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Abstract 

In this paper we consider the inventory-distribution planning under uncertainty for 

industrial gas supply chains by extending the continuous approximation solution 

strategy proposed in part I. A stochastic inventory approach is proposed and it is 

incorporated into a multi-period two-stage stochastic mixed-integer nonlinear 

programming (MINLP) model to handle uncertainty of demand and loss or addition of 

customers. This nonconvex MINLP formulation takes into account customer 

synergies and simultaneously predicts the optimal sizes of customers’ storage tanks, 

the safety stock levels and the estimated delivery cost for replenishments. To globally 

optimize this stochastic MINLP problem with modest computational time, we develop 

a tailored branch-and-refine algorithm based on successive piece-wise linear 

approximation. The solution from the stochastic MINLP is fed into a detailed routing 

model with shorter planning horizon to determine the optimal deliveries, 

replenishments and inventory. A clustering-based heuristic is proposed for solving the 

routing model with reasonable computational effort. Three case studies including 

instances with up to 200 customers are presented to demonstrate the effectiveness of 

the proposed stochastic models and solution algorithms. 
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1. Introduction 

The design and operations of industrial gas inventory-distribution systems involve 

uncertainties at the strategic and at the operational levels. In the short term, the most 

common uncertainty is concerned with the product consumption and demands of the 

customers. Besides demand fluctuations, it is common to have losses or additions of 

customers due to contract termination or new contracts that are signed. A deterministic 

planning model1 is a useful tool to help reduce costs by taking into account customer 

synergies in the inventory-distribution planning, and integrating strategic tank sizing 

decisions with operational vehicle routing decisions. However, uncertain demand 

fluctuations and uncertain additions and losses of customers may significantly affect 

the decision-making across the industrial gas supply chain. Thus, it is necessary to 

extend the deterministic planning models to address these uncertainties, and develop 

effective optimization algorithms for these problems. 

A key component of decision-making under uncertainty is the representation of the 

stochastic parameters. There are two distinct ways of representing uncertainties. The 

scenario-based approach2-6 attempts to capture the uncertainties by representing them 

in terms of a number of discrete realizations of the stochastic parameters, where each 

complete realization of all uncertain parameters gives rise to a scenario. In this way all 

the possible future outcomes are taken into account through the use of scenarios, in 

which recourse actions are anticipated for each scenario realization. The objective is 

to find a solution that on average performs well under all scenarios. This approach 

provides a straightforward way of formulating the problem, but its major drawback is 

that it typically relies on either a priori forecasting of all possible outcomes, or the 

explicit/implicit discretizations of continuous probability distributions. Thus, the 

problem size increases exponentially as the number of uncertain parameters and 

scenarios increases. This is particularly true when using continuous multivariate 

probability distributions with Gaussian quadrature integration schemes. Alternatively, 

Monte Carlo sampling could be used, but it also requires a rather large number of 

samples to achieve a desired level of accuracy.  

The uncertainty can also be addressed through a chance constraint approach, which 

considers the uncertainty by treating one or more parameters as random variables with 

known probability distributions. Through multivariate integration over the continuous 

probability distribution functions, this approach can lead to a reasonable size 
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deterministic equivalent representation of the probabilistic model. It circumvents the 

exponentially growing number of scenarios from explicit/implicit discretization or 

sampling, at the expense of introducing certain number of nonlinear terms into the 

model.7-9 Although this approach has the limitation of not explicitly integrating 

recourse actions, it can effectively handle demand uncertainty at the operational level 

where the probabilistic description renders some operational planning variables to be 

stochastic. Based on the chance constraint method and some features of demand 

uncertainty, You & Grossmann10-12 have recently proposed stochastic inventory 

models to deal with demand uncertainty in the design and operation of process 

systems. In their works, the uncertain demand is hedged by holding a certain amount 

of safety stocks before demand realization. The safety stock level is estimated by 

using a chance constraint that links service level with a demand probability 

distribution. The need of allowing recourse actions as in stochastic programming,13 

which can significantly increase problem size, is obviated by taking proactive action 

with the safety stocks. The stochastic attributes of the problem are translated into a 

deterministic optimization problem at the expense of adding nonlinear safety stock 

terms into the model.  

As argued by Zimmermann,14 the choice of the appropriate method to model the 

stochastic parameters is context-dependent, with no single theory being sufficient to 

model all kinds of uncertainty. The problem addressed in this paper includes two 

types of uncertainty: customer demand fluctuation at the operational level and 

uncertain changes in the distribution network due to loss or addition of customers at 

the strategic level. Based on the nature of these nonlinearities, we employ the 

stochastic inventory approach to deal with demand uncertainty, and use the scenario-

based stochastic programming approach to handle the uncertain loss or addition of 

customers in the distribution network. We extend the continuous approximation 

approach, which is an efficient computational strategy for large-scale inventory-

distribution planning of industrial gases, to address the two aforementioned types of 

uncertainty. The stochastic version of the continuous approximation solution strategy 

includes a two-stage stochastic mixed-integer nonlinear programming (MINLP) 

problem in the upper level and a decomposable mixed-integer linear programming 

(MILP) problem in the lower level. A global optimization method based on successive 

piecewise linear approximation is proposed to effectively solve the stochastic MINLP 

at the upper level, and a clustering-based heuristic is proposed for solving the routing 
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model at the lower level with reasonable computational effort. We present the model 

formulations and computational strategies in this paper. Three case studies with up to 

200 customers are solved to illustrate the application of the proposed models and the 

performance of the solution algorithms. 

The rest of this paper is organized as follows. The general problem statement is 

provided in Section 2, which is followed by the proposed stochastic continuous 

approximation method in Section 3. The model formulation of the stochastic 

continuous approximation model and the global optimization algorithm for solving it 

effectively are given in Sections 4 and 5, respectively. In Section 6, we present 

computational results for three case studies. The last section concludes this paper and 

the clustering-based heuristic method for solving the routing problem is given in the 

appendix. 

 

2. Problem Statement 

We are given an industrial gas distribution network consisting of a production plant 

and a set of customers n N . The locations of the plant and customers, as well as the 

distances between them are given. We are also given a set of tanks with different sizes 

i I . The lower and upper bounds for tank with size i are given as  L
iT  and U

iT . We 

set the parameter , 1i not   if customer n has an existing tank with size i, and set it to 

zero otherwise. Similarly, the parameter 1nnew   if customer n is a new customer 

without any existing tank, otherwise it is set to be zero. Each newly installed tank is 

full of merchant liquid product at the beginning. That is, the initial inventory ,n yVzero  

is assumed to be the same as the tank capacity for the new customers. For customers 

with existing tanks, their initial inventory levels are given. There is a set of trucks 

j J  with maximum capacity jVtruck . The delivery cost per distance traveled is 

given as jck . All the trucks are assumed to have an average traveling speed ( speed ) 

and a maximum number of working hours per day, hpd . For each delivery by truck, 

there is a fixed percent of product loss, denoted as loss , and a minimum unloaded 

fraction given as frac . The capital cost of tank with size i I  is given as iCcap , and 

the service cost of installing, upgrading or downgrading a tank with size i I  is iCser . 

Both capital cost and service costs are discounted with a working capital discount 
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factor wacc  and a depreciation period in years given as dep .  
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Figure 1. Industrial gas distribution network under uncertain loss of customers 
over time 

 
The uncertainties arise from demand fluctuations and the losses or gains of 

customers in the distribution network. We assume that customer demands follow 

normal distributions, while the uncertain losses/additions of customers are represented 

through a set of scenarios s S . We assume that all the contracts are terminated or 

signed at the beginning of each year. Thus, the losses or additions of customers 

happen at the beginning of each year, which then defines a network structure for that 

year in the given scenario (see Figure 1 for an example). The probability of each 

scenario is given or can be derived from the probabilities of gaining or losing 

customers. 

The problem is then to simultaneously determine the tank sizes and modification 

decisions at each customer location, and the schedule and quantity of each delivery 

for all the possible realizations of uncertainty. The objective is to minimize the total 

expected cost. 
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Based on the aforementioned discussion, the major assumptions of this problem 

are listed as follows: 

 Only one type of industrial gas is considered 

 Scenarios with different network structures and the associated probabilities 

can be obtained 

 Customers are added/lost at the beginning of the time period (year) 

 Customer demand fluctuations follow normal distribution 

For the continuous approximation approach, the major assumptions are: 

 Cyclic inventory-routing  

 All the customers have the same replenishment lead time 

 The replenishment lead times are all the same in a year of a scenario 

 Only one type of truck is used in a given year of a scenario 

 

3. Solution Strategy 

 

0 1 2 3 4 5 6

T
o

ta
l 

C
o

s

Solve the MILP
problem for each 
scenario and each 
year, separately

Termination?

Next clustering soln.

Deterministic Routing Model 
(obtain vehicle routing decisions)

Stochastic MINLP
avoid int. var. in the 
2nd stage recourse

Fix tank sizes
Safety stock

Customer Clustering

Tank sizing decisions 
for 1st stage (int. var.);

Routing decisions for 
2nd stage (cont. var.)

