventory system, lead time of a downstream node depends on its uncertain 

demand and upstream node’s inventory level, and thus the lead time and internal service level 

are stochastic. The guaranteed service approach13-19, 23 can address this issue by modeling the 

entire system in an approximate way and allows a planner to make strategic and tactical 

decisions without the need of approximating portions of the system that are not captured by a 

simplified topological representation.  

The main idea of the guaranteed service approach is that each node j in the multi-echelon 

inventory system quotes a guaranteed service time jT , by which this node will satisfy all the 

demands from its downstream nodes. That is, the demand at time t  must be ready to be 

shipped by time jt T . The guaranteed service times for internal customers are decision 

variables to be optimized, while the guaranteed service time for the nodes at the last echelon 

(facing external customers) is an exogenous input. Besides the guaranteed service time, we 

consider that each node j has a given deterministic order processing time, jt , which is 

independent of the order size. The order processing time, which includes material handling 

time, transportation time and review period, represents the time from all the inputs that are 
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available until the outputs are ready to serve the demand. The net lead time of node j ( jNLT ) is 

the time span over which safety stock coverage against demand variations is necessary, and it is 

given by the guaranteed service time iT  of its direct predecessor node i plus its processing 

time jt  minus the guaranteed service time of node j.13 Therefore, we can calculate the net lead 

time with the following formula: 

  j i j jNLT T t T                        (2) 

where node i is the direct predecessor of node j.  

In the guaranteed service approach each node in the multi-echelon inventory system is 

assumed to operate under a periodic review base stock policy with a common review period. 

Furthermore, demand over any time interval is also assumed to be bounded with an associated 

safety stock factor j .20 This yields the base stock level at node j: 

j j j j j jS NLT NLT                      (3) 

This formula is similar but slightly different from the single stage inventory model (1) in terms 

of the expression for the lead time. Note that the review period has been taken into account as 

part of the processing time and considered in the net lead time. 

With the guaranteed service approach, the total inventory cost consists of safety stock cost 

and pipeline inventory cost. The safety stock of node j ( jSS ) is given by the following formula 

as discussed above, 

j j j jSS NLT                           (4) 

The expected pipeline inventory is the sum of expected on hand and on-order inventories. 

Based on Little’s law,24 the expected pipeline inventory jPI  of node j equals to the mean 

demand over the processing time, and is given by, 

j j jPI t                             (5) 

which is not affected by the guaranteed service time decisions.  
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2.2.  Measures for PSC Responsiveness 

A major goal of this paper is to develop a quantitative measure for PSC responsiveness in 

multi-echelon inventory systems under demand uncertainty. Responsiveness is defined as the 

ability of a PSC to respond rapidly to the changes of demand.25, 26 In our previous works,4, 5 we 

considered lead time, which is the time of a PSC network to respond to external demands, as 

the measure of PSC responsiveness. Specifically, we used first the worst case lead time,4 

corresponding to the response time when there are zero inventories as the measure of 

responsiveness under deterministic demand. For the case of uncertain demand, we used the 

expected lead time5 as the measure of responsiveness. Although both measures capture the 

properties of PSC responsiveness and are integrated with safety stocks, they can not be readily 

extended to the case of the multi-echelon stochastic inventory of the PSCs.  

In this paper, we propose the maximum guaranteed service time quoted by the last echelon 

of a PSC (e.g., markets) to its external demand as a quantitative measure of PSC 

responsiveness. This service time of a market is the maximum time that all the demand of this 

market will be satisfied. If a PSC has more than one market, and each market k has a guaranteed 

service time kR , the responsiveness of this PSC can be defined by considering the worst case, 

that is, 

 max k
k

R R                        (6) 

where R is the maximum guaranteed service time of the last echelon of PSC. As shown in 

Figure 2, a PSC with long maximum guaranteed service time in the last echelon (R) implies 

that its responsiveness is low, and vice versa. We should also note that instead of using the 

maximum values in (6), i.e. infinity norm, one could also use a weighted average value. 

[Figure 2] 

Compared to other measures for PSC responsiveness, such as lead time or expected lead 

time, this measure is more straightforward to apply in PSCs, while still being able to capture 

the multi-echelon inventory structure of most of PSCs, and taking into account uncertain 

market demands. A comparison between the proposed measure for PSC responsiveness, 
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maximum guaranteed service time of the markets (MGSTM), and the one used in our previous 

work,5 expected lead time, is illustrated in the following example. 

 

2.3.  Illustrative Example – Comparison of Different Measures of PSC Responsiveness 

In this example, we consider a PSC with fixed design including one plant, two DCs and 

two markets as shown in Figure 3. The processing times of the plants, including residence time, 

material handling time and review period is 2 days. The two DCs and the two markets all have 

the same processing time equal to 1 day. The transportation time from the plant to DC1 is 2 

days, and 3 days from the plant to DC2. It takes 2 days to ship from DC1 to Market1, and 1 day 

to ship from DC2 to Market2. Each market has an uncertain demand following a normal 

distribution with the mean value   and standard deviation   (Figure 4). To compare the 

proposed responsiveness measure with those in our previous works,4, 5 we consider only single 

echelon inventory management in the PSC by assuming that only the DCs hold safety stock, i.e. 

the net lead times of the plant and markets are 0 when using the guaranteed service approach. 

Let us first address the responsiveness issue of this PSC using the guaranteed service 

approach. Because the net lead time of the plant is assumed to be 0, the guaranteed service time 

of the plant is equal to its processing time, 2 days. Let us denote the net lead times of DC1 and 

DC2 as 1NLT  and 2NLT . The order processing time from the plant to DC1 includes 

transportation from the plant to DC1 (2 days) plus the processing time of DC1 (1 day), so it 

should be 3 days. Thus, the guaranteed service time of DC1 equals to the guaranteed service 

time of the plant, 2 days, plus order processing time,3 days, minus the net lead time of DC1, 

1NLT . In this way, we can have the guaranteed service time of DC1 equal to ( 15 NLT ) days, 

where 10 5 NLT . Similarly, we could have the guaranteed service time of DC2 equal to 

( 26 NLT ) days, where 20 6 NLT . It is also easy to derive that the order processing time of 

Market1 is 3 days and the one for Market2 is 2 days. Given the guaranteed service times of 

these two DCs and the associated order processing times from the DCs to the markets, we can 

have the guaranteed service time of Market1 as    1 1 15 3 8    R NLT NLT  days and the 
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guaranteed service time of Market2 as    2 2 26 2 8    R NLT NLT  days. Based on the 

definition of PSC responsiveness introduced in the previous section, we have the MGSTM of 

this PSC as,  

   1 2 1 2max ,  max 8 ,  8   R R R NLT NLT              (7) 

where 10 5 NLT  and 20 6 NLT . From this equation, we can see that when both DCs 

hold sufficient safety stock to ensure 1 5NLT  days and 2 6NLT  days, we have 

 min max 3,  2 3 R  days. As the safety stock level in a DC decreases, the net lead time in 

this DC decreases quadratically in terms of safety stock based on Equation (4). If the safety 

stock levels in both DCs decrease to 0, the net lead times of these two DCs are also 0, i.e. 

