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Abstract 
In this paper, we address the optimization of industrial gas distribution systems, which 

consist of plants and customers, as well as storage tanks, trucks and trailers. A mixed-

integer linear programming (MILP) model is presented to minimize the total capital 

and operating cost, and to integrate short-term distribution planning decisions for the 

vehicle routing with long-term inventory decisions for sizing storage tanks at 

customer locations. In order to optimize asset allocation in the industrial gas 

distribution network by incorporating operating decisions, the model also takes into 

account the synergies among delivery schedule, tank sizes, customer locations and 

inventory profiles. To effectively solve large scale instances, we propose two fast 

computational strategies. The first approach is a two-level solution strategy based on 

the decomposition of the full scale MILP model into an upper level route selection - 

tank sizing model and a lower level reduced routing model. The second approach is 

based on a continuous approximation method, which estimates the operational cost at 

the strategic level and determines the tradeoff with the capital cost from tank sizing. 

Three cases studies including instances with up to 200 customers are presented to 

illustrate the applications of the models and the performance of the proposed solution 

methods.  

Keywords: planning & scheduling, industrial gas supply chain, MINLP, vehicle 

routing, continuous approximation, tank sizing 
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1. Introduction 
A distribution network of industrial merchant liquid products (Nitrogen, Oxygen, 

Argon, Carbon Dioxide, Helium and Hydrogen) consists of plants and customers, as 

well as storage facilities, trucks and trailers. In particular, customer inventories in this 

distribution network are managed by the vendor of industrial gases, i.e. the vendor 

installs storage tanks in customer locations with proper sizes and manages their 

replenishments to satisfy customer demands by coordinating the deliveries. Short-

term distribution planning decisions involve deciding which customers receive 

deliveries each day, when to deliver, how much to deliver, how to combine deliveries 

into routes, how to combine routes into the drivers’ daily schedules, determining 

which truck or trailer for each delivery and the capacity of each truck for delivery. The 

long-term inventory decisions involve deciding how many tanks to install in each 

customer location, the size of each tank, and when and how to install new tanks at 

customer locations, as well as when and how to upgrade and downgrade existing 

tanks. To minimize the total capital and operating costs, the short-term distribution 

planning decisions should be integrated with the long-term inventory decisions. This 

integration requires accounting for the synergies between the customers in terms of 

locations and tank sizes, and to consider the interactions of tank sizes and inventories 

between customers. The challenge is how to effectively solve the resulting large-scale 

mixed-integer programming model in order to optimize the capital asset allocation in 

the industrial gas distribution network by incorporating operating decisions. 

In this paper, we present an integrated mixed-integer linear programming (MILP) 

model for industrial gas distribution-inventory planning using a slot-based scheduling 

model for vehicle routing. While effective for short-term problems, the model 

becomes computationally expensive to solve for long planning horizons, which is 

necessary for the integration of strategic tank sizing decisions and operational vehicle 

routing decisions. Hence, two solution strategies are proposed to reduce the 

computational effort. 

The first approach given in the appendix, consists of a two-level strategy. In the 

upper level, we solve a simultaneous route selection and tank sizing model, which is a 

relaxation of the integrated MILP model by neglecting the decisions on delivery 

schedules and considering the “worst case” working inventory for tank sizing. The 

solution of the upper level problem yields the optimal tank sizes and the possible 
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routes for delivery. Next, we fix the previous tank sizes and solve a reduced routing 

problem which only considers those routes determined by the upper level problem. 

Since the reduced routing problem only considers a subset of all possible routes, it is 

computationally more efficient than the original routing problem. Therefore, the 

detailed schedule and quantity of each delivery and the inventory profile of each 

customer are determined by the lower level problem.  

The second solution strategy given in Section 5, is based on a continuous 

approximation method.1-3 This approach consists of two phases: in the first phase we 

solve an upper level continuous approximation model and in the second phase we 

solve a lower level detailed routing model based on the results obtained in the first 

phase. The continuous approximation model predicts the optimal sizes of tanks to be 

installed, downgraded or upgraded in each customer location over the given planning 

horizon. Using the continuous approximation method for capacitated vehicle routing 

to estimate the total distribution cost, the upper level model trades off the capital cost 

from tank sizing with the operating cost from continuous approximation without 

considering the routing details. The resulting upper level problem is a non-convex 

mixed-integer nonlinear programming (MINLP) model with nonlinear terms from the 

continuous approximation constraints. After introducing additional variables and 

constraints to exactly linearize the nonlinear terms, the model is reformulated as an 

MILP, which can be globally optimized very effectively even for large-scale instances. 

In the second phase, we fix the previously determined tank sizing decisions and solve 

the detailed routing problem in the reduced variable space in. This model predicts the 

detailed vehicle routing decisions including the sizes of deliveries and the inventory 

levels of each customer over the planning horizon, as well as the detailed timing and 

sequence of deliveries with trucks of different capacities.  