Min. total expected cost

Select the 1st cluster

Cont. Approximation Model
+ safety stock optimization
(obtain tank sizing decisions)

 

Figure 2. Inventory profile of a customer under cyclic inventory routing 

 
We use the continuous approximation approach of Part I to deal with industrial 

gas inventory-distribution planning under uncertainty due to two major reasons. The 

first one is its computational efficiency. As shown through the case studies in our 

previous work,1 this approach is much more efficient than the integrated MILP 

approach and the route selection-tank sizing approach for solving large scale problems, 
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with little sacrifice of the solution quality. By decoupling the decision-making at the 

strategic and operational levels and using continuous approximation to estimate the 

routing cost, the proposed model can establish the optimal tradeoff between the 

strategic tank sizing cost and the approximate routing cost to predict optimal tank 

sizing decisions in the upper level. The lower level problem is then decomposed and 

solved as a vehicle routing problem with fixed tank sizes and shorter time horizon. 

The second major reason for using the continuous approximation approach is that the 

first stage decisions (here-and-now) of this problem are the tank sizing decisions and 

the second stage decisions (wait-and-see) are the routing decisions. These decisions 

are usually modeled with binary variables, and their presence in the second stage of 

the stochastic programming problem gives rise to significant computational challenge. 

However, the continuous approximation model can handle this challenge because it 

relies on very few binary variables and most discrete decisions are approximated 

using “continuous” functions. Therefore, the continuous approximation model is 

expected to have higher computational efficiency than other approaches that also 

incorporate stochastic programming. 

The detailed algorithmic framework of the stochastic continuous approximation 

approach is given in Figure 2. At the upper level, we solve a stochastic version of the 

continuous approximation model by incorporating a stochastic inventory model for 

safety stock optimization. Although the deterministic continuous approximation 

model can be reformulated as an MILP, the inclusion of stochastic inventory approach 

introduces additional nonlinear terms (square root terms) and renders the model as an 

MINLP.  The stochastic continuous approximation model also includes a two-stage 

stochastic programming element by treating all the tank sizing decisions as the first 

stage decisions and the remaining ones as the second stage. In this way, we avoid a 

large number of integer variables from detailed routing in the second stage of the 

stochastic programming model. Note that in principle, the problem could be 

formulated as a multi-stage stochastic programming model, but we only consider a 

two-stage approach in order to reduce the computational effort. Section 4 presents the 

detailed model formulation of the stochastic continuous approximation model and 

Section 5 introduces an efficient global optimization algorithm to solve this upper 

level problem. 

After solving the upper level stochastic continuous approximation model to 

obtain the optimal tank sizes and safety stocks, these decisions are passed to the lower 
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level for detailed routing. Since both kinds of uncertainty are taken into account in the 

stochastic continuous approximation model, we only need to solve a deterministic 

version of the detailed routing problem for each year and each scenario, which 

includes a specific network structure. The detailed routing model is the same as the 

integrated MILP model presented in Part I,1 except that all the decisions for tank 

sizing and safety stocks are fixed using the values from the optimal solution of the 

stochastic continuous approximation model. Thus, the model formulation of the 

detailed routing problem is omitted in this paper. Vehicle routing problems have been 

well studied in the past decades and there are many heuristic methods that can be used 

to improve the computational efficiency.15 In this work we use a clustering-based 

heuristic that is described in the Appendix.  

 

4. Stochastic Continuous Approximation Model 

The stochastic continuous approximation model is a stochastic MINLP that 

simultaneously considers tank sizing, safety stock optimization and approximated 

vehicle routing. The detailed model formulation is given below, and a list of indices, 

sets, parameters and variables are given in the Appendix.  

 

4.1 Objective function 

The objective function of this model is to minimize the total expected cost, 

including capital cost, service cost and distribution cost as given in Equation (1).  

Min:  [ ] s s s s
s

E Cost prob capcost servcost distcost     (1) 

where sprob  is the probability of scenario s and the detailed cost components are 

listed in constraints (2) – (5).  
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Equation (2) is for the capital cost of scenario s. The four terms correspond to rating 

(no tank sizing), replacing an existing tank, adding a tank to the extra space an 
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existing customer and sizing the tank at a new customer location, respectively. ,y sN  is 

a subset of customers included in the distribution network of scenario s in year y. 

Any tank change or addition leads to a service cost, as shown in Equations (3) and 

(4). The total distribution cost equals to the summation of discounted annual routing 

cost as in equation (5), where ,y scrot  is the estimated routing cost of scenario s in year 

y coming from the continuous approximation. Note that the capital, service and 

distribution costs are all discounted with the working capital discount factor wacc . 

,

, ,

1

1

(1 )
y s

i n i n
s i y

i n N y

tins et
servcost Cser

dep wacc 


 
    

    (3) 

where ninini otyttins ,,,   (4) 

 
,

1

y s
s y

y

crot
distcost

wacc



  (5) 

We note that the distribution cost given in objective function (5) is the estimation 

cost of vehicle routing from the “continuous approximation method”, and it is not the 

exact routing cost that can be derived from solving the detailed routing problem. 

 

4.2 Tank sizing constraints 

Tank sizing decisions are the first stage decisions in the stochastic programming 

model, and they are independent of the scenarios. Although a potentially better 

approach for capital investment planning would be to allow the tank size to change 

every year using a multi-period formulation for tank selection, we assume in this work 

that the tank sizes will not change in the planning horizon after installation in the first 

year  as in Part I. Given the dynamic nature of the market and that uncertainty 

customer demand and in its set of neighbors grows in the future, capital investment 

decisions are made in the present and the model is optimized on a periodic basis to 

assess potential changes in the capacity of the network 

First, two parameters tsizen and espacen are introduced to define the conditions for 

tank sizing. We set 1nespace   if there is extra space for installing another tank at 

customer n, otherwise it is set it to be zero. Similarly, 1ntsize  if the tanks at customer 

n need to be sized or changed, otherwise it is set to be zero. 

If the tank of customer n needs to be sized or changed, we would either install a 
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new tank in the extra space or change the current tank. If no tank is sized, no 

modification will be made. This relationship can be modeled by the following 

constraint. 

  n
i

i,ni,n tsizeetyt  , ,y sn N   (6) 

where yti,n is also a binary variable that equals to 1 if the customer n will be installed 

with a tank of size i, and eti,n is a binary variable that equals to 1 if customer n has a 

tank of size i installed in the extra space. 

If there is no extra space (espacen=0), then no tank should be installed at the extra 

space, and at least one type of tank should be selected to replace the existing tank. On 

the other hand, if the storage tanks at customer n should be upgraded (tsizen = 1) and 

there is extra space then at most one type of tank should be selected to be installed at 

the extra space, i.e. one binary variable eti,n must be selected, and at the same time 

there is no change to the existing tank, i.e. all yti,n variables are zero. These logic 

relationships can be modeled by: 

n
i

i,n espaceyt  1  ,y sn N   such that tsizen = 1 (7) 

n
i

i,n espaceet   ,y sn N   (8) 

The minimum and maximum inventory levels of customer n depend on the storage 

tank(s) installed for this customer. Thus, they are modeled through the following two 

equations, 

  
i

i,ni,ni,n
L

in etytotTVl  ,y sn N   (9) 

  
i

i,ni,ni,n
U

in etytotTVu  ,y sn N   (10) 

If a new customer n joins the distribution network, at least a new tank is selected to 

install, then the tank is assumed to be at full level; otherwise the initial inventory level 

parameters are given. 

 VuVzero nn   , | 1y s nn N new    (11) 

 

4.3 Truck constraints 

Similarly to the deterministic version of this model, we assume that only one type 

of truck is selected for delivery in each year and each scenario. This assumption 

implies that all trucks have the same capacity and unit cost in each year and each 
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scenario, although we do not explicitly account for truck availability in the continuous 

approximation. However, it should be noted that the “one type of truck” assumption is 

associated with the continuous approximation, which is used in the strategic level for 

tank sizing decisions. The availability of the trucks is considered in the lower level 

detailed routing model (please refer to Part I for details). 

We note that different scenarios in different years may have different network 

structures, and thus different selection of trucks. The following constraints are used to 

define the truck selection. 

, , 1j y s
j

tru    ,y s  (12) 

, , ,y s j j y s
j

cunit ck tru    ,y s  (13) 

 , , , 1y s j y s j
j

ccapic tru Vtruck loss      ,y s  (14) 

Constraint (12) shows that only one type of truck is selected per year and , ,j y stru  is a 

binary variable that is equal to 1 if truck j is selected for delivery in year y and 

scenario s, otherwise it is equal to zero. Constraints (13) and (14) are for the unit 

transportation cost ( ,y scunit ) in year y of scenario s, and the effective delivery 

capacity ( ,y sccapic ) after adjustment of loss of the truck for a scenario in a specific 

year. 

The lead time of a replenishment cycle ( ,y sLT ) in year y of scenario s should not be 

less than the sum of the total travel time, which is given by the minimum routing 

distance ( ,y smrt ) divided by the traveling speed and the working hours per day (hpd), 

and  the total loading time, which includes the loading times at the customer locations 

and at the plant. There will be at least ,y sN  times of loading in the customers as each 

customer will be visited at least once in a replenishment cycle. The loading time at the 

plant should be greater than the loading time of deliveries from the plant (FT_del). 