1 2 0 NLT NLT . Thus, under zero inventories we have max 8R  days.  

If we address this problem using the idea of worst case lead time as introduced in our 

previous work,4 we first need to decompose the PSC network into linear supply chains. There 

are two linear supply chains, from the plant to DC1 and then to Market1, and from the plant to 

DC2 and then to Market2. It is easy to figure out that all the time delays incurred in the first 

linear supply chain is 8 days, including the processing times of the plant, DC1 and Market1, as 

well as the transportation time between them. Similarly, the total time delay incurred in the 

second linear supply chain is 7 days. Thus, the worst lead time of the entire PSC is the longest 

lead time of all the linear supply chains included in the PSC network, i.e.  max 8,  7 8LT    

days. We should note that this measure is based on the assumption of deterministic demand and 

zero inventory, thus 8 days correspond to the worst case with zero safety stocks in the DCs and 

the maximum guaranteed service time with 1 2 0 NLT NLT  as shown in (7). 

If we address this problem using the idea of expected lead time as introduced in our 

previous work,5 the first step is also to decompose the PSC network into linear supply chains. 

There are two linear supply chains, from the plant to DC1 and then Market1, and from the plant 

to DC2 and then to Market2. As seen in Figure 3, in the first linear supply chain, the delivery 
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lead time ( 1LD ) is 3 days, which includes the transportation time from DC1 to Market1 and the 

processing time of Market1, and the DC replenishment lead time ( 1LP ) is 5 days, which 

includes the processing times of the plant and DC1, as well as the transportation time from the 

plant to DC1. Similarly, we can derive that the delivery lead time of the second linear supply 

chain ( 2LD ) is 2 days, and its production lead time ( 2LP ) is 6 days. Based on the definition,5 

the expected lead time of a linear supply chain is equal to its delivery lead time plus the 

stockout probability times its production lead time. Let us denote the stockout probability of 

DC1 as 1P  and the one of DC2 as 2P . As shown in Figure 4, the values of stockout probability 

1P  and 2P  depend on the safety stock levels and demand uncertainty. The more safety stocks 

in a DC, the lower stockout probability is. For the normal demand distribution, we have the 

stockout probability given as follows, 

1
1 1 erf

2 2 
              

SS SS
P , where    2 /21

d
2




  

x x
x e x , 0 SS      (8) 

where SS  is the safety stock level in a DC and   is the safety stock factor used in the 

guaranteed service approach. Based on this equation, we can see that the stockout probability 

can be very close to 0 when there is sufficient safety stock (if the safety stock factor is 

sufficiently large), and the stockout probability can be as high as 0.5 when there is no safety 

stock in the DC. Thus, we have the expected lead time (T ) of the PSC equal to the maximum 

expected lead time of all the linear supply chains included in the PSC, given as follows, 

        
   

1 1 1 1 1 2 2 2 2 2

1 1 1 2 2 2 1 2

max 1 ,  1

  max ,  max 3 5 ,  2 6

          

         

T P LD P LD LP P LD P LD LP

LD P LP LD P LP P P
, 1 20 ,  0.5 P P  (9) 

From this equation, we can see that when both DCs hold sufficient safety stock to ensure 

1 0P  and 2 0P , we have  min max 3,  2 3 T  days (note that the stockout probability 

would be sufficiently small and close to 0 if the safety stock factor is large enough). As the 

safety stock level in a DC decreases, the stockout probability in this DC increases based on 

Equation (8). When both DCs do not hold any safety stocks, i.e. 1 2 0.5 P P , we have the 



 

-10- 

maximum expected lead time of this PSC as  max max 3 5 0.5,  2 6 0.5 5.5     T  days.  

From the above comparisons, we can draw the following conclusions. When there are 

sufficient safety stocks in the DCs, both MGSTM and expected lead time lead to the same 

minimum value, 3 days. When the safety stock level decreases, both MGSTM and expected 

lead time of a linear supply chain increases. When all the DCs hold zero safety stocks, the 

MGSTM has the maximum value, 8 days, which is the same as the worst case lead time, but the 

expected lead time has a maximum value of 5.5 days. The reason is that MGSTM accounts for 

the worst case in its definition, and thus it corresponds to the worst case lead time when all the 

DCs hold zero safety stocks. The expected lead time partially accounts for the worst case, but it 

makes use of the probability distribution of the uncertain demand and considers the “expected” 

value. Since the stockout probability has a lower bound of 0.5, the maximum value of expected 

lead time for this PSC is less than MGSTM, although expected lead time also takes into 

account the worst case lead time through the use of stockout probability. We should note that 

both 8 days of MGSTM and 5.5 days of expected lead time correspond to the same inventory 

level, and the difference between the values (8days vs. 5.5 days) is due to the difference of 

measures, i.e. “worst” case time in MGSTM vs. “average” time in expected lead time. 

All these measures for PSC responsiveness share some similarities and have some 

differences. The major advantage of using the MGSTM as the measure is that it captures the 

interactions between different stages of a multi-echelon PSC and the corresponding inventory 

system, while the use of expected lead time is restricted to stochastic inventory in a single 

echelon. In the following sections, we first define the problem addressed in this paper and then 

incorporate this measure into a joint PSC design and inventory management model as 

developed in our previous work.20  

3. Problem Statement 

To illustrate the application of this new measure for PSC responsiveness, we consider in 

this paper the design and stochastic inventory management of a three-echelon PSC as in the 

example shown in Figure 5. The given potential PSC consists of a set of plants (or suppliers), a 
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number of candidate DCs, and a set of markets. The markets are fixed and each of them has an 

uncorrelated normally distributed demand with known mean and variance. The candidate DCs 

are to be selected to install (and include in the PSC), and the investment costs for installing DCs 

are expressed by a cost function with fixed charges. The plants (or suppliers) are existing, but 

their presence in the optimal PSC network depend on their assignments with DCs, i.e. a plant 

(or supplier) will not appear in the optimal PSC network if it is not selected to serve any DCs. 