We present the aforementioned model formulations and computational strategies 

in this paper. Three case studies with up to 200 customers are solved to illustrate the 

application of the proposed models and solution approaches. The results show that the 

proposed solution strategies, especially the continuous approximation method, can 

obtain global optimal or near-optimal solutions very quickly even for large-scale 

problems.  

The rest of this paper is organized as follows. We first review the related literature 

in Section 2. The general problem statement is provided in Section 3, which is 

followed by the integrated MILP model formulation for simultaneous tank sizing and 
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vehicle routing, in Section 4. The proposed continuous approximation approach is 

presented in Sections 5. Computational results for three case studies and the 

conclusions of this work are then given at the end of this paper. The simultaneous 

route selection and tank sizing approach is given in the Appendix. 

 

2. Literature Review 
Although distribution-inventory planning is an important problem for the 

industrial gas industry, there is relatively little chemical engineering literature on this 

topic. Glankwamdeea et al.4 studied the production and distribution planning of an 

industrial gas supply chain. However, they did not consider tank sizing issues or 

detailed distribution planning (i.e. vehicle routing) as are addressed in this paper. On 

the other hand, there are a number of articles addressing the vehicle routing problems 

for the process industry, but none of them has considered the tank sizing issue. Choi et 

al.5 developed an approximate stochastic dynamic programming approach for the 

traveling salesman problem under uncertainty. Their algorithmic framework is shown 

to be computationally very efficient compared to the stochastic dynamic programming 

in the full space, without significant loss in the solution quality. Using a mathematical 

programming approach, Jetlund and Karimi6 proposed an MILP model based on 

variable-length slots for the maximum-profit scheduling of a fleet of multi-parcel 

tankers engaged in shipping bulk liquid chemicals. The authors propose a heuristic 

decomposition algorithm that obtains the fleet schedule by repeatedly solving the base 

formulation for a single ship. An MILP model is proposed by Huang and Chung7 that 

integrates the routing and scheduling decisions for production planning of pipeless 

plants with different layouts. Recently, Dondo et al.8 developed an exact MILP 

mathematical formulation for the multiple vehicle time-window-constrained pickup 

and delivery problem. Their approach is able to account for many-to-many 

transportation requests, pure pickup and delivery tasks, heterogeneous vehicles and 

multiple depots. Based on this work, Dondo and Cerda9 proposed an MILP model for 

large-scale multi-depot vehicle routing problems with time windows. To further 

reduce the problem size, the authors also developed a spatial decomposition scheme, 

such that large problems with up to 200 customers, multiple depots and different 

vehicle-types were solved with quite reasonable computational effort. A novel MILP 

mathematical framework for the short-term vehicle routing problem of multiechelon 
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multiproduct transportation networks was recently proposed by Dondo et al.10 Their 

model relies on a continuous-time representation and applies the general precedence 

notion to model the sequencing constraints establishing the ordering of vehicle stops 

on every route.  

Related routing problems have also been extensively studied by the operations 

research community in the past decades, but most of the existing works only consider 

operational planning of inventory and distribution, without integration with the 

strategic tank sizing decisions. A general review of vehicle routing problem is given 

by Laporte.11 Specific reviews for inventory-routing problems are given by Baita et 

al.12 and Moin and Salhi,13 and a specific review for strategic location-routing 

problem is given by Nagy and Salhi.14 

Few works closely related to this paper are reviewed below. Webb and Larson15 

addressed a similar problem that integrates strategic fleet sizing decisions with  

distribution and inventory planning. A decomposition approach for solving the large 

scale MILP models for inventory-routing problem was proposed by Campbell and 

Savelsbergh.16 Lei et al.17 proposed a two-phase solution approach to the integrated 

production, inventory, and routing problem. The main advantage of their approach is 

that the two-phase approach is able to simultaneously coordinate the production, 

inventory, and transportation operations of the entire planning horizon, without the 

need to aggregate the demand or relax the constraints on transportation capacities. The 

authors also reported real-world case studies to illustrate the performance of their 

computational framework. 

The distribution-inventory planning of supply chains usually leads to large-scale 

optimization problems that are difficult to solve.  To address the computational 

challenge, various decomposition methods, such as Benders decomposition,18 

Lagrangean decomposition,19-20 bilevel decomposition21 and hierarchical 

decomposition22 are proposed. Benders decomposition18 is usually used to solve 

complex mixed-integer programming models arising from process planning and 

scheduling (e.g. see the work by Pinto & Grossmann23) or large-scale stochastic 

programming problems in supply chain operations under uncertainty.24 Lagrangean 

decomposition19-20 can effectively solve large-scale supply chain planning problems 

with “decomposable” structures.25-29 If the supply chain planning problem includes 

both strategic and operational decisions, bilevel decomposition21 can be implemented 

to iteratively solve an upper level aggregated model and a lower level detailed 



-6- 

model.30-32 Hierarchical decomposition22 is effective for supply chain optimizatoin 

problems with multiple levels of decision-making.33-36. In addition to these standard 

decomposition methods, some problem-dependent solution algorithms, such as those 

based on successive MILP decomposition37 and successive piece-wise linear 

approximation38, have been proposed to handle the computational challenges arising 

in industrial-sized supply chain planning problems. 