Thus, the lead time constraint is given by, 

,
, ,_ _y s

y s y s

mrt
LT FT load N FT del

speed hpd
   


,  ,y s  (15) 
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4.4 Cyclic inventory-routing under uncertainty based on continuous 

approximation 

Because the focus of this work is on the strategic tank sizing decisions, we 

employed a continuous approximation method to estimate the optimal routing cost as 

a result of different tank sizing decisions. By using the continuous approximation we 

simplify the detailed routing problem, while still capturing the tradeoff between 

capital costs and routing costs at the strategic level. 

With the proposed approach, we approximate the discrete variables and 

parameters associated with vehicle routing using continuous functions, which 

represent distributions of customer locations and demands. The profile of an inventory 

system under uncertain demand is given in Figure 3(a). Similarly to the deterministic 

case, we assume cyclic inventory-routing for each scenario in each year due to their 

potentially different network structures and demands. Thus, the inventory profile of a 

customer for a scenario in a specific year is given in Figures 3(b). From this figure, 

we have the tank size no less than the maximum inventory level, which is the 

summation of working inventory and safety stock.  
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(b) Inventory profile under cyclic inventory-routing 
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(c) Safety stock and service level under normally distributed demand 

Figure 3. Stochastic inventory system under continuous approximation 
 

The working inventory equals to the demand rate times the replenishment lead 

time. The safety stock level can be determined by using the stochastic inventory 

approach as follows. A storage facility under demand uncertainty may not always 

have sufficient stock to handle the changing demand. If the inventory level is less than 

the demand during the replenishment lead time, stockout may happen. Type I service 

level is defined as the probability that the total inventory on hand is more than the 

demand (as shown Figure 3b). If the demand is normally distributed with mean   and 

standard deviation  , the optimal safety stock level to guarantee a service level   is 

z , where z  is a standard normal deviate such that Pr( )z z   .16 If the demand 

rate is normally distributed with mean   and standard deviation  , then the 

uncertain demand over the replenishment lead time LT  also follows a normal 

distribution with mean LT   and variance 2 LT   . Thus, the optimal safety stock 

level to guarantee a service level   is 2z LT z LT      .16 We should note 

that the acceptable practice in this field is to assume a normal distribution of the 

demand, although of course other distribution functions can be specified. The 

stochastic inventory model has been proved to provide very good approximations for 

inventory system under demand uncertainty.17 In this way, the maximum inventory 

level is modeled as a nonlinear function of the replenishment lead time and demand 

probability distribution. A tradeoff between the inventory and routing costs is also 

established. If the replenishment frequency is high, the routing cost could also be high, 

but the working inventory level maybe low, so we only need a small tank and vice 

versa.  
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If we use ,y sx  to denote the number of replenishment cycles in year y of scenario 

s, then the corresponding replenishment lead time (LTy,s) should satisfy the equation 

below: 

, ,y s y s yLT x Hz    ,y s   

where yHz  is the time duration of year y. Note that both yHz  and LTy,s are in terms of 

physical days instead of working day, as customers consume demand continuously. 

The above equation has a bilinear term on the left hand side. To linearize it, similar to 

Part I, the integer variable xy,s can be reformulated with binary variables  , , 0,1k y sIx   

as follows: 

1
, , ,2 k

y s k y s
k

x Ix    ,y s  (16) 

where , ,k y sIx  determines the value of the kth digit of the binary representation of xy,s. 

Note that the elements in set K depend on the upper bound of xy,s. For example, if 

, 63U
y sx  , we can set K = 1, 2, 3, 4, 5 or 6. 

With equations (16), we can linearize the nonlinear constraint , ,y s y s yLT x Hz   as 

1
, , , , ,2 k

y s y s y s k y s
k

LT x LT Ix    . By introducing a nonnegative continuous variable 

, , , , ,k y s y s k y sLTIx LT Ix  , we have the following reformulated constraint: 

1
, ,2 k

k y s y
k

LTIx Hz     ,y s  (17) 

We also need the following linearization constraints to define the new variable 

, ,k y sLTIx :18-19 

, , , , ,1k y s k y s y sLTIx LTIx LT    , ,k y s  (18.1) 

, , , , ,
U

k y s y s k y sLTIx LT Ix    , ,k y s  (18.2) 

 , , , , ,1 1U
k y s y s k y sLTIx LT Ix     , ,k y s  (18.3) 

 , , 0,1k y sIx  , , , 0k y sLTIx  , , ,1 0k y sLTIx    , ,k y s  (18.4) 

where , ,1k y sLTIx  is an auxiliary variable and the upper bound of ,y sLT  is given by the 

time duration of year y (Hzy). 

Let , ,n y sVm  be the maximum inventory level of customer n in scenario s and year y. 

From Figure 3, we know that the maximum inventory level should be no less than the 
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summation of working inventory ( , ,n y swinv ), safety stock ( , ,n y ssafety ) and minimum 

volume of the tank in customer n in year y ( nVl ) defined in constraint (9). Thus, we 

have the following constraint. 

, , , , , ,n y s n y s n y s nVm winv safety Vl     , ,n y s  (19) 

The maximum inventory level should not exceed the maximum volume of the tank 

defined by the tank size of customer n in constraint (10). 

, ,n y s nVm Vu   , ,n y s  (20) 

As discussed above, the safety stock level should be equal to the product of the 

service level parameter z , the standard deviation of daily demand ,n y  and the 

square root of replenishment lead time ,y sLT , which is measured in days. 

, , , ,n y s n y y ssafety z LT      , ,n y s  (21) 

For customer n, its working inventory ( , ,n y swinv ) is the replenishment that it 

receives in a replenishment cycle. Thus, the working inventory times the number of 

replenishment cycles should be equal to the annual amount of product delivered from 

plant to customer n in scenario s and year y ( , ,n y sTrp ). 

, , , , ,n y s y s n y swinv x Trp    , ,n y s   

Based on equation (16), we can reformulate the bilinear term on the left hand side 

of the above equatioin as 1
, , , , , , ,2 k

n y s y s n y s k y s
k

winv x winv Ix    . By introducing a 

nonnegative continuous variable , . , , , , ,k n y s n y s k y swIx winv Ix  , we can obtain the 

following reformulated linear constraint: 

1
, , , , ,2 k

k n y s n y s
k

wIx Trp     , ,n y s  (22) 

We also need the following linearization constraints to define , . ,k n y swIx : 

, . , , . , , ,1k n y s k n y s n y swIx wIx winv    , , ,k n y s  (23.1) 

, . , , , , ,
U

k n y s n y s k y swIx winv Ix    , , ,k n y s  (23.2) 

 , . , , , , ,1 1U
k n y s n y s k y swIx winv Ix     , , ,k n y s  (23.3) 

 , , 0,1k y sIx  , , . , 0k n y swIx  , , . ,1 0k n y swIx    , , ,k n y s  (23.4) 

where , . ,1k n y swIx  is an auxiliary variable. 

Based on mass balance, the total amount of product delivered from plant to 
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customer n in year y ( , ,n y sTrp ) is given by the following constraints, 

, , , , , , ,n y s n y n y s n n n y sTrp dem Vend Vzero Vl safety           , , 1n s y  (24) 

, , , , , , 1,n y s n y n y s n y sTrp dem Vend Vend      , , | 2n s y y  (25) 

, , , ,n y s n y sVend winv   , ,n s y  (26) 

where ,n ydem  is the demand rate of customer n in year y, Vendn,y,s is the inventory 

level of customer n in scenario s at the end of  year y after adjustment for minimum 

tank volume and safety stocks, and it should be less than the working inventory level. 

Note that in the first year we need to account for the initial inventory level and adjust 

for minimum tank volume and safety stocks.  