Single sourcing restriction, which is common in industrial gases supply chains27, 28 and 

specialty chemicals supply chains,29 is employed for the assignment between plants and DCs 

and between DCs and markets. Linear transportation costs are considered for all the shipments. 

The service times of plants (or suppliers), and the deterministic processing times of DCs and 

markets are given. Inventories, including safety stocks and pipeline inventories, are hold at 

both the DCs and the markets, and the unit inventory costs are given. A common review period 

is used for inventory control throughout the PSC, and the safety stock factors for DCs and 

markets are also given. 

 [Figure 5] 

The objective is to minimize the total installation costs of DCs, and the transportation, 

and inventory costs, and to maximize the responsiveness of the PSC, by deciding on how 

many distribution centers (DCs) to install, where to locate them, which plants to serve each 

DC and which DCs to serve each market. Furthermore, the decisions also involve selecting 

the service time of each DC, and the level of safety stock to be maintained at each DC and 

market. 

4. Bi-Criterion MINLP model 

The proposed PSC responsiveness measure can be readily incorporated into the joint 

multi-echelon supply chain design and inventory management model20 to establish the tradeoff 

between economic performance and responsiveness of a PSC. The integrated model is a 

bi-criterion MINLP that deals with the supply chain network design for a given product, and 

considers its two-echelon inventory management and PSC responsiveness. The definition of 

sets, parameters, and variables of the model are given in the Appendix. The model formulation 
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denoted as (P0) is given as follows: 

Min: 21 2
        

        j j ijk ij jk jk jk j j k jk k k
j J i I j J k K j J k K j J k K k K

f Y A X Z B Z q N Z q L  (10) 

Min: R                      (11) 

s.t. ij j
i I

X Y


 ,      j                (12) 

1jk
j J

Z


 ,      k                (13) 

 jk jZ Y ,     ,j k               (14) 



  j ij ij j
i I

N S X S ,   j                   (15) 

 2


   k j jk jk k
j J

L S t Z R , k                (16) 

 kR R ,      k             (17) 

, , {0,1}ij j jkX Y Z  ,   , ,i j k               (18) 

0jS , 0jN ,    j                (19) 

0kL ,       k                (20) 

where 

1 ij i ijS SI t  

 1 1 1    ijk ij j ij kA c t  

 2 2 2      jk j jk k jk kB g c t  

1 1 1j j jq h   

2 2 2k k k kq h     

(P0) is similar to the joint three-echelon supply chain design and inventory management 

model reformulated by You and Grossmann.20 However, in this case it corresponds to a 

bi-criterion optimization problem where the new objective function (11) is added to minimize 

MGSTM, the new constraint (17) is introduced to define the measure of PSC responsiveness, 

and kR , the maximum guaranteed service time of market k, is treated as variables with upper 

bound R . The economic objective function (10) is the annual cost of the PSC design that 
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accounts for the fixed and variable costs of installing DCs, transportation costs from plants to 

DCs and from DCs to markets, pipeline inventory costs in DCs and markets, as well as safety 

stock costs in DCs and markets. Constraints (12)-(14) define the PSC network structure, and 

constraints (15) and (16) define the net lead times at the DCs and markets.  

Similarly to our previous work,20 we can linearize30 the bilinear terms (products of binary 

variables and continuous variables, or products of two binary variables) and reformulate the 

model as problem (P1): 

Min: 1 2
       

       j j ijk ijk jk jk j j k k
j J i I j J k K j J k K j J k K

f Y A XZ B Z q NZV q L       (21) 

Min: R                      (11) 

s.t.  Constraints (12) – (15), (17) – (20) 

 

    k jk jk jk k
j J j J

L SZ t Z R , k                (22) 

 ijk ijXZ X ,     , ,i j k               (23) 

 ijk jkXZ Z ,     , ,i j k               (24) 

 1  ijk ij jkXZ X Z ,   , ,i j k               (25) 

 1 jk jk jSZ SZ S ,   ,j k               (26) 

   U
jk jk jSZ Z S ,    ,j k               (27) 

  1 1   U
jk jk jSZ Z S ,   ,j k               (28) 

 1 jk jk jNZ NZ N ,   ,j k               (29) 

   U
jk jk jNZ Z N ,    ,j k               (30) 

  1 1   U
jk jk jNZ Z N ,  ,j k               (31) 

 2


 j k jk
k K

NZV NZ ,  j                (32) 

 0ijkXZ  ,     , ,i j k               (33) 

 0jNZV  ,     j                (34) 
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 0jkSZ , 1 0jkSZ , 0jkNZ , 1 0jkNZ , ,j k           (35) 

 

where constraints (23)-(32) are introduced for the exact linearization. The bounds of the 

variables are given in the constraints (36): 

   max max
 

  U
j i ij ij

i I i I
N SI t S , j              (36.1) 

 maxU U
j j ij

i I
S N S


  ,   j              (36.2) 

 max 0,max


    
 

U U
k j jk k

j J
L S t R , j              (36.3) 

U U
jk jSZ S , 1 U U

jk jSZ S ,   ,j k             (36.4) 

U U
jk jNZ N , 1 U U

jk jNZ N ,  ,j k             (36.5) 

2


 U U
j k j

k K

NZV N ,    j              (36.6) 

Thus, to balance the economics and responsiveness, we have two objective functions to be 

minimized in (P1). One is the annual total PSC design cost, and the other one is the MGSTM. 

In order to obtain the Pareto-optimal curve for the bi-criterion optimization problem, one of the 

objectives is treated as an inequality with a fixed value for the bound which is considered as a 

parameter. There are two major approaches to solve the problem in terms of this parameter. 

One is to simply solve it for a specified number of points to obtain an approximation of the 

Pareto optimal curve (ε-constraint method).31-34 The other one is to solve it as a parametric 

programming problem,35, 36 which yields the exact solution for the Pareto optimal curve. While 

the latter provides a rigorous solution approach, the former is easier to implement for MINLP 

models. For this reason, we solve this multi-objective optimization problem with the 

ε–constraint method. 