 

3. Problem Statement 

Routing ?

Tank size for the 
New Customer ?

Truck selection
j ∈ J 

i ∈ I 

n ∈N 

Size change?

Customers

  
Figure 1. Tank sizing and vehicle routing of industrial gas supply chains 

 
We are given an industrial gas distribution network consisting of a production 

plant and a set of customers n N∈  as shown in Figure 1. The locations of the plant 

and customers, as well as the distances between them are given. Each customer has a 

deterministic and constant demand rate ,n ydem  and safety stock level ,n ysafety  in each 

year y Y∈  within the planning horizon. We are also given a set of possible tanks with 

different sizes i I∈ . The lower and upper bounds for tank with size i are defined as 

Ti
L  and Ti

U.  

If customer n has an existing tank with size i, we set the parameter , 1i not = , 
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otherwise , 0i not = . Similarly, if customer n is a new customer without any existing 

tank, we set the parameter 1nnew = , otherwise it is equal to zero. Each newly 

installed tank is full of merchant liquid at the beginning, i.e. initial inventory ,n yVzero  

is assumed to be equal to the tank capacity. For customers with existing tanks, their 

specific initial inventory levels are given. New customers need to determine the size 

of tank to be installed in their location. Existing customers can upgrade or downgrade 

the existing tanks, or add a second tank if extra space is available.  

There are ntj trucks of size j J∈ with discrete capacities are defined by jVtruck . 

The delivery cost per distance traveled for every truck j J∈  is jck . All the trucks are 

assumed to have the same average traveling speed ( speed ) and a maximum number 

of working hours per day ( hpd ). For each delivery, there is a fixed percent of product 

loss, denoted as loss , and a minimum unloaded fraction given as frac .  

The capital cost of tank with size i I∈  is given as iCcap , and the service cost of 

installing, upgrading or downgrading a tank with size i I∈  is iCser . Both capital and 

service costs are discounted with a working capital discount factor, wacc , and a 

depreciation period in years ( dep ). In addition, there is a unit outage cost ,n yCout  for 

unsatisfied demand of customer n in year y.  

The problem is to simultaneously determine the tank sizing and modification 

decisions at each new and existing customer, as well as the schedule and quantity of 

each delivery in order to minimize the total capital, service, distribution and outage 

costs. 

Based on the aforementioned discussion, the major assumptions of this problem 

are listed as follows: 

 Only one type of industrial gas is considered 

 When a new tank is installed, the initial inventory is the full tank capacity 

 All the trucks have the same traveling speed 

 

4. Integrated MILP Model 
We first formulate the aforementioned problem as an integrated MILP model, 

which simultaneously considers tank sizing and vehicle routing, and predicts the 

optimal delivery schedule, delivery quantity, truck selection decisions, new tank 
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installation decisions, upgrade and downgrade decisions of existing tanks at customer 

location, and the detailed inventory profile of each customer. A slot-based scheduling 

representation is used to model the vehicle routing decisions. In this model, the set 

t T∈  is introduced for the events occurring in each year or each time period. The 

number of time events is selected such that the optimal solution does not change if the 

number increases. We also introduce the set  r R∈  for all the possible routes that start 

at the plant, by way of at least one customer and ending at the plant. If the number of 

customers involved in a route is not constrained, there are 2 1N −  possible routes for a 

distribution network with N  customers and one plant. We further define two subsets 

rN , which includes all the customers that are served by route r, and nR , which 

includes all the routes involving customer n. In addition, the parameter distr represents 

the distance of route r. A list of indices, sets, parameters and variables are given in the 

Nomenclature section.  

 

4.1 Objective function 

The objective function of this MILP is to minimize the total cost, including capital 

cost, service cost, distribution cost and outage cost, as given in Equation (1), 

Min: outcost distcostservcostcapcostCost +++=  (1) 

where the detailed cost components are listed in constraints (2) – (6).  
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The four terms in equation (2) for capital cost correspond to rating (no tank sizing), 
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replacing an existing tank, adding a tank to the extra space an existing customer and 

sizing the tank at a new customer, respectively. Any tank change or addition leads to a 

service cost, as shown in Equations (3) and (4). Equation (5) accounts for outage cost, 

where , ,n t yout  is the outage amount of customer n at event point t in year y. The 

outage cost guarantees feasibility of the model in case of large demands and 

represents a penalty for not satisfying them. The total distribution cost is given as the 

summation of all the delivery costs as in Equation (6). zj,r,t,y is a binary variable that 

equals to 1 if truck j is used in time event t for delivery with route r in year y. If truck j 

delivers product using route r, the corresponding distribution cost of this trip equals to 

the product of route distance ( rdist ) and the delivery cost per unit distance traveled of 

this truck ( jck ). Note that the capital, service and distribution costs are all discounted 

with working capital discount factor wacc . 