 

4.5 Continuous approximation for routing cost 

The capacitated vehicle routing cost is estimated via a continuous approximation 

approach. Let , ,n y sTrp  be the total amount of product delivered from plant to customer 

n in scenario s and  year y, ,y sccapic  be the effective truck capacity (truck capacity 

after accounting for product loss), nrr  be the distance between the plant and customer 

n, and TSPy,s be the length of the optimal traveling salesman tour that all the 

customers included in scenario s and year y are visited once. Based on a continuous 

approximation, the minimum routing distance for each replenishment cycle in 

scenario s and year y ( ,y smrt ) can be approximated with the following formula:1  

,

, ,

, ,
, , ,

1
2 1y s

n y s n
n N

y s y s
y s y s y s

Trp rr

mrt TSP
x ccapic ccapic



 
  

           
 


,   ,y s   

To reduce the nonlinearities, we introduce a new positive variable segy,s such that 

,

, ,

,
, ,

y s

n y s n
n N

y s
y s y s

Trp rr

seg
x ccapic









,   ,y s   

which is equivalent to the following constraint, 

, , ,

, , , , , , , , , , ,

y s y s y s

y s y s y s n y s n n y s y s n y s n y s n
n N n N n N

seg x ccapic Trp rr winv x rr x winv rr
  

            , 

                                                                                                                                ,y s   

Because xy,s is a positive integer variable, the above equation is equivalent to the 



-17- 

following one, 

 
,

, , , ,

y s

y s y s n y s n
n N

seg ccapic winv rr


   ,   ,y s   

Based on equation (14), we can reformulate the bilinear term on the left hand side 

of the above equation as  , , , , , 1y s y s y s j y s j
j

seg ccapic seg tru Vtruck loss      . By 

introducing a nonnegative continuous variable , , , , ,j y s y s j y sTruSeg seg tru  , we have 

the following reformulated linear constraint: 

   
,

, , , ,1
y s

j y s j n y s n
j n N

TruSeg Vtruck loss winv rr


      ,     ,y s  (27) 

We also need the following linearization constraints: 

, , , , ,1j y s j y s y sTruSeg TruSeg Seg    , ,j y s  (28.1) 

, , , , ,
U

j y s y s j y sTruSeg seg tru    , ,j y s  (28.2) 

 , , , , ,1 1U
j y s y s j y sTruSeg seg tru     , ,j y s  (28.3) 

 , , 0,1j y stru  , , , 0j y sTruSeg  , , ,1 0j y sTruSeg    , ,j y s  (28.4) 

where , ,1 j y sTruSeg  is an auxiliary variable and the upper bound of ,
U
y sseg  is given by a 

sufficient large number, e.g. (  maxr nN rr ). 

Thus, the continuous approximation of the minimum routing distance for each 

replenishment cycle is given as follows: 

, , ,
,

1
2 1y s y s y s

y s

mrt seg TSP
ccapic

 
      

 
,   ,y s   

Further, the reciprocal of ,y sccapic  ( ,y sTccapic ) can be modeled through the 

following linear equation, 

 
, ,

, 1
j y s

y s
j j

tru
Tccapic

Vtruck loss


    ,y s  (29) 

which comes directly from equation (14).  

Based on equation (29), we can easily reformulate the minimum routing distance 

constraint as: 

 , , , ,2 1y s y s y s y smrt seg Tccapic TSP     ,   ,y s  (30) 

If we know the unit distance transportation cost of scenario s in year y (cunity,s), 

then the total delivery cost of this scenario in this year (croty,s) is the product of the 
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unit transportation cost, the number of replenishment cycles and the minimum routing 

distance of each replenishment cycle.  

, , , ,y s y s y s y scrot cunit mrt x     ,y s   

Based on equations (13) and (16), similarly as in Part I, we have 

 1
, , , , , , , ,2 k

y s y s y s j j y s k y s y s
j k

cunit mrt x ck tru Ix mrt       . If we set 

, , , , ,k y s k y s y smrIx Ix mrt   and , , , , , , ,j k y s j y s k y smrItru tru mrIx  , then the above nonlinear 

constraint can be linearized as follows: 

1
, , , ,2 k

y s j j k y s
j k

crot ck mrItru     ,y s  (31) 

We also need the following linear constraints: 

, , , , ,1k y s k y s y smrIx mrIx mrt    , ,k y s  (32.1) 

, , , , ,
U

k y s y s k y smrIx mrt Ix    , ,k y s  (32.2) 

 , , , , ,1 1U
k y s y s k y smrIx mrt Ix     , ,k y s  (32.3) 

 , , 0,1k y sIx  , , , 0k y smrIx  , , ,1 0k y smrIx    , ,k y s  (32.4) 

, , , , , , , ,1j k y s j k y s k y smrItru mrItru mrIx    , , ,j k y s  (33.1) 

, , , , , ,
U

j k y s y s j y smrItru mrt tru    , , ,j k y s  (33.2) 

 , , , , , ,1 1U
j k y s y s j y smrItru mrt tru     , , ,j k y s  (33.3) 

 , , 0,1j y stru  , , , , 0j k y smrItru  , , , ,1 0j k y smrItru    , , ,j k y s  (33.4) 

where  , ,1k y smrIx  and , , ,1 j k y smrItru  are an auxiliary variables 

 

4.6 Stochastic MINLP Reformulation 

After reformulation and linearization, the stochastic continuous approximation 

model is a non-convex MINLP with the objective function given in (1) and constraints 

(2) – (33). The remaining nonlinear nonconvex term in this model is the square root 

term in safety stock constraint (21).  

 

5. Global Optimization Algorithm 

Although small scale instances of the stochastic continuous approximation model 

can be solved to global optimality by using a global optimizer, medium and large-
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scale problems are often computationally intractable with a direct solution approach 

due to the combinatorial nature and nonlinear nonconvex terms. In this section, we 

introduce an efficient global optimization algorithm based on a special property of the 

model and on successive piecewise linear approximations to tackle this nonconvex 

MINLP problem. 

An important property of this model is given as follows. 

 

Property 1. If we replace the square root terms in the safety stock constraints (21) 

with piecewise linear under-estimators, the solution of the resulting MILP model 

provides a global lower bound of the global minimum solution of the original MINLP. 

 

We omit the proof because Property 1 is straightforward and easy to prove. Based 

on Property 1, we can first construct a lower bounding MILP problem based on 

piecewise linear approximations, and then employ a branch-and-refine method to 

globally optimize the nonconvex stochastic continuous approximation problem. 

 

5.1 Piece-wise Linear Approximation 

The only nonlinear terms of the stochastic continuous approximation model are the 

univariate square root terms, ,y sLT , in the safety stock constraint (21). To improve 

computational efficiency, we consider piece-wise linear approximations for the 

concave square root terms. There are several different approaches to model piecewise 

linear functions for a concave term. In this work, we use the “multiple-choice” 

formulation20-21 to approximate the square root term ,y sLT . Let  , 1, 2,3, ,y sP p   

denote the set of intervals in the piecewise linear function  ,y sLT , and , ,0y su , , ,1y su , 

, ,2y su ,… , ,y s pu ,  be the lower and upper bounds of ,y sLT  for each interval. The 

“multiple choice” formulation of  , ,y s y sLT LT   for a given year and scenario is 

given by, 

   , , , , , , , , ,min    y s y s p y s p y s p y s p
p

LT E F     (34) 

s.t. 

, , 1y s p
p

E   (35) 
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, , ,y s p y s
p

F LT  (36) 

, , 1 , , , , , , , ,y s p y s p y s p y s p y s pu E F u E   , p  (37) 

 , , 0,1y s pE  , , , 0y s pF  , p  (38) 

where 
, , , , 1

, ,
, , , , 1

y s p y s p

y s p
y s p y s p

u u

u u
 







 and , , , , , , , ,y s p y s p y s p y s pu u   , p P . 

Substituting (34) - (38) into the safety stock constraint (21) yields a mixed-integer 

linear programming (MILP) model, which is a piece-wise linear under-estimator of 

the stochastic MINLP problem. The MILP lower bounding model formulation is given 

as follows. 

 

Min:  [ ] s s s s
s

E Cost prob capcost servcost distcost     (1) 

s.t.  Constraints (2) – (20), (22) – (33) 

 , , , , , , , , , , ,n y s n y y s p y s p y s p y s p
p

safety z E F       ,   
,
, ,

y s
n N y s     (39) 

, , 1y s p
p

E    ,y s  (40) 

, , ,y s p y s
p

F LT   ,y s  (41) 

, , 1 , , , , , , , ,y s p y s p y s p y s p y s pu E F u E     , ,y s p  (42) 

 , , 0,1y s pE  , , , 0y s pF  ,  , ,y s p  (43) 

 

5.2 Branch-and-Refine Algorithm 

In order to globally optimize the non-convex MINLP problem, we can first solve 

the MILP lower bounding problem, whose solution provides a valid lower bound to 

the global optimal solution, and then solve a reduced MINLP problem by fixing the 

binary variables , ,j y stru  and , ,k y sIx . Note that we do not fix the tank sizing decisions, 

because in the MILP lower bound problem, the safety stock levels are underestimated 

and thus the optimal tank sizes might be underestimated. To avoid infeasibility, we 

only fix , ,j y stru  and , ,k y sIx  to solve the reduced MINLP.  
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Figure 4   Piece-wise linear under-estimator of a concave term 
 

The optimal solution of the reduced MINLP is also a feasible solution of the 

original stochastic continuous approximation model, so its objective value provides a 

valid global upper bound of the original MINLP problem. The remaining challenge is 

how to iteratively refine and improve the solution so that the global optimal solution 

can be obtained after a finite number of iterations. If we use a sufficiently large 

number of intervals in the piecewise linear lower bonding MILP problem, we obtain 

the global solution within sufficiently small optimality margin. The reason is that the 

more intervals that are used, the better is the approximation of the square root function 

(see Figure 4). However, more intervals require additional variables and constraints in 

the lower bounding MILP model. Similarly to our previous work,22 we use an iterative 

branch-and-refine strategy based on successive piece-wise linear approximation to 

control the size of the problem. 