From the economic objective (10) and constraint (16), it is easy to see that by increasing 

kR  the total annual cost of this PSC is reduced. Coupled with the responsiveness objective (11) 

and constraint (17), we can observe that (P0) is always feasible for any value of kR . Note that 

the lower bound of the left hand side of constraint (16) is zero, while the lower bound of the 
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right hand side of this constraint is R , which is a non-positive value. Thus, the problem has 

an infinite number of optimal solutions in the continuous space. To be more specific, if *
kR  is 

the optimal solution and we have the optimal value of variable R as  * *max
 

 k
k K

R R , by 

replacing the value of variables kR ,  k K  with *R , we have  * * *max
 

 k k
k K

R R R  is also 

a feasible and optimal solution of the problem. Therefore, we can always have an optimal 

solution with  

 * * *max
 

 k k
k K

R R R  k                     (37) 

This property suggests that we can fix the guaranteed service times of all the markets ( kR ) 

to a certain value when using the ε–constraint method. In other words, objective (11) and 

constraint (17) can be removed and variables kR  can be treated as parameters in the solution 

procedure. The lower bound of R and all the kR  can be easily determined to be 0.  To obtain 

their upper bounds, we consider a modified objective function as follows, 

Min: 1 2 
       

         j j ijk ijk jk jk j j k k
j J i I j J k K j J k K j J k K

f Y A XZ B Z q NZV q L R  (38) 

where   is a scaling parameter with sufficient small value, for instance, 0.001. By minimizing 

(38) subject to all the constraints in (P1), we can determine the minimum upper bound of 

variable R. Therefore, in the solution procedure, we solve problem (P1) under different 

specifications of MGSTM between 0 and its upper bound to obtain an approximation of the 

Pareto optimal curve. 

5. Acetic Acid Supply Chain Example 

To illustrate the application of our model, we consider an example taken from our previous 

work20 for an acetic acid supply chain with three plants, three potential DCs and markets as 

shown in Figure 5. 
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5.1.  Multi-Echelon Inventory System 

In this instance, the annual fixed installation cost ( jf ) is $200,000/year for all the DCs. The 

variable cost coefficient for installing a DC ( jg ) at any candidate location is $0.05/(ton · year). 

The safety stock factors for DCs ( 1 j ) and markets ( 2k ) are the same and equal to 1.96, 

which corresponds to 97.5% service level if the demands are normally distributed. We consider 

365 days in a year (  ). The guaranteed service times of the three plants ( iSI ) are 3, 3 and 4 

days, respectively. The pipeline inventory holding cost is $0.5/(ton · day) for all the DCs 

( 1 /ij  ) and markets ( 2 /jk  ), and the safety stock holding cost is $1/(ton · day) for all the 

DCs ( 1 /jh  ) and markets ( 2 /kh  ). The data for demand uncertainty, processing times and 

transportation costs are given in Tables 1-5. The models are coded in GAMS and solved with 

the global optimizer BARON 8.1.5 on an IBM T40 laptop with Intel 1.50GHz CPU and 512 

MB RAM (please refer to our previous work20 for a comprehensive comparison of 

computational performance of other MINLP solvers for the model). The original model (P0) 

has 12 discrete variables, 22 continuous variables and 27 constraints. The MINLP model (P1) 

includes 24 binary variables, 185 continuous variables and 210 constraints. 

[Table 1] 
[Table 2] 
[Table 3] 
[Table 4] 
[Table 5] 

We use the ε–constraint method to obtain the Pareto optimal curve and determine the 

tradeoff between the total annual cost of the PSC design and its responsiveness, which is 

measured by the maximum guaranteed service time of the markets. The first step of the 

ε–constraint method is to determine the optimal lower and upper bounds of MGSTM ( R ). Its 

lower bound can be easily determined as 0, which means that all the market demands are 

satisfied immediately. Its upper bound’s minimum value can be obtained by minimizing (38) 

subject to all constraints in (P1). For this problem, we obtain 12 days as the optimal upper 

bound of MGSTM. After the lower and upper bounds of MGSTM are determined, we solve the 



 

-17- 

problem with fixed values of R  from 0 day to 12 days (e.g. 13 instances with increments of 1 

day). Solving the original model (P0) with 0% optimality margin takes a total of 7,101.51 CPU 

seconds for all the 13 instances. When we solve the reformulated model (P1) by minimizing 

(21), the 13 instances require only 86.89 CPU seconds and the optimal solutions are the same 

as what we obtained by solving model (P0).  

 [Figure 6] 
[Figure 7, (a), (b), (c)] 

The results are given in Figures 6 and 7, as well as in Tables 6 and 7. The line in Figure 6 is 

the Pareto optimal curve of this problem. As can be seen, the cost ranges from $1,721,685 to 

$2,519,886, while the guaranteed service time ( R ) ranges from 0 days to 12 days. We can see 

that the total cost decreases as the MGSTM increases. Since the MGSTM is a measure of PSC 

responsiveness, we can conclude that the more responsive the PSC is, the more cost it requires. 

The columns in Figure 6 show the total safety stocks in the system under different 

specifications of MGSTM. As the MGSTM increases, the total safety stocks in this PSC 

decrease from 2,187 tons to 0. However, the safety stock levels do not strictly decrease as 

MGSTM increases, but have a “valley” when MGSTM equal to 8 and 9 days. This is due to the 

change of supply chain network structure and inventory allocation decisions between DCs and 

markets.  

Figure 7 shows the change of the optimal network structures under different specifications 

of MGSTM. We can see that the optimal network structures for most cases are the same as 

shown in Figure 7(a). When MGSTM is equal to 8, 9 and 11 days, the optimal network 

structures are different from the “common” one, and they are given in Figure 7(b), 7(c) and 

7(d), respectively. In Figure 7(a) and 7(d), only one DC is installed and serves all the markets. 

This is due to the “risk pooling” effect, which tries to group markets to be served by one DC so 

as to reduce the total safety stocks. In Figure 7(b) and 7(c) there is one more DC installed that 

leads to higher DC installation costs, but presumably reduces the total transportation and 

inventory costs. This reveals the tradeoff between transportation cost, inventory cost and 

facility location cost, and suggests that changing network structure may be more effective to 

improve the PSC responsiveness compared to holding safety stock. A similar conclusion is also 
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presented in our previous work,5 although in that case safety stock levels always decrease as 

the PSC responsiveness decreases due to the single echelon inventory model used in that 

model. When the MGSTM increases from 9 days to 10 days, the optimal number of DCs 

reduces from two to one, and the network structure “returns” to the one shown in Figure 7(a). 

This is also presumably due to the tradeoff between the several cost items as discussed above. 