 

4.2 Tank selection constraints 

Two parameters tsizen and espacen are introduced to define the conditions for tank 

sizing. If there is extra space for installing another tank at customer n, we have the 

parameter 1nespace = , otherwise we set it to zero. If the tank at customer n needs to 

be sized or changed, we have the parameter 1ntsize = , otherwise 0ntsize = . 

If the tank of customer n needs to be sized or changed, we would either install a 

new tank in the extra space or change the current tank. If no tank is sized, no tank 

modification action will be taken. This relationship can be modeled by the following 

constraint: 

( ) n
i

i,ni,n tsizeetyt ≤+∑ , n∀  (7) 

where eti,n is a binary variable that equals to 1 if customer n has tank of size i installed 

in extra space, and yti,n is also a binary variable that equals to 1 if the customer n will 

be installed with a tank of size i. 

If the storage tanks at customer n should be changed (tsizen = 1) and there is extra 

space (espacen=1), then at most one type of tank should be selected to be installed at 

the extra space, i.e. one binary variable eti,n must be selected, and at the same time 

there is no change to the existing tank, i.e. all yti,n variables are zero. On the other 

hand, if there is no extra space, then no tank should be installed at the extra space, and 
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at least one type of tank should be selected to replace the existing tank. Constraints (8) 

and (9) model these logic relationships.  

n
i

i,n espaceyt −=∑ 1  n∀ tsizen = 1 (8) 

n
i

i,n espaceet ≤∑  n∀  (9) 

We note that although a potentially better approach for capital investment 

planning would be to allow the tank size to change every year using a multi-period 

formulation for tank selection, we assume in this work that the tank sizes will not 

change in the planning horizon after installation in the first year. Given the dynamic 

nature of the market and that uncertainty customer demand and in its set of neighbors 

grows in the future, capital investment decisions are made in the present and the 

model is optimized on a periodic basis to assess potential changes in the capacity of 

the network 

 

4.3 Tank balance constraints 

The inventory level of a customer decreases due to product demand, and increases 

due to replenishments. The mass balance of the customer inventory implies that the 

inventory at the beginning of any time event t plus the replenishment amount, should 

be equal to the inventory level at end of this time event plus the satisfied demand. 

Thus, eq. (10) shows that the initial inventory ( nVzero ) is the same as the inventory at 

the first time point minus the demand over the duration of the first time event 

( 0, 1t yt  = =Δ ).  

, 1, 1 1 0, 1n t y n n,y t yVo Vzero dem t  = = = = == − Δ  n∀  (10) 

where Von,t,y is  the inventory level of customer n at time event t of year y and n,ydem  

is the demand rate of customer n in year y. 

The inventory balance of a customer at other time points is given by constraints 

(11) and (12). 

1 0,, , 1 , 1n,t ,y n,y t yn t T y n,t T yVo   Vo p  dem t  = == − = −= + − Δ  , 1n y∀ >  (11) 

 tdem p Vo Vo ytn,y,yn,tytnn,t,y ,11,1, −−− Δ−+=  ytn ∀>∀ ,1,  (12) 

where pn,t,y is the delivery (replenishment) amount to customer n at time event t of 

year y. The volumetric balance constraints above represent the tank levels at different 
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time slots over the horizon. 

At any time, the inventory level of a customer should not fall below the minimum 

inventory ( nVl ), which is determined by the property of the product and the storage 

tank. Thus, we have the following constraint. 

n,t,yn VoVl ≤  ytn ,,∀  (13) 

If the inventory level falls below the safety stock level, there will be unsatisfied 

demand ,n yout . 

ynnytnn,t,y safetyVlout Vo ,,, +≥+  ytn ,,∀  (14) 

where safetyn,y is the safety stock level of customer n in year y. 

The inventory level plus the replenishment amount ( , ,n t yp ) of a customer should 

not exceed the maximum inventory level ( nVu ), which is the customer’s tank size at 

any time. 

nytnn,t,y Vup Vo ≤+ ,,  ytn ,,∀  (15) 

The minimum and maximum inventory levels of customer n depend on the storage 

tank(s) installed for this customer. Thus, they are modeled through the following two 

equations, 

( )∑ ++=
i

i,ni,ni,n
L

in etytotTVl  n∀  (16) 

( )∑ ++=
i

i,ni,ni,n
U

in etytotTVu  n∀  (17) 

where U
iT  is the discrete tank size and L

iT  is the corresponding inventory lower bound 

for tank with size i. 