In the first step of this algorithm, we consider a single linear approximation in the 

lower bounding MILP, i.e. replacing all the square root terms in the stochastic 

continuous approximation MINLP model with their corresponding secants as shown 

in Figure 5a. Thus, the optimal solution of the MILP problem provides the first lower 

bound LB1. An upper bound can be obtained by fixing the values of the binary 

variables , ,j y stru  and , ,k y sIx  and then solve the stochastic continuous approximation 

model in the reduced variable space. Due to the presence of tank sizing variables, the 

reduced problem is still an MINLP. As the lower bounding MILP underestimates the 
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tank sizes and the maximum tank size is fixed, it is possible that the reduced MINLP 

can be infeasible. In that case, we move on to the next iteration and the upper bound is 

still the best upper bound provided in the previous iterations. Of course, the lower 

bounding MILP can be infeasible as well, but it implies that the original problem is 

infeasible, because the MILP is a relaxation of the original MINLP. 

In the next step, we use the optimal solution of variable ,y sLT  in the upper 

bounding problem as the lower bound of a new interval, and consider a two-interval 

linear approximation of the square root terms as shown in Figure 5b. If the optimal 

solution of the upper bounding problem in the previous iteration lies at the bounds of 

some intervals, we do not add any new interval for the corresponding square root term 

,y sLT . After we construct the two-interval linear approximation MILP model, we 

can similarly obtain a lower bound, and then an upper bound by solving the reduced 

MINLP.  

As shown in Figure 5c, the number of intervals in the piecewise linear model 

increases as the iteration number increases. Meanwhile, the best lower bound 

increases while the best upper bond decreases. The algorithm keeps iterating until the 

lower bound and upper bound are close enough to reach an optimality tolerance, e.g. 

10-6. Note that the number of intervals does not always equal to the number of 

iterations, because the optimal solutions in some iterations may lie at the bounds of 

the intervals and in that case we do not increase new intervals for the corresponding 

square root terms. 

To summarize, the proposed branch-and-refine algorithm based on successive 

piece-wise linear approximation is as follows: 

 

Step 1: (Initialization) 

Initialize 1iter  , 0LB  , UB   . Set , 1iter
y sNP  ,  , ,0,1,..., iter

y s y sp P NP  . Use 

a single linear approximation, i.e. the secant, for the square root terms. To achieve this, 

set , ,0 0y su   and , ,1 ,
U

y s y su LT , as well as 
, ,1 , ,0

, ,1
, ,1 , ,0 ,

1y s y s

y s
y s y s y s

u u

u u LT



 


 and 

, ,1 , ,1 , ,1 , ,1 0y s y s y s y su u     .  

 

Step 2:  
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At iteration iter , solve the piece-wise linear approximation MILP model. If the 

MILP problem is infeasible, then the original problem is also infeasible and the 

algorithm stops. If not, denote the optimal objective function value as iter  and the 

optimal solution of variables , ,j y stru  and , ,k y sIx  as ( *
, ,
iter

j y stru , *
, ,
iter

k y sIx ). If iter LB   , then 

set iterLB  . 

 

Step 3:  

Fix the values of binary variables  *
, , , ,

iter
j y s j y stru tru  and *

, , , ,
iter

k y s k y sIx Ix , and solve the 

original stochastic continuous approximation MINLP model in the reduced space, 

which is an MINLP with fewer binary variables to obtain the local optimal solution.  

If the reduced MINLP is feasible, denote the optimal value of the objective 

function as iter  and the optimal solution as ,
iter
y sLT . If iter UB   , then set iterUB   , 

store the current optimal solution.  

If the reduced MINLP is infeasible, denote the optimal solution of the lead times in 

the lower bounding MILP as ,
iter
y sLT .  

Find ,
iter
y sn such that the optimal solution ,

iter
y sLT  lies in the ,

iter
y sn  interval. i.e. 

, , , ,
,, , 1 , ,iter iter

ci y s ci y s
y sy s n y s n

u LT u

  . One approach to find the proper iter

jn  is to compute the 

product    , , , 1 , , ,
iter iter
y s y s p y s y s pLT u LT u    for all the p = 2, 3, …, ,

iter
y sNP , and then 

denote the first p that leads to a non-positive value (zero or negative value) of the 

product as ,
iter
y sn , i.e. if    , , , 1 , , , 0iter iter

y s y s p y s y s pLT u LT u    , set ,
iter
y sn p . 

If UB LB    (e.g. 10-9), stop and output the optimal solution; otherwise, go to 

the next step. 

 

Step 4:  

For those year y and scenario s such that , , , , , , , , ,( )iter iter iter iter iter
y s y s p y s p y s p y s p

p

LT E F   , set 

1
, ,

iter iter
y s y sNP NP  , 1

, , , ,
iter iter
y s p y s p    and 1

, , , ,
iter iter
y s p y s p   . 

For other year y and scenario s, set 1
, , 1iter iter

y s y sNP NP    and update set ,y sP , i.e. 

 1, ,0,1,..., iter
y s y sp P NP    and update , ,y s pu , , ,y s p  and , ,y s p  as follows: 
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− For ,
iter
y sp n  (i.e. p = 0, 1, 2 … , , 1iter

y sn  ), set 1
, , , ,

iter iter
y s p y s pu u  , 1

, , , ,
iter iter
y s p y s p    and 

1
, , , ,

iter iter
y s p y s p   . 

− For ,
iter
y sp n , set 1

,, , iter
j

iter iter
y sy s n

u LT  , ,

,

,

, , , 11

, ,
, , , 1

iter
y s

iter
y s

iter
y s

iter
y s y s niter
itery s n
y s y s n

LT u

LT u










 and 

, ,

1 1
, ,, , , ,iter iter

y s y s

iter iter iter iter
y s y sy s n y s n

LT LT      

− For , 1iter
y sp n  , set 

, ,

1

, , 1 , ,iter iter
y s y s

iter iter

y s n y s n
u u


 , ,

,

,

,, ,1

, , 1
,, ,

iter
y s

iter
y s

iter
y s

iter
y sy s niter

itery s n
y sy s n

u LT

u LT
 







 and 

, , , ,

1 1

, , 1 , , , , , ,iter iter iter iter
y s y s y s y s

iter iter

y s n y s n y s n y s n
u u  


    

− For , 1iter
y sp n   (i.e. p = , 2iter

y sn  , , 3iter
y sn  , …, ,

iter
y sNP ), set 1

, , , , 1
iter iter
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xx

secant

LB1

UB1

 
(a) Iteration 1 – replace the square root terms with their secant, the optimal solution of 

the MILP provides a lower bound LB1, and the upper bound can be obtained from 
function evaluation or from solving the reduced NLP. 
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xx

secant

LB1

UB1

LB2

UB2

 
(b) Iteration 2 – add a new interval based on the optimal solution of the upper 

bounding problem in Iteration 1, and consider a two-piece linear approximation of the 
square root terms 

 

xx

secant

LB1

UB1

LB2

UB2

 
(c) Iteration 3 – add another new interval based on the optimal solution of the upper 

bounding problem in the previous iteration 
 

Figure 5   Branch-and-refine algorithm based on successive piece-wise linear 
approximations 

 

6. Case Studies 

In order to illustrate the application of the proposed model and the performance of 

the proposed solution strategies we consider three case studies. All the computational 

experiments are performed on an IBM T400 laptop with Intel 2.53GHz CPU and 2 

GB RAM. The proposed solution procedure is coded in GAMS 23.2.1.23 The MILP 

problems are solved using CPLEX 12 and the reduced MINLP problems in Step 2 of 

the branch-and-refine algorithm are solved with MINLP solver DICOPT. We use 
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DICOPT as the convex MINLP solver and the global optimizer used in the 

computational experiments is BARON 8.1.5. The optimality tolerances of DICOPT, 

BARON and the proposed branch-and-refine algorithm are all set to 10-3 and 

optimality margins of solving the piecewise linear approximation MILP model (P4) 

and the reduced NLP model (P3) are both 10-6. 

 

Case study 1: four customer case 

In the first case study, we consider a four-customer cluster of an industrial gas 

supply chain, of which the network structure and the monthly mean demand rates of 

the first year are given in Figure 6. All the customers need to size their tanks. In the 

three year horizon we consider a 15% annual demand growth rate for all customers, 

and the standard deviation of uncertain daily demand is considered as 1/3 of the daily 

mean demand. Other major input data for the case study are given in Tables 1-2.  

Although all the four customers are included in the network at time zero, some of 

them may terminate the contract in a certain future year: 

− N14 will not terminate the contract by the end of Year 3  

− N15 has a 30% chance of terminating the contract in Year 1 

− N18 has a 40% chance of terminating the contract in Year 2  

− N21 has a 50% chance of terminating the contract in Year 3  

We assume that each event is independent from the others, so eight scenarios are 

generated for this case study.  The detailed network structure and TSP distances to 

visit all the customers once for each scenario in each year and the probability of each 

scenario are given in Figure 1 and Table 3. 