When the MGSTM increases to 11 and 12 days, the optimal safety stocks in the systems reduce 

to zero (as in Figure 6), and the two optimal network structures have the same distribution 

network, but different production plants. The reason is that Plant1 has a shorter guaranteed 

service time (3 days) than Plant 3 (4 days), but higher unit transportation cost (as in Table 4) 

from the plant to DC 2. To reduce the overall transportation, inventory and supply chain design 

cost, it is optimal to include Plant3 instead of Plant1 in the supply chain network when 

MGSTM is 12 days. Note that these existing plants are considered to be acting as suppliers, 

which can be added or removed from the supply chain network at no additional instillation 

costs, although the transportation cost from plants to DCs are taken into account. 

Tables 6 and 7 show the change of optimal net lead times and optimal safety stock levels in 

the DCs and markets under different specifications of the maximum guaranteed service time to 

the markets (MGSTM). It is interesting to note that the optimal net lead times of DCs and 

markets are at integer values, although they are not restricted to be integers in the optimization 

model. In the most “responsive” case, both DCs and markets hold maximum safety stock to 

guarantee the MGSTM equal to zero. As the MGSTM increases, the safety stock levels and net 

lead times in the markets decrease, while the safety stock levels and net lead times in the DCs 

remain unchanged until the safety stocks in markets deplete. This trend shows that holding 

safety stocks in the DCs (upstream) is more efficient to increase PSC responsiveness than 

holding safety stocks in the markets (downstream). When the MGSTM is between 5 days and 8 

days, no market holds inventory and the safety stocks in the DCs decrease as the MGSTM 

increases. When the MGSTM increases to 8 and 9 days, the safety stocks are shifted from the 

DCs to the Markets. The change of inventory allocation decision is presumably due to the 

change of the PSC network structure as given in Figure 7(b) and 7(c), and leads to the “valley” 
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in the inventory profile as in Figure 6. When the MGSTM increases from 9 days to 10 days, we 

can see that the safety stocks “return” to the DCs and this change further reduces the total cost 

but almost double the total safety stocks. These interesting changes of inventory allocation and 

the associated network structure are due to the fact that we consider the two-echelon inventory 

(DCs and markets). 

Although this is a small example, the proposed approach for PSC responsiveness can easily 

be applied to large scale PSCs design problems by employing the tailored algorithm presented 

in our previous work20. In the Appendix, we present the data and results of a large scale 

instance with 10 plants, 50 potential DCs and 100 markets, by solving the MINLP model with 

the Lagrangead relaxation and decomposition algorithm as discussed in our previous work.20  

 

5.2.  Single-Echelon Inventory System 

To illustrate the similarities and differences of the two measures of PSC responsiveness, 

MGSTM and expected lead time,5 we consider a special case that only DCs of the acetic acid 

supply chain can hold safety stocks, i.e. single echelon inventory. 

To model and optimize the system with the guaranteed service approach, we need to make a 

few minor changes in model (P1). By fixing the values of the net lead times in the markets to 

zero in model (P1), i.e. 0,   kL k , model (P1) reduces to the PSC design problem with single 

echelon inventory, as the markets are not allowed to hold safety stocks due to their zero net lead 

times. Due to the change of the inventory structure, the optimal lower and upper bounds of the 

MGSTM may change. Thus, to obtain the optimal lower bound we solve an optimization 

problem by minimizing (11) subject to all the constraints in model (P1), and to obtain the 

optimal upper bound we solve a problem by minimizing (38) subject to all the constraints in 

model (P1).  

Using expected lead time as the responsiveness measure for PSC design problem leads to 

another MINLP model (Q1), the detailed formulation of which is given in the Appendix. The 

major difference between this model and the one introduced in our previous work5 is that the 

standardized normal variables  j  are restricted to be not greater than the safety stock factor 
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1 j , so as to be consistent to the data used in the guaranteed service time approach. Besides, 

the risk-pooling effect is also taken into account in this model. 

We solve these problems using the same computer described in Section 4.1. All the 

instances are solved with the global optimizer LINDOGlobal in the GAMS modeling system, 

since BARON does not support the error function included in model (Q1).  

For the guaranteed service time case, the resulting optimal lower bound of MGSTM is 2 

days, and the optimal upper bound is 12 days. Then we fix the value of R  to integer values 

from 2 days to 12 days, and solve these 11 instances by minimizing (21) subject to all the 

constraints of (P1). The 11 instances require 228 CPU seconds. When using the expected lead 

time as the measure of responsiveness, the resulting optimal lower and upper bounds of the 

expected lead time are 2.125 days and 8 days, respectively. We then fix the value of T  to 11 

evenly distributed points ranging from 2.125 days to 8 days, and solve these 11 instances by 

minimizing (38) subject to all the constraints of (Q1). The 11 instances require a total of 248 

CPU seconds. The resulting Pareto-optimal curves, optimal safety stock levels, and optimal 

PSC network structure under different specifications of MGSTM ( R ) and expected lead time 

(T ) are given in Figures 8 – 11. 

Figure 8 shows the Pareto optimal curves for this PSC with single-echelon inventory using 

two different measures for responsiveness. In the Pareto curve for guaranteed service 

approach, the total cost ranges from $ 1.72 MM to $ 2.41 MM, while the MGSTM ( R ) ranges 

from 2 days to 12 days. We can see that total cost decreases as MGSTM increase. The trade-off 

shows that the more responsive the PSC is, the more cost is required in the PSC design. In 

particular, the total cost decreases significantly when MGSTM increases from 3 days to 4 days 

and from 10 days to 11 days, because the optimal PSC network structure changes (see Figure 

11) at these points of the Pareto curve.  

In the Pareto curve for measuring responsiveness with expected lead time, the total cost 

ranges from $ 1.72 MM to $ 2.35 MM, while the expected lead time ranges from 2.125 days to 

8 days. We can see a similar trend as in the other curve that the total cost decreases as the 

expected lead time increases. By comparing these two curves, we can see the one using 
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guaranteed service approach lies above the curve from the expected lead time. The reason is 

that guaranteed service approach is a worst case criterion to measure the response time, while 

expected lead time is a “weighted” measure that considers both the case of over-stock and the 

case of stock-out. Thus, under the same total cost, the MGSTM usually has a larger value than 

the expected lead time. Note that the results are consistent with the observations discussed in 

Section 2.3 where we consider a PSC with fixed design. For the extreme values of these two 

curves, we can see that both curves have the same minimum cost solution, which corresponds 

to the case of holding zero safety stock in all the DCs, although the corresponding MGSTM is 

12 days while the expected lead time is 8 days. The lower bound of the MGSTM is 2 days, 

which corresponds to the maximum delivery lead time in the expected lead time approach. 