If a new customer n joins the distribution network, at least a new tank is selected 

and assumed to be at full level; otherwise initial inventory level parameters are 

inputted. 

 VuVzero nn =  1| =∀ nnewn  (18) 

 

4.4 Truck delivery constraints 

Constraint (19) enforces that if a delivery is made through a route r, then it has to 

satisfy a minimum fraction of the truck load,  

( ), , , , , , 1
r

n r t y j r t y j
n N j

pr frac z Vtruck loss
∈

≥ −∑ ∑  ytr ,,∀  (19) 
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where Vtruckj is the capacity of truck j, loss is the product loss percentage per delivery, 

frac is the minimum tanker fraction unloaded, zj,r,t,y is a binary variable that equals to 1 

if truck j delivers in time event t of year y, and , , ,n r t ypr  is the delivery amount to 

customer n in route r at time event t of year y.  

The total replenishment amount per delivery should not exceed the truck capacity 

after accounting for the product loss, although some product is allowed to return to the 

source. Thus, we have the following constraint, 

( ), , , , , , 1
r

n r t y j r t y j
n N j

pr z Vtruck loss
∈

≤ −∑ ∑  ytr ,,∀  (20) 

Constraint (21) represents the fact that the total replenishment amount that 

customer n receives at time event t of year y is the summation of the through all the 

possible routes involving this customer. 

∑
∈

=
nRr

ytrnytn prp ,,,,,  ytn ,,∀  (21) 

The number of deliveries is bound by the demands and truck sizes. It yields the 

following constraint. 

{ } { }jj

yn

j Rr t
ytrj

jj

yn

Vtruck
dem

z
Vtruck

dem

n
minmax

,
,,,

, ≤≤ ∑∑∑
∈

 yn,∀  (22) 

 

4.5 Timing constraints 

The time interval cannot be less than the period to deliver to the customers. This is 

composed by the travel time, the time to lad the tank of the customer, and another 

time period to set up the truck at the source, 

, , , , _ _r
t y j r t y r

dist   z FT load N FT del  
speed hpd

⎛ ⎞
Δ ≥ + ⋅ +⎜ ⎟⋅⎝ ⎠

,       yt ∀> ,1  (23) 

where Δtt,y is the time interval in time event t of year y, hpd  is the maximum number 

of working hours per day, disr is the total traveling distance of route r, FT_load is the 

loading time for each customer, and FT_del is the loading time for each delivery at the 

plant. 

The time interval in event t-1 of year y ( 1,t yt −Δ ) should be equal to the initial time 

of event t in year y (ti t,y) minus the initial time of the previous time event. 

ytytyt  ti ti t ,1,,1 −− −=Δ  yt,∀  (24) 
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For every year y, all the events start at time zero and end at day 365. Thus, we 

have the following initial conditions. 

1, 1,t y t yt   ti  = =Δ =  y∀  (25) 

, 365t T yti  = =  y∀  (26) 

The following constraint is introduced to restrict that earlier time slots are selected 

first. 

∑∑∑∑ −≥
j r

ytrj
j r

ytrj zz ,1,,,,,  yt,∀  (27) 

 

4.6 Computational complexity 
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Figure 2. Computational complexity of the integrated MILP model 

 
The simultaneous tank sizing and vehicle routing problem discussed above yields 

an MILP model, including constraints (2)-(27) and the objective function (1).  

Although the model is quite comprehensive as it accounts for both strategic decisions 

on tank modification and the operational decisions for vehicle routing, it can be 

computationally very expensive for practical applications. For example, an industrial 

gas distribution network with only 5 customers, 4 possible truck capacities and 6 

potential tank sizes under 3-year planning horizon leads to an MILP problem with 

more than 100,000 binary variables. The significant computational complexity arises 

from the binary variable , , ,j r t yz  for the detailed vehicle routing. Since the number of 
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possible routes increases exponentially as the number of customers increases, the 

problem size of the corresponding MILP model can greatly increase when more 

customers are considered simultaneously to account for synergy effects (see Figure 2). 

To address the computational challenge, we propose two solution strategies: the 

continuous approximation approach given in the following section and the 

simultaneous route selection and tanks sizing approach discussed in the Appendix. 

 

5. Continuous Approximation Approach 
This strategy employs a continuous approximation approach to estimate the 

annual delivery cost without considering the detailed schedules of the routing problem. 