 

Plant
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N15
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950 km
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993 km

6,417 L/M

3,337 L/Month

1,124 km

  
Figure 6. Case study 1 – four customer industrial gas supply chain 
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Table 1   General parameters used in the models 
Number of truck types 4 
Number of tank sizes 6 
Depreciation period (dep) 15 years 
Time duration of year y (Hzy) 365 days 
Maximum number of working hours per day (hpd) 15 hours/day 
Average truck speed in km per hr (speed) 22 km/hour 
Minimum tanker fraction unloaded (frac) 10% 
Product loss percentage per delivery (loss) 5% 
Safety stock as a percentage of the tank size 15% 

 
Table 2   Available tank sizes and the corresponding capital and service costs 

Tank sizes: U
iT  (L) Service cost in terms of percentage of capital cost 

(Cseri/ Ccapi) 
1,000 26.04% 
6,000 16.34% 

10,000 12.95% 
13,000 13.44% 
16,000 12.66% 
20,000 11.92% 

 
Table 3   Network structure of each scenario in each year for case study 1 

Scenario/Year Customers in the network TSP distance (TSPy,s) Scenario probability (probs) 
Year 1 N14, N15, N18, N21 4,507km 
Year 2 N14, N15, N18, N21 4,507km S1 

Year 3 N14, N15, N18, N21 4,507km 

21% 

Year 1 N14, N18, N21 3,007km 
Year 2 N14, N18, N21 3,007km S2 
Year 3 N14, N18, N21 3,007km 

9% 

Year 1 N14, N15, N18, N21 4,507km 
Year 2 N14, N15, N21 4,427km S3 
Year 3 N14, N15, N21 4,427km 

14% 

Year 1 N14, N15, N18, N21 4,507km 
Year 2 N14, N15, N18, N21 4,507km S4 
Year 3 N14, N15, N18 3,281km 

21% 

Year 1 N14, N15, N18, N21 4,507km 
Year 2 N14, N15, N21 4,427km S5 
Year 3 N14, N15 2,506km 

14% 

Year 1 N14, N18, N21 3,007km 
Year 2 N14, N18, N21 3,007km S6 
Year 3 N14, N18 1,780km 

9% 

Year 1 N14, N18, N21 3,007km 
Year 2 N14, N21 2,247km S7 
Year 3 N14, N21 2,247km 

6% 

Year 1 N14, N18, N21 3,007km 
Year 2 N14, N21 2,247km S8 
Year 3 N14 0 

6% 



-28- 

 
We consider 17 instances with service level α ranging from 50% to 98% for all 

customers and the corresponding service level parameter z  ranging from 0 to 2.07, 

where z  is a standard normal deviate such that Pr( )z z   . We note that all the 

17 instances have similar problem structure – the only difference among them is the 

service level parameter. As these instances are solved sequentially with service level 

ranging from 50% to 98%, an instance’s solution provides a good starting point for 

solving the next instance. We solved these 17 instances with DICOPT, BARON and 

the proposed branch-and-refine algorithm (CPLEX+DICOPT). The original MINLP 

model for stochastic continuous approximation includes 264 binary variables, 3,300 

continuous variables and 4,344 constraints. DICOPT returned “infeasible” for all the 

instances, presumably due to the numerical difficulty arising from the square root 

terms. One way to overcome this issue is to add a sufficiently small number ε to each 

square root term. Please refer to our earlier work22 for details. The global optimizer 

BARON took 70,354 CPU seconds for solving all the 17 instances (in average 4,138 

CPUs/instance) to an optimality gap of 10-6. With the proposed branch-and-refine 

algorithm using CPLEX and DICOPT, we solved all the 17 instances to global 

optimality with a total of 285 CPU seconds (in average 17 CPUs/instance). Clearly, 

the proposed global optimization algorithm demonstrated much better performance 

than the general purpose commercial MINLP solvers.  
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Figure 7. Pareto curve for Case study 1 (total expected cost vs. service level) 
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Figure 8. Scenario total safety stocks of the 3rd year under different service levels 

for Case study 1 
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Figure 9. Optimal tank sizing decisions under different service levels for Case 

study 1 
 

The optimal solutions of these 17 instances are given in Figures 7-9. Figure 7 

shows the Pareto optimal curve between the total expected cost and the service level. 

As the service level increases from 50% to 98%, the total expected cost increases 

from $121,965 to $214,866. Thus, a higher service level implies higher total expected 

cost. In particular, when the service level increases from 80% to 82% and from 88% 

to 90%, the total expected cost only increases by $40 and $170, respectively. 

Therefore, setting the service level to 82% or 90% might be good choices in terms of 

balancing economics and service level. The cost breakdown for the 90% service level 

case is also given in Figure 7. We can see that the summation of capital and service 

costs is close to the estimated routing cost. The pie chart reveals the tradeoff between 

distribution cost and costs for installing and maintaining the storage tanks. 
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Figure 8 shows the scenario total safety stock levels (summation of the safety 

stocks of all the customers) for the third year under different specifications of the 

service level. We can see a similar trend that the higher service level we maintain, the 

more cost it will be for each scenario. Due to different network structures and 

different numbers of customers, different scenarios have different costs and they can 

be generally classified into four groups: Scenario 1 includes all the four customers in 

all the three years, so it has the highest scenario cost; Scenario 8 has the fewest 

number of customers throughout the planning horizon, so it has the lowest scenario 

cost; Scenario 2, 3 and 4 have more customers than Scenario 5, 6 and 7, so their costs 

are between the ones for Scenario 1 and Scenario 8.  

Figure 9 depicts how the optimal tank sizing decisions, which are first stage 

decisions independent of scenarios, change as the service level increases from 50% to 

98%. It is interesting to see that the optimal tank sizing decisions for all the customers 

do not change when the service level increases from 50% to 90%. The result in turn 

suggests that optimal tank sizing decisions are relatively robust in terms of service 

level. When the service level increases above 90%, the optimal tank size for customer 

N18 increases from 13,000L to 16,000L. This is because higher service level requires 

more safety stocks, and thus a larger tank is needed. 

 

Case study 2: eight customer case 
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Figure 10. Case study 2 – eight customer industrial gas supply chain 

 
In the second case study, we consider an eight customer cluster of an industrial gas 

supply chain as shown in Figure 10. Customers N14, N15, N18 and N21 are existing 

customers, and M1-M4 are potentially new customers that may join the network in 
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Year 2. All the customers need to size their tanks. The monthly demand rates of the 

first year for all customers are also given in Figure 10. We consider a 15% annual 

demand growth rate for all customers throughout the planning horizon, and the 

standard deviation of uncertain daily demand is considered as 1/3 of the daily mean 

demand. Other major input data for this case study are the same as those given in 

Tables 1-2.  

Although all the four customers are included in the network at time zero, some of 

them may terminate the contract in a future year: 

− N14 will not terminate the contract by the end of Year 2  

− N15 has a 30% chance of terminating the contract in Year 1 

− N18 has a 10% chance of terminating the contract in Year 2  

− N21 has a 20% chance of terminating the contract in Year 2  

− M1 has a 25% chance of  signing a new contract starting in Year 2 

− M2 has a 35% chance of  signing a new contract starting in Year 2  

− M3 has a 20% chance of  signing a new contract starting in Year 2  

− M4 has a 50% chance of  signing a new contract starting in Year 2  

− At most one of M1, M2, M3 and M4 will sign the contract 

We assume each event is independent of others, so 40 scenarios are generated for 

this case study (note that at most only one new customer will join the network).  The 

detailed network structure for each scenario in each year and the probabilities of 

scenarios are given in Table 4. 

 
Table 4   Network structure of each scenario in each year for case study 2 

Scenario/Year Customers in the network TSP distance (TSPy,s) Scenario probability (probs) 
Year 1 N14, N15, N18, N21 4,507km S1 
Year 2 N14, N15, N18, N21 4,507km 

16.1446% 

Year 1 N14, N15, N18, N21 4,507km S2 
Year 2 N14, N15, N18 3,281km 

6.9191% 

Year 1 N14, N15, N18, N21 4,507km S3 
Year 2 N14, N15, N21 4,427km 

1.7938% 

Year 1 N14, N15, N18, N21 4,507km S4 
Year 2 N14, N15 2,505km 

4.0361% 

Year 1 N14, N18, N21 3,007km S5 
Year 2 N14, N18, N21 3,007km 

0.4485% 

Year 1 N14, N18, N21 3,007km S6 
Year 2 N14, N18 1,780km 

1.7298% 

Year 1 N14, N18, N21 3,007km S7 
Year 2 N14, N21 2,247km 

0.7688% 

S8 Year 1 N14, N18, N21 3,007km 0.1922% 
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Year 2 N14 0 
Year 1 N14, N15, N18, N21 4,507km S9 
Year 2 N14, N15, N18, N21, M1 4,934km 