However, the lower bound of the expected lead time is not 2 days but 2.125 days, because the 

stockout probability is always greater than 2.5% due to the “bounded” safety stock factor 

corresponding to 97.5% service level. It is interesting to see that in the most “responsive” case 

( 2R  days and 2.125T  days), these two curves have different total costs, although the 

optimal network structures are the same (Figure 11). The reason can be found from Figure 10. 

We can see that DC1 has the same optimal safety stocks in these two instances, while safety 

stocks in DC2 are higher in the case of using the guaranteed service. This is because both 

measures somewhat consider the “worst case”. DC1 is included in the linear supply chain or 

serves those markets that have dominant effect of the maximum values of R  and T . Thus, 

once DC1 holds the maximum safety stocks to allow MGSTM and expected lead time reach 

their minimum, DC2 gains certain flexibility to hold lower safety stock than its maximum 

level, while still keeping the MGSTM and expected lead time unchanged. The differences 

between these two measures allow DC2 to have different levels of flexibility to reduce its 

safety stocks and the associated total costs. Therefore, these two Pareto optimal curves have 

different maximum total costs. 

Figure 9 shows the change of total safety stock level in the PSC under two measures of 

responsiveness. We can see that when the expected lead time is used as the responsiveness 

measure, the total safety stock level increase significantly when the expected lead time 
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increases from 4.475 days to 5.062 days. The reason is that the optimal network structure 

changes with a reduction of the number of DCs from two to one as the expected lead time 

increases. This further reveals the trade-off between DC installation cost, transportation cost 

and safety stock cost. The detailed safety stock levels in each DC using these two measures of 

responsiveness are given in Figure 10, while the optimal network structures under different 

specifications of responsiveness are given in Figure 11. 

The comparison shows that these two measures of PSC responsiveness, MGSTM and 

expected lead time, are inherently consistent. The proposed new measure, MGSTM, represents 

the “worst case”, but it has the advantage that it can be applied to PSCs with multi-echelon 

structure of the inventory system leading to more accurate results. 

6. Conclusion 

In this paper, we have proposed a new measure for PSC responsiveness based on the concept 

of guaranteed service approach that allows modeling the multi-echelon stochastic inventory 

system of a PSC. This measure is incorporated into a joint PSC network design and inventory 

control model to tradeoff annualized PSC cost and responsiveness within a bi-criterion 

optimization approach. Some special model properties of the bi-criterion MINLP optimization 

model were exploited to speed up the solution for the Pareto-optimal solutions. An illustrative 

example on an acetic acid supply chain was presented to illustrate the application of proposed 

approach and models. In addition, comprehensive comparisons between the proposed measure 

and the expected lead time, which is another measure for PSC responsiveness focus on the 

single-stage inventory system, were presented. The analytical results show that these two 

measures are consistent, although the proposed measure has the advantage that it can be 

applied to multi-echelon inventory systems. 
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Appendix:  

A. Large-Scale Example for PSC Design with Multi-Echelon Inventory 
using MGSTM as Responsiveness Measure 

We consider a large-scale acetic acid supply chain example with 10 plants, 50 potential DCs 

and 100 markets. The maximum guaranteed service time of markets (MGSTM) is used as the 

measure of supply chain responsiveness.  

The input data of this example is given as follows. The safety stock factors for DCs ( 1j ) 

and markets ( 2k ) are the same and equal to 1.96, which corresponds to 97.5% service level is 

demand is normally distributed. We consider 365 days in a year (  ). The guaranteed service 

time of the last echelon customer demand zones ( kR ) are set to 0. The annual fixed costs 

($/year) to install the DCs ( jf ) are generated uniformly on U[150,000, 160,000] and the 

variable cost coefficient ( jg , $/ ton · year) are generated uniformly on U[0.01, 0.1]. The 

guaranteed service times of the plants ( iSI , days) are set as integers uniformly distributed on 

U[7, 10]. The order processing time ( 1ijt , days) between plants and DCs are generated as 

integers uniformly distributed on U[3, 7], and the order processing time ( 2 jkt , days) between 

DCs and customer demand zones are generated as integers uniformly distributed on U[2, 5]. 

The unit transportation cost from plants to DCs ( 1ijc , $/ton) and from DCs to customer demand 

zones ( 2 jkc , $/ton) are set to 1 1 [0.05,  0.1]ij ijc t U   and 2 2 [0.05,  0.1]jk jkc t U  . The 

expected demand ( i ,ton/day) is generated uniformly distributed on U[75, 150] and its 

standard deviation ( i , ton/day) is generated uniformly distributed on U[0, 50]. The daily unit 

pipeline and safety stock inventory holding costs ( 1 /ij  , 2 /jk  , 1 /jh   and 2 /kh  ) 

are generated uniformly distributed on U[0.1, 1].  

The resulting MINLP problem includes 5,550 binary variables, 75,250 continuous variables 

and 185,350 constraints. Solving this problem directly with a global optimizer is a non-trivial 
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task. To address the computational challenge, we employ the Lagrangean relaxation and 

decomposition algorithm as discussed in our previous work,20 and integrate it with the 

ε–constraint method to obtain the Pareto optimal curve and determine the tradeoff between the 

total annual cost of the PSC design and its responsiveness. The first step of the ε–constraint 

method is to determine the optimal lower and upper bounds of MGSTM ( R ), which are 0 days 

and 18 days, respectively. Then we solve the problem with fixed values of R  from 0 day to 

18days (e.g. 19 instances with increments of 1 day). Solving the model (P1) takes a total of 

479,563 CPU seconds for all the 19 instances.  

 [Figure 12] 

The results are given in Figures 12. The red line in Figure 12 is the Pareto optimal curve of 

this problem. As can be seen, the cost ranges from $73,752,953 to $63,028,935, while the 

guaranteed service time ( R ) ranges from 0 days to 18 days. We can see that the total cost 

decreases as the MGSTM increases. Thus, the more responsive the PSC is, the more cost it 

requires. Due to the integer variables and non-convex terms, there are duality gaps by solving 

the problems with the Lagrangean relaxation and decomposition algorithm, and these gaps are 

reflected on the error bars in the Pareto optimal curve. We can see that these gaps are rather 

small and do not affect the trend of the Pareto optimal curve. The columns in Figure 12 show 

the total safety stocks in the system under different specifications of MGSTM. As the MGSTM 

increases, the total safety stocks in this PSC decrease from 6,302,893 tons to 0. It shows that 

the more inventories we have, the more responsive the PSC is. 