By accounting for the capacitated vehicle routing cost at the strategic level, the trade-

off between the capital cost and operational cost is established. After the strategic tank 

sizing decisions are determined, detailed vehicle routing is considered for operational 

decisions. The major advantage is that both the upper level continuous approximation 

model and the lower level detailed routing problem can be solved effectively without 

sacrificing too much solution quality. The major drawback is that the optimality gap 

cannot be estimated because a theoretical lower bound is not available. 

The detailed vehicle routing model in the lower level can be considered as a 

reduced model of the integrated MILP presented in Section 4, after fixing the binary 

variables for tank sizing ,i net  and ,i nyt . Therefore, in this section we only present the 

formulation of the upper level continuous approximation model for tank sizing. 

We first formulate the continuous approximation model as an MINLP with the 

following objective function and constraints. After exact linearization, the model is 

then reformulated as an MILP, of which the formulation is presented at the end of this 

section.  

 

5.1 Objective function 

The objective function of this continuous approximation model is to minimize 

total cost, including capital investment cost, service cost and distribution cost.  

Min: Cost capcost servcost distcost= + +  (28) 

The detailed cost components are given by constraints (2) – (4) and (29).  
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( )1
y

y
y

crot
distcost

wacc
=

+
∑  (29) 

Note that constraints (2) - (4) for capital and service costs are the same as those given 

in Section 4.1. The total distribution cost equals to the summation of discounted 

annual routing cost as in equation (29), where ycrot  is the annual routing cost 

calculated from the continuous approximation.  

 

5.2 Routing cost approximation 

Since the vehicle routing problem is an NP-hard problem, solving such a problem 

for a long time horizon (e.g. years) is a non-trivial task. As this work focuses on 

strategic tank sizing decisions, we can employ a continuous approximation method to 

estimate the optimal routing cost as a result of different tank sizing decisions. General 

reviews of various continuous approximation models for routing problems are given 

by Daganzo,1 Langevin et al.3 and Dasci and Verter.2 As pointed out by the authors, 

mathematical programming and continuous approximations are two important 

approaches for routing problems. Continuous approximation models can be used to 

supplement mathematical programming models, and are very useful for strategic 

decision-making, e.g. location-routing problem39 and strategic transportation-

inventory problem.40 In this problem, tank sizing decisions are strategic decisions 

made on a yearly basis. Thus, a continuous approximation model can be used to 

simplify the detailed routing problem, while still capturing the trade-off between 

capital costs and routing costs at the strategic level. 

 

Max. Inv.

Safety Stock
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Figure 3. Inventory profile of a customer under cyclic inventory routing 
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In the continuous approximation model, we approximate discrete variables and 

parameters associated with vehicle routing using continuous functions, which 

represent distributions of customer locations and demands. We assume in this 

continuous approximation model that customers are replenished at a fixed frequency 

each year (i.e. cyclic inventory-routing for each year) and only one type of truck is 

used for delivery each year.  Following these assumptions, we have the inventory 

profile of a customer tank for a given year as in Figure 3.41 As we can see, the 

inventory level of a customer should generally lie between the lower and upper 

bounds, and these bounds of depend on the size of tank installed. We consider the 

difference between the current inventory position and the inventory lower bound as 

working inventory. Clearly, the larger the tank in a customer location, the larger the 

corresponding maximum working inventory is. From Figure 3, we can see that each 

time after replenishment, the working inventory level first goes up quickly and then 

decreases gradually due to product demand. The major decision of tank sizing is to 

determine what type of tank should be installed or changed in a customer. Therefore, 

if we could estimate the maximum working inventory of each customer, we can then 

determine the tank sizes. Since the customers are replenished at a fixed interval, the 

maximum working inventory should be the same for all the replenishments and equal 

to the demand rate times the replenishment interval. If the replenishment frequency 

were high, but the maximum working inventory level would be low at the expense of 

a high distribution cost, and we only need a small tank; and vice versa. With this 

assumption, we capture the trade-off between the routing and capital costs and 

consider the routing problem in a “cyclic” way. Note that a similar approach is also 

used for inventory-routing problems as discussed by Viswanathan and Mathur,42 Jung 

and Mathur,43 and Sindhuchao et al.44 

As can be seen from Figure 3, the working inventory level equals to the demand 

rate times the replenishment interval. Thus, the required tank size should be no less 

than the maximum inventory level, which is the summation of the working inventory 

and the safety stock level. Because the demand rate of customer n in year y is given 

( ,n ydem ), if we use yx  to denote the number of replenishment cycles in year y, then 

the replenishment interval or the worst case replenishment lead time of year y (LTy) 

should satisfy the equation below, 
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y y yLT x Hz⋅ = ,  ∀y  (30) 

where yHz  is the time duration of year y. 

Let ,n yTrp  be the total amount of product delivered from plant to customer n in 

year y, yccapic  be the effective truck capacity (truck capacity after accounting for 

product loss), nrr  be the distance between the plant and customer n, and TSP be the 

length of the optimal travelling salesman tour that all the customers are visited once. 