5.3815% 

Year 1 N14, N15, N18, N21 4,507km S10 
Year 2 N14, N15, N18, M1 4,642km 

2.3064% 

Year 1 N14, N15, N18, N21 4,507km S11 
Year 2 N14, N15, N21, M1 4,934km 

0.5979% 

Year 1 N14, N15, N18, N21 4,507km S12 
Year 2 N14, N15, M1 4,339km 

1.3454% 

Year 1 N14, N18, N21 3,007km S13 
Year 2 N14, N18, N21, M1 3,433km 

0.1495% 

Year 1 N14, N18, N21 3,007km S14 
Year 2 N14, N18, M1 3,142km 

0.5766% 

Year 1 N14, N18, N21 3,007km S15 
Year 2 N14, N21, M1 2,674km 

0.2563% 

Year 1 N14, N18, N21 3,007km S16 
Year 2 N14, M1 1,900km 

0.0641% 

Year 1 N14, N15, N18, N21 4,507km S17 
Year 2 N14, N15, N18, N21, M2 4,954km 

8.6932% 

Year 1 N14, N15, N18, N21 4,507km S18 
Year 2 N14, N15, N18, M2 3,728km 

3.7257% 

Year 1 N14, N15, N18, N21 4,507km S19 
Year 2 N14, N15, N21, M2 4,874km 

0.9659% 

Year 1 N14, N15, N18, N21 4,507km S20 
Year 2 N14, N15, M2 2,953km 

2.1733% 

Year 1 N14, N18, N21 3,007km S21 
Year 2 N14, N18, N21, M2 4,632km 

0.2415% 

Year 1 N14, N18, N21 3,007km S22 
Year 2 N14, N18, M2 3,405km 

0.9314% 

Year 1 N14, N18, N21 3,007km S23 
Year 2 N14, N21, M2 4,360km 

0.4140% 

Year 1 N14, N18, N21 3,007km S24 
Year 2 N14, M2 2,200km 

0.1035% 

Year 1 N14, N15, N18, N21 4,507km S25 
Year 2 N14, N15, N18, N21, M3 4,754km 

4.0361% 

Year 1 N14, N15, N18, N21 4,507km S26 
Year 2 N14, N15, N18, M3 4,642km 

1.7298% 

Year 1 N14, N15, N18, N21 4,507km S27 
Year 2 N14, N15, N21, M3 4,737km 

0.4485% 

Year 1 N14, N15, N18, N21 4,507km S28 
Year 2 N14, N15, M3 4,625km 

1.0090% 

Year 1 N14, N18, N21 3,007km S29 
Year 2 N14, N18, N21, M3 3,254km 

0.1121% 

Year 1 N14, N18, N21 3,007km S30 
Year 2 N14, N18, M3 3,142km 

0.4324% 

Year 1 N14, N18, N21 3,007km S31 
Year 2 N14, N21, M3 2,715km 

0.1922% 

S32 Year 1 N14, N18, N21 3,007km 0.0480% 
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Year 2 N14, M3 2,604km 
Year 1 N14, N15, N18, N21 4,507km S33 
Year 2 N14, N15, N18, N21, M4 4,760km 

16.1446% 

Year 1 N14, N15, N18, N21 4,507km S34 
Year 2 N14, N15, N18, M4 3,533 km 

6.9191% 

Year 1 N14, N15, N18, N21 4,507km S35 
Year 2 N14, N15, N21, M4 4,737 km 

1.7938% 

Year 1 N14, N15, N18, N21 4,507km S36 
Year 2 N14, N15, M4 2,958 km 

4.0361% 

Year 1 N14, N18, N21 3,007km S37 
Year 2 N14, N18, N21, M4 4,632km 

0.4485% 

Year 1 N14, N18, N21 3,007km S38 
Year 2 N14, N18, M4 3,405km 

1.7298% 

Year 1 N14, N18, N21 3,007km S39 
Year 2 N14, N21, M4 4,609km 

0.7688% 

Year 1 N14, N18, N21 3,007km 
S40 

Year 2 N14, M4 2,830km 
0.1922% 

 

Similarly, we consider 17 instances with service level α ranging from 50% to 98% 

and the corresponding service level parameter z  ranging from 0 to 2.07. All the 17 

instances are solved with DICOPT, BARON and the proposed branch-and-refine 

algorithm (CPLEX+DICOPT). The original MINLP model for stochastic continuous 

approximation includes 816 binary variables, 12,516 continuous variables and 16,236 

constraints. DICOPT returned “infeasible” for all instances, and the global optimizer 

BARON cannot return any feasible solution after running for 7 days. With the 

proposed branch-and-refine algorithm using CPLEX and DICOPT, we solved all the 

17 instances to global optima with a total of 1,770 CPU seconds (on average 104 

CPUs/instance) under an optimality tolerance of 10-6. It requires at most 6 iterations to 

solve each instance. As an example, the instance under 82% service level needs 6 

iterations to reach the optimality tolerance. The upper and lower bounds of each 

iteration for this instance are shown in Figure 11. As the iteration number increases, 

the upper bound decreases and the lower bound increases until the optimality margin 

is reached. The lower bounding MILP problem in the last iteration has the maximum 

problem size, including 1,296 binary variables, 12,996 continuous variables and 

167,356 constraints. The computational results show that for this problem the 

proposed global optimization algorithm is much more computationally efficient than 

the general purpose commercial MINLP solvers. 
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Figure 11. Bounds of each iteration of the proposed branch-and-refine algorithm 

for case study 2 under 82% service level 
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Figure 12. Pareto curve for Case study 2 (total expected cost vs. service level) 
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Figure 13. Optimal tank sizing decisions under different service levels for Case 
study 2 

 
The optimal solutions of these 17 instances are given in Figures 12 and 13. Figure 

12 shows the Pareto optimal curve between the total expected cost and the service 

level. We can see that as the service level increases from 50% to 98%, the total 

expected cost increases from $76,861 to $114,515. Thus, a higher service level 

implies more total expected cost. Figure 13 depicts how the optimal tank sizing 

decisions, which are the first stage decisions independent of scenarios, change as the 

service level increases from 50% to 98%. We can see that the optimal tank sizes 

mainly depend on the customer demands and locations. As the service level increases, 

the required amount of safety stocks also increases, and thus, the optimal tank sizes 

may stay unchanged or increase. The cost breakdown for the 90% service level case is 

also given in Figure 12. The pie chart also reveals the tradeoff between distribution 

cost and costs for installing and maintaining the storage tanks. 

 

Case study 3: large scale instances with 200 customers 

In the last case study, we consider a large-scale industrial gas supply chain with 

200 customers. A one year planning horizon is considered and all the customers are 

new and need to size their tanks. As we can see from the previous two case studies, 

the proposed branch-and-refine algorithm is more efficient for this problem than the 

commercial general purpose MINLP solvers. Thus, we only use the proposed global 

optimization algorithm for this case study.  
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The data provided in Tables 1-2 are used for the three instances in this case study. 

Due to the large number of customers, we randomly generate their locations and 

demand rates. All the customer locations are generated in a 400km 400km square 

following a uniform distribution, and the plant is located in the center of this square. 

The detailed locations of the customers and plant are given in Figure 14. The TSP 

distances to visit all the customers once (not including the plant) for different 

scenarios and years are obtained with Concorde TSP Solver24 through its NEOS 

interface25 with CPLEX 12. The Concorde TSP solver is quite computationally 

effective – for a 200 customer case that will be solved later, it took less than 2 seconds 

to obtain the global optimal solution for the TSP values. 

The monthly demand rates of customers in the first year ( ,n ydemc , L/month) are 

generated using normal distributions as follows:  

 , 100 100 0,  15n ydemc N    

Note that we take the absolute values of the normal distribution so that the monthly 

demand rates are always higher than 100 L/month. Although the normal distribution is 

unbounded, the maximum monthly demand rate we obtained from the sampling is 

5,783 L/month. We consider a 15% annual demand growth rate for all customers 

throughout the planning horizon, and the standard deviation of uncertain daily 

demand is considered as 1/3 of the daily mean demand.  

This example was designed for the case that a group of customers belonging to the 

same organization, who will decide to terminate the existing contract or signing a 

contract for the entire group, i.e. a group of customers might join or leave the network 

at the same time in some situation. We consider three organizations that have master 

contracts with the vendor and have branches in different locations. If any of the 

organizations decides to terminate the contract with the vendor, all its locations will 

have its supply finished and tanks pulled out. Hence, we consider three scenarios in 

this case study. Their probability and network structure are given in Table 5. 

Specifically, we consider 160 customers are “existing customers” that will not 

terminate the contract in the coming year, another 20 customers are “potentially lost 

customers” that may terminate the contract in Year 1, and the last 20 customers are 

the “potentially new customers”, who might sign the contract and join the distribution 

network in Year 1. Scenario 1, with 40% chance, includes a network consisting of 

“existing customers” and “potentially lost customers”; Scenario 2, with 30%, is for a 
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network consisting of only “existing customers”, i.e. the “potentially lost customers” 

terminate their contract in Year 1; and Scenario 3, with 30% chance, has a distribution 

network with all the customers, i.e. those “potentially new customers” sign the 

contract and join the distribution network in Year 1.  