 

B. Model Formulation for PSC Design with Single-Echelon Inventory using 
Expected Lead Time as Responsiveness Measure 

Using expected lead time as the measure for PSC responsiveness for the design of the acetic 

acid supply chain leads to the following MINLP model (Q1): 

Min:  1
      

     j j ijk ij jk jk jk j j
j J i I j J k K j J k K j J

f Y A X Z B Z h SS       (39) 

Min: T                     (40) 
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x x
x

 
    

The objective function (39) represents the total annual cost of the PSC design. The first term 

in (39) is the annual DC installation cost, the second and the third terms are the total annual 

transportation and pipeline inventory cost, and the annual total safety stock cost in the DCs is 

given by the fourth term, where jSS  is the safety stock level in DC j . The objective function 

(40) is to minimize the total expected lead time of the entire PSC (T ). jU  is the replenishment 

lead time of DC j , and constraint (41) defines its value. The variance of the demand over the 

replenishment lead time of DC j  is given by  2


  k j jk
k K

U Z , which takes into account the 

risk-pooling effect.37 Constraint (42) shows that safety stock level ( jSS ) at DC j  is equal to 

the standard deviation of its demand over the lead time times the standardized normal variables 
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 j , which is further used to define the stockout probability ( jP ) in constraint (43). In addition, 

constraint (46) restricts the standardized normal variables  j  to be non-negative and not 

greater than the safety stock factor 1 j , so as to be consistent with the data used in the 

guaranteed service approach.  

Note that we can similarly linearize30 the bilinear terms (products of binary variables and 

continuous variables, j jkU Z  and j ijP X ) with new variables jkUZ  and ijPX  using the 

following linear inequalities: 

 1 jk jk jUZ UZ U ,   ,j k               (47.1) 

   U
jk jk jUZ Z U ,    ,j k               (47.2) 

  1 1   U
jk jk jUZ Z U ,  ,j k               (47.3) 

 0jkUZ , 1 0jkUZ    ,j k               (47.4) 

 1 ij ij jPX PX P ,   ,i j               (48.1) 

 ij ijPX X ,     ,i j               (48.2) 

 1 1 ij ijPX X ,    ,i j               (48.3) 

 0ijPX , 1 0ijPX    ,i j               (48.4) 

In order to obtain the optimal lower bound of the expected lead time (T ), we solve problem 

(Q1) by minimizing (40). Similarly, to obtain the optimal upper bound, we consider a new 

objective function:  

Min: 1 
      

       j j ijk ij jk jk jk j j
j J i I j J k K j J k K j J

f Y A X Z B Z h SS T      (49) 

where   is a scaling parameter with sufficient small value, for instance, 0.001. By minimizing 

(49) subject to all the constraints in (Q1), we can determine the minimum upper bound of the 

expected lead time (T ).  

 

C. Nomenclature 
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Sets/Indices 

I  Set of plants (suppliers) indexed by i  

J  Set of candidate DC locations indexed by j  

K  Set of markets indexed by k 

Parameters 

1ijc  Unit transportation cost from plant i  to DC j  

2 jkc  Unit transportation cost from DC j  to market k  

jf  Fixed cost of installing a DC at candidate location j  (annually) 

jg  Variable cost coefficient of installing candidate DC j  (annually) 

1 jh  Unit inventory holding cost at DC j  (annually) 

2kh  Unit inventory holding cost at market k  (annually) 

kR  Maximum guaranteed service time of market k  

iSI  Guaranteed service time of plant i  

1ijt  Processing time of DC j if it is served by plant i, including material handling time of 
DC j, transportation time from plant i to DC j, and inventory review period 

2 jkt  Processing time of market k if it is served by DC j, including material handling time 
of DC j, transportation time from DC j to market k, and inventory review period 

k  Mean demand at market k  (daily) 

2
k  Variance of demand at market k  (daily) 

  Days per year (to convert daily demand and variance values to annual costs) 

1ij  Unit cost of pipeline inventory from plant i  to DC j  (annually) 

2 jk  Unit cost of pipeline inventory from DC j  to market k (annually) 

1 j  Safety stock factor of DC j  

2k  Safety stock factor of market k  

 Binary Variables (0-1) 

ijX  1 if DC j  is served by plant i , and 0 otherwise 

jY  1 if we install a DC in candidate site j , and 0 otherwise 

jkZ  1 if market k  is served by DC j , and 0 otherwise 
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 Continuous Variables (0 to ) 

kL  Net lead time of market k  

jN  Net lead time of DC j  

kR  Guaranteed service time of market k  

R  Maximum guaranteed service time of markets (measure of responsiveness) 

jS  Guaranteed service time of DC j  to its successive markets 

T  Expected lead time of the PSC network (measure of responsiveness) 

jSS  Safety stock level at DC j  

jU  Replenishment lead time of DC j  

 j  Standardized normal variable of DC j  

jP  Stockout probability of DC j  

ijkXZ  Auxiliary variable 

jNZV  Auxiliary variable 

jkSZ  Auxiliary variable 

1 jkSZ  Auxiliary variable 

jkNZ  Auxiliary variable 

1 jkNZ  Auxiliary variable 

jkUZ  Auxiliary variable 

1 jkUZ  Auxiliary variable 

ijPX  Auxiliary variable 

1ijPX  Auxiliary variable 
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Figure Captions 

 
Figure 1   Inventory system controlled by base stock policy 
 
Figure 2   Conceptual relationship between PSC responsiveness and maximum guaranteed 
service time of the last echelon 
 
Figure 3   Network structure and processing times of the illustrative example 
    
Figure 4   Probability distribution of the uncertain demands in the illustrative example 
 
Figure 5   Acetic acid supply chain network superstructure 
 
Figure 6   Pareto optimal curve and optimal safety stock levels for the acetic acid supply 
chain example 
 

Figure 7   Optimal acetic acid supply chain network structure under different maximum 
guaranteed service time of markets (multi-echelon inventory case) 

(7a) Optimal network for maximum guaranteed service time of markets is 0-7 or 10, 12 
days 
(7b) Optimal network for maximum guaranteed service time of markets is 8 days 
(7c) Optimal network for maximum guaranteed service time of markets is 9 days 
(7d) Optimal network for maximum guaranteed service time of markets is 11 days 

 

Figure 8   Pareto optimal curve for the acetic acid supply chain with single-echelon inventory 
for expected lead time and maximum guaranteed service time of markets 
 

Figure 9   Total safety stock levels for the acetic acid supply chain with single-echelon 
inventory under the two measures for PSC responsiveness, expected lead time and maximum 
guaranteed service time of markets 
 

Figure 10   Safety stock levels at DCs for the acetic acid supply chain with single-echelon 
inventory under the two measures for PSC responsiveness, expected lead time (ELT) and 
maximum guaranteed service time of markets (MGSTM) 
 