Haimovich and Rinnooy-Kan45 show that the minimum routing distance for each 

replenishment cycle in year y ( ymrt ) can be approximated with the following formula: 

, 12 1
n y n

n
y

y y y

Trp rr
mrt TSP

x ccapic ccapic

⎛ ⎞⋅ ⎛ ⎞⎜ ⎟≈ ⋅ + − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎜ ⎟ ⎝ ⎠⎝ ⎠

∑
,  ∀y  (31) 

The detailed derivation of this formula from the original one proposed by Haimovich 

and Rinnooy Kan45 is given as follows. Haimovich and Rinooy-Kan45 proposed the 

following formula to determine the minimum routing distance (mrty) of the 

capacitated vehicle routing problem for a distribution system consisting of one plant 

and multiple customers,  

⎡ ⎤
≤ ≤ + − ⋅⎢ ⎥

⎢ ⎥

1max{2 , } 2 (1 )y

N Nr T SP mrt r T SP
q q q

 (32) 

where N denotes the total number of customers, q denotes the maximum number of 

customers that a truck can visit in one trip, i.e. capacity in terms of the number of 

customers, r  denotes the average distance between the plant and a customer, and 

TSP is the shortest traveling salesman tour visiting each customer exactly once. The 

left hand side and right hand side of the above equation provide the lower and upper 

bounds of the minimum routing distance, respectively. Please refer to Haimovich and 

Kan45 for a proof of (32). 

There are a few questions that must be addressed in order to tailor this formula as 

a continuous approximation model for this work. The first question is how to derive 

an equation from the inequalities given in (32). The second question is how to 

measure vehicle capacity in terms of quantity, instead of the number of customers as 

in (32). The third question is how to incorporate customer demand information into 

this formula, although (32) only considers customer locations and assumes no 

differences among them. The last question is how to improve the accuracy of the 



-18- 

continuous approximation formula.  

To address these questions, we use a similar approach as Shen and Qi.39 First, we 

take the upper bound for continuous approximation by dropping off the ceiling.  

≈ ⋅ + − ⋅
12 (1 )Nmrt r T SP

q q
 (33) 

Computational studies by Shen and Qi39 show that the approximation error can be 

bounded to 2% when the number of customers increases to more than 50. Of course, 

the more customers we have, the more accurate (33) will be.  

In the next step, for an industrial gas supply chain with multiple customers, we 

“disaggregate” the customers into a number of “unit demand” customers. For example, 

if there is a customer with demand of 5,000L within the replenishment cycle, we 

disaggregate this customer into 5,000 customers, each of who has unit demand of 1L 

per replenishment cycle. Note that these 5,000 customers after disaggregation are still 

in the same location as the original customer. With this approach, the truck capacity 

measured by quantity is the same as the one measured by the maximum number of 

“unit demand” customers that can be replenished by one truck visit. In addition, the 

total number of “unit demand” customers is much larger than the total number of the 

original customers, so the accuracy of (33) can be improved.  

In our problem, yx  denotes replenishment cycles in year y and ,n yTrp  is the total 

amount of product delivered from plant to customer n in year y. Thus, each customer 

n is disaggregated into ,n y yTrp x  “unit demand” customers. Note that the total 

traveling salesman tour of all the original customers (TSP) should be equal to the 

traveling salesman tour of all the “unit demand” customers, because the 

disaggregation process does not change the customer locations. Thus, the average 

distance between the plant and the customers, r , can be obtained with the following 

formula: 

( )
⎛ ⎞

⋅⎜ ⎟ ⋅⎜ ⎟
⎝ ⎠= =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑
∑∑

,

,

,,

n y
n n y nn y n

n yn y
n

n y

T rp
rr T rp rrx

r
T rpT rp

x

 (34) 

where nrr  is the distance between the plant and customer n. Note that after 

disaggregation, there are ,n y yTrp x  “unit demand” customers at the same location as 
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the original customer n. 

Therefore, substituting N in (33) with 
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ,n y

n y

T rp
x

, q with yccapic , and r  with 

(34), we can reformulate (33) to the following equation: 

( )

( )

, ,

,

,

12 (1 )

1       2 1

1       2 1

y

n y n y n
n n

y y n y y
n

n y n
n

y y y

Nmrt r TSP
q q

Trp Trp rr
TSP

x ccapic Trp ccapic

Trp rr
TSP

x ccapic ccapic

≈ ⋅ + − ⋅

⎛ ⎞ ⋅ ⎛ ⎞⎜ ⎟= ⋅ ⋅ + − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⋅⎜ ⎟ ⎝ ⎠⎝ ⎠

⋅ ⎛ ⎞
= ⋅ + − ⋅⎜ ⎟⎜ ⎟⋅ ⎝ ⎠

∑ ∑
∑

∑

 (35) 

which is the constraint in (31). 