 

Table 5   Network structure of each scenario in each year for case study 1 

Scenario Customers in the network 
Total number of 

customers 
TSP distance 

(TSPy,s) 
probability 

(probs) 

S1 
“existing customers” & 

“potentially lost customers” 
180 3,914km 40% 

S2 only “existing customers” 160 3,083km 30% 

S3 
“existing customers”, 

“potentially lost customers” & 
“potentially new customers” 

200 4,335km 30% 

 
We consider 17 instances with service level α ranging from 50% to 97% and the 

corresponding service level parameter z  ranging from 0 to 1.89. All the 12 instances 

are solved with the proposed branch-and-refine algorithm (CPLEX+DICOPT). It took 

19,783 CPUs to solve all the 12 instances (in average 1,649 CPUs/instance).  Each 

instance requires 4 to 6 iterations depending on the specified service level. The 

maximum size of the lower bounding MILP problem (at the 6th iteration) includes  

2,439 discrete variables, 12,623 continuous variables and 14,150 constraints. 
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Figure 14. Location map of the 200 customers in the industrial gas supply chain 
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of Case study 3  
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Figure 15.   Pareto optimal curves for the 200 customer industrial gas supply 
chain in Case study 3 

 
The Pareto curves for this case is given in Figures 15. Due to the one year planning 

horizon and the relatively small customer demand standard deviations, the total 

expected costs only increases by around $40,000 as the service level increases from 

50% to 97%. We can see a similar trend as in the previous case studies that higher 

service level requires higher total expected cost.  

This case study illustrates the application of the proposed stochastic continuous 

approximation method and the effectiveness of the branch-and-refine algorithm for 

solving large-scale problems.  

 

Conclusion 

In this paper, we have developed a computational framework to deal with 

industrial gas inventory-distribution planning under uncertain demand and customer 

presence. The framework consists of an upper level stochastic continuous 

approximation model and a lower level detailed routing model. The stochastic 

continuous approximation model is an MINLP problem that captures uncertainty of 

demand fluctuation and customer presence by incorporating a stochastic inventory 

model and a two-stage stochastic programming framework. This model 
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simultaneously optimizes the tank sizing decisions, safety stock levels and estimated 

vehicle routing costs. To efficiently solve this stochastic MINLP problem for large-

scale problems, we have proposed an efficient branch-and-refine algorithm based on 

successive piece-wise linear approximations. Detailed operational decisions in the 

inventory-distribution planning can be obtained by solving the lower level routing 

model after fixing the solutions from the stochastic continuous approximation model. 

Three case studies were presented to demonstrate the applicability of the proposed 

model. Computational experiments on large-scale industrial gas supply chains with up 

to 200 customer show that the proposed algorithm is much more efficient than 

commercial MINLP solvers for solving the stochastic continuous approximation 

problems. 
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Appendix: clustering-based heuristic for detailed routing 

problem 

There are a number of methods to improve the computational efficiency of solving 

the detailed vehicle routing problems.15 In this appendix, we present a clustering-

based heuristic that is easy to implement in practice.  

In the first step, we create all the possible clusters such that the maximum number 

of customers allowed in a cluster is 4. Note that the maximum number of customers 

included in a cluster is problem-dependent. For the problem addressed in this work, 

we find out that each truck trip visits at most 4 customers in most cases. Thus, we 

consider each cluster has at most 4 customers. 

For example if we have 7 customers {1, 2, 3, 4, 5, 6, 7} and customers 1–5 cannot 

be clustered with customers 6–7, then we have the following clusters: {1}, {2}, {3}, 

{4}, {5}, {6}, {7}, {1, 2}, {1, 3}, {1,4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, 

{4, 5}, {6, 7}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 
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3, 5}, {2, 4, 5}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 

5}. 

The round-trip distances (RTD) for each cluster can be calculated by the traveling 

salesman distance between the plant and all the customers included in the cluster. For 

instance, assume that a delivery is made to all customers in the cluster {1, 2, 3}.  

Figure 16 shows all the possible ways to travel: 

 
a)    b)    c) 

Plant

1

2

3

     Plant

1

2

3

     Plant

1

2

3

  

Figure 16.   All the possible routes for delivery for a three customer cluster 
 

If the shortest RTD is obtained by the routing b), then for the cluster {1, 2, 3}, we 

can assume that the RTD is the one calculated by the method b).  

From the set of all possible clusters formed, we select the clusters that include all 

the customers and lead to the shortest RTDs from the plants.  Therefore, for the 

customers 1 – 7 described above, a set of clusters that includes all the customers and 

is the shortest RTD could be: {1, 4, 5}, {2, 3}, {6, 7}. 

After the clustering, we solve the detailed routing problem for each of the clusters 

formed above, i.e., consider the routing for some or all the customers in {1, 4, 5}, {2, 

3}, and {6, 7} separately. In this way, we are able to capture the location and volume 

synergies for large-scale routing problems.  

The clusters were selected on the basis of shortest total RTD.  However, note that 

shortest RTD does not necessarily mean that we would have the lower total 

distribution cost than any other clusters.  Hence, we have to solve the routing problem 

for another combination of clusters that includes all the 7 customers. We have to 

continue this analysis until we have found the clusters that lead to the lowest total 

costs. For example, if we have the total cost versus the combination of clusters as 

Figure 17, where the third set of clusters leads to the smallest total cost. It is also clear 

that other clusters lead to larger costs and hence we do not need to evaluate more than 

six clusters in this example. Figure 18 summarizes the entire heuristic method. 
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 Figure 17.   Total cost changes as the combination of clusters changes 
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next shortest total RTD

 

Figure 18.   Algorithmic framework of the clustering-based heuristic for solving 
the detailed routing problem 
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Nomenclature 

Sets/Indices 

i  set of tank sizes 

j  set of truck sizes 

k  set for binary representation of integers 

n  set of customers 

s  set of scenarios 

y  set of years 

,y sn N  subset of customers included in the network of scenario s and year y 

 
Parameters 

Ccapi  capital cost of tank of size i 

Cdj  delivery cost of truck j 

Coutn,y  outage cost for customer n in year y 

Cseri  service cost of tank of size i 

jck   Delivery cost per kilometer traveled of truck j  

demn,y  demand customer n in year y 

demcn,y  monthly demand rate of customer n in year y 

dep  depreciation period in years 

espacen 1 if there is extra space for installing another tank at customer n 

frac   minimum tanker fraction unloaded  

FT_load loading time for each customer  

FT_del  loading time for each delivery from the plant 

hpd  maximum number of working hours per day 

Hzy  time duration of year y 

loss  product loss percentage per delivery 

newn  1 if customer n is new 

oti,n  1 if tank size i originally installed at customer n  

rrn  distance between the plant and the customer n 

speed     average truck traveling speed in km per hr 

U
i

L
i TT ,  lower and upper bounds for tank of size i 

tsizen  1 if tank of customer n is sized 

TSPy,s traveling sales man distance of all the customers (exclude the plant)  
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included in the distribution network of scenario s in year y 

Vtruckj  full transportation capacity of truck j 

wacc  working capital discount factor  

z   service level parameter, the standard normal deviate of α 

 
Binary Variables (0-1) 

eti,n  1 if customer n has tank of size i installed in extra space; 0 otherwise 

Ixk,y,s 0-1 variable for the binary representation of the number of  

replenishments in scenario s and year y (xy,s) 

tru,j,y,s  1 if truck j is selected for replenishmsnt in scenario s and year y 

yti,n  1 if customer n has tank of size i installed; 0 otherwise 

 
Continuous Variables (0 to ) 

capcosts capital cost of scenario s 

ccapicy, effective capacity of truck for the replenishments in scenario s, year y 

croty,s  approximated routing cost of scenario s, year y  

cunity,s  unit transportation cost of scenario s, year y  

distcosts distribution cost of scenario s 

E[Cost] total expected cost 

LTy,s  Replenishment lead time of scenario s, year y 

mrty,s  minimum routing distance to visit all customers in scenario s, year y  

servcosts service cost of scenario s 

safetyn,y,s safety stock level in scenario s and year y for customer n 

segy,s  auxiliary variable, for groups of all the customers 

Tccapicy,s reciprocal of ccapicy,s 

Trpn,y,s  total delivery amount from plant to customer n in scenario s  and year y 

Vendn,y,s inventory level of customer n at the end of scenario s, year y 

nn VuVl ,  min and max volume of tank at customer n  

Vmn,y,s  maximum inventory level of customer n in scenario s, year y 

Vzeron,y,s initial volume at customer n in scenario s  and year y 

winvn,y,s maximum working inventory of customer n in scenario s, year y 

xy,s  number of replenishment in year y in scenario s 

 
Auxiliary Variables (0 to ) 
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LTIxk,y,s auxiliary variable for the product of Ixk,y,s and LTy,s 

LTIx1k,y,s auxiliary variable for linearization 

mrIxk,y,s auxiliary variable for the product of Ixk,y,s and mrty,s 

mrIx1k,y,s auxiliary variable for linearization 

mrItruj,k,y,s auxiliary variable for the product of tru,j,y,s and mrIxk,y,s 

mrItru1j,k,y,s auxiliary variable for linearization 

TruSegj,y,s auxiliary variable for the product of tru,j,y,s and segy,s 

TruSeg1j,y,s auxiliary variable for linearization 

wIxn,k,y,s auxiliary variable for the product of Ixk,y,s and winvn,y,s  

wIx1n,k,y,s auxiliary variable for linearization 
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