Figure 11   Optimal acetic acid supply chain network structure (with single-echelon 
inventory) under different specifications of maximum guaranteed service time of markets 
(MGSTM) and expected lead time (ELT)  
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(11a) Optimal network for MGSTM = 2, 3 days, ELT = 2.125, 2.713, 3.300, 3.888, 
4.475 days 
(11b) Optimal network for MGSTM = 4 - 10, 12 days, ELT = 5.062, 5.650, 6.237, 
6.825, 7.413, 8 days  
(11c) Optimal network structure for MGSTM = 11 days, 

 
Figure 12   Pareto optimal curve and optimal safety stock levels for the large-scale acetic acid 
supply chain example with 10 plants, 50 DCs and 100 markets in Appendix A 
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Figure 1   Inventory system controlled by base stock policy 
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Figure 2   Conceptual relationship between PSC responsiveness and maximum 
guaranteed service time of the last echelon 
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Figure 3   Network structure and processing times of the illustrative example 
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Figure 4   Probability distribution of the uncertain demands in the illustrative example 
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Figure 5   Acetic acid supply chain network superstructure 
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Figure 6   Pareto optimal curve and optimal safety stock levels for the acetic acid supply 

chain example 
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(a) Optimal network for maximum guaranteed service time of markets is 0-7 or 10, 12 days 

 
(b) Optimal network for maximum guaranteed service time of markets is 8 days 

 
(c) Optimal network for maximum guaranteed service time of markets is 9 days 

 
(d) Optimal network for maximum guaranteed service time of markets is 11 days 

Figure 7   Optimal acetic acid supply chain network structure under different 
maximum guaranteed service time of markets (multi-echelon inventory case) 
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Figure 8   Pareto optimal curve for the acetic acid supply chain with single-echelon 
inventory for expected lead time and maximum guaranteed service time of markets 
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Figure 9   Total safety stock levels for the acetic acid supply chain with single-echelon 
inventory under the two measures for PSC responsiveness, expected lead time and 

maximum guaranteed service time of markets 
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Figure 10   Safety stock levels at DCs for the acetic acid supply chain with 
single-echelon inventory under the two measures for PSC responsiveness, expected lead 

time (ELT) and maximum guaranteed service time of markets (MGSTM) 
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(a) Optimal network for MGSTM = 2, 3 days, ELT = 2.125, 2.713, 3.300, 3.888, 4.475 days 

 
(b) Optimal network for MGSTM = 4 - 10, 12 days, ELT = 5.062, 5.650, 6.237, 6.825, 7.413, 8 

days  

 
(c) Optimal network structure for MGSTM = 11 days, 

Figure 11   Optimal acetic acid supply chain network structure (with single-echelon 
inventory) under different specifications of maximum guaranteed service time of 

markets (MGSTM) and expected lead time (ELT)  
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Figure 12   Pareto optimal curve and optimal safety stock levels for the large-scale 

acetic acid supply chain example with 10 plants, 50 DCs and 100 markets in Appendix A 
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Table 1   Parameters for demand uncertainty for Illustrative Example 

 Mean demand i  (ton/day) Standard Deviation i  (ton/day) 

Market1 250 150 
Market2 180 75 

Market3 150 80 

Market4 160 45 

 
Table 2   Order processing time ( 1ijt ) between plants and DCs (days) for Illustrative 

Example 

 DC1 DC2 DC3 

Plant1 4 4 2 
Plant2 2 4 3 

Plant3 3 4 4 

 
Table 3   Order processing time ( 2 jkt ) between DCs and markets (days)  

 Market1 Market2 Market3 Market4 

DC1 2 2 3 3 
DC2 4 4 1 1 

DC3 4 4 3 3 

 
Table 4   Unit transportation Cost ( 1ijc ) from plants to DCs ($/ton)  

 DC1 DC2 DC3 

Plant1 1.8 1.6 2.0 
Plant2 2.4 2.2 1.3 

Plant3 2.0 1.3 2.5 

 
Table 5   Unit transportation Cost ( 2 jkc ) from DCs to markets ($/ton) 

 Market1 Market2 Market3 Market4 

DC1 1.0 3.3 4.0 7.4 
DC2 1.0 0.5 0.1 2.0 

DC3 7.7 7.3 5.1 0.1 
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Table 6   Optimal net lead times (days) of DCs and markets under different 
specifications of maximum guarantee service time of markets (MGSTM) for the 

illustrative example with multi-echelon inventory systems 

MGSTM 
DC1 

(days) 
DC2 

(days) 
DC3 

(days) 
Market1 
(days) 

Market2 
(days) 

Market3 
(days) 

Market4 
(days) 

0 day --- 8 --- 4 4 1 1 
1 day --- 8 --- 3 3 0 0 

2 days --- 8 --- 2 2 0 0 

3 days --- 8 --- 1 1 0 0 

4 days --- 8 --- 0 0 0 0 

5 days --- 7 --- 0 0 0 0 

6 days --- 6 --- 0 0 0 0 

7 days --- 5 --- 0 0 0 0 

8 days 0 0 --- 0 3 0 0 

9 days 0 0 --- 0 3 0 0 

10 days --- 2 --- 0 0 0 0 

11 days --- 0 --- 0 0 0 0 

12 days --- 0 --- 0 0 0 0 

 
 
 

Table 7   Optimal safety stock levels (tons) of DCs and markets under different 
specifications of maximum guarantee service time of markets (MGSTM) for the 

illustrative example with multi-echelon inventory systems 

MGSTM 
DC1 
(tons) 

DC2 
(tons) 

DC3 
(tons) 

Market1 
(tons) 

Market2 
(tons) 

Market3 
(tons) 

Market4 
(tons) 

0 day --- 1,059.85 --- 588.00 294.00 156.80 88.20 
1 day --- 1,059.85 --- 509.22 254.61 0 0 
2 days --- 1,059.85 --- 415.78 207.89 0 0 
3 days --- 1,059.85 --- 294.00 147.00 0 0 
4 days --- 1,059.85 --- 0 0 0 0 
5 days --- 991.40 --- 0 0 0 0 
6 days --- 917.86 --- 0 0 0 0 
7 days --- 837.89 --- 0 0 0 0 
8 days 0 0 --- 0 254.61 0 0 
9 days 0 0 --- 0 254.61 0 0 
10 days --- 529.93 --- 0 0 0 0 
11 days --- 0 --- 0 0 0 0 
12 days --- 0 --- 0 0 0 0 
 

 
 