Shen and Qi39 conducted computational tests for the above continuous 

approximation and showed that it is quite accurate if the number of customers is 

sufficiently large - the error of using continuous approximation is bounded by less 

than 2% in general cases.46 

 

To reduce the nonlinearities, we introduce a new positive variable segy such that 

,n y n
n

y
y y

Trp rr
seg

x ccapic

⋅
=

⋅

∑
,  ∀y  (36) 

Thus, the continuous approximation of the minimum routing distance for each 

replenishment cycle is given as follows: 

12 1y y
y

mrt seg TSP
ccapic

⎛ ⎞
= ⋅ + − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
,  ∀y  (37) 

If we know the unit distance transportation cost of year y (cunity), then the total 

delivery cost of this year (croty) is the product of the unit transportation cost, the 

number of replenishment cycles and the minimum routing distance of each 

replenishment cycle.  

y y y ycrot cunit mrt x= ⋅ ⋅  ∀y  (38) 

Note that constraints (30) and (36) - (38) are nonlinear constraints with nonconvex 

terms, but they can all be exactly linearized as discussed in Section 5.6. 

 



-20- 

5.3 Tank selection and sizing constraints 

In this model, we have the same tank selection and sizing constraints (7) - (9) and 

(16) - (18) as in Section 4. 

 

5.4 Mass balance constraints 

Let ,n yVm  be the maximum inventory level of customer n in year y. From Figure 3, 

we know that the maximum inventory level should be no less than the summation of 

working inventory ( ,n ywinv ), safety stock ( ,n ysafety ) and minimum volume of the 

tank in customer n in year y ( nVl ) defined in constraint (16). Thus, we have the 

following constraint, 

, , ,n y n y n n yVm winv Vl safety≥ + +  ,n y∀  (39) 

The maximum inventory level should not exceed the maximum volume of the 

tank defined by the tank size of customer n in year y in constraint (17). 

,n y nVm Vu≤  ,n y∀  (40) 

Based on mass balance, the total amount of product delivered from plant to 

customer n in year y ( ,n yTrp ) is given by the following constraints, 

, , , ,n y n y n y n n n yTrp dem Vend Vzero Vl safety= + − + +   ∀ =, 1n y  (41) 

, , , , 1n y n y n y n yTrp dem Vend Vend −= + −  ∀ ≥, | 2n y y  (42) 

, ,n y n yVend winv≤  ,n y∀  (43) 

where Vendn,y is the inventory level of customer n at the end of  year y after 

adjustment for minimum tank volume and safety stocks, and it should be less than the 

working inventory level. Note that in the first year we need to account for the initial 

inventory level and adjust for minimum tank volume and safety stock.  

For customer n, its working inventory ( ,n ywinv ) is the replenishment that it 

received in a replenishment cycle. Thus, the working inventory times the number of 

replenishment cycles should be equal to the annual delivery amount to this customer. 

, ,n y y n ywinv x Trp⋅ =  ∀n  (44) 

Constraint (44) is also nonconvex due to the bilinear term on the left hand side, 

but it can be exactly linearized by introducing additional variables and constraints. 

Details are discussed in Section 5.6. 
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5.5 Truck constraints 

Following the assumption that only one type of truck is selected for delivery in 

each year, we have the following constraints, 

, 1j y
j

tru =∑  ∀y  (45) 

,y j j y
j

cunit ck tru= ⋅∑  ∀y  (46) 

( ), 1y j y j
j

ccapic tru Vtruck loss= ⋅ ⋅ −∑  ∀y  (47) 

Constraint (45) shows that only one type of truck is selected per year. Constraints (46) 

and (47) further define the unit transportation cost of a year, and the effective delivery 

capacity (after adjustment of loss) of truck for a year, respectively. 

The lead time of a replenishment cycle should not be less than the total travel and 

loading time. The total traveling time is given by the minimum routing distance 

divided by the traveling speed and the working hours per day (hpd). The total loading 

time includes the loading times at the customer locations and at the plant. Because 

each customer will be visited at least once in a replenishment cycle, there will be at 

least N  times of loading in the customers. The loading time at the plant should be 

greater than the loading time of deliveries from the plant (FT_del). These relations are 

modeled through the following constraint, 

_ _y
y

mrt
LT hpd FT load N FT del

speed
⋅ ≥ + ⋅ + , ∀y   (48) 

where the lead time ( yLT ) is measured in days, the loading times (FT_load and 

FT_del) are measured in hours, and the unit of traveling speed is km/hour. 

 

5.6 MILP Reformulation 

The continuous approximation model is a non-convex MINLP with the objective 

function given in (28) and constraints (2) – (4), (7) – (9), (16) – (18), (29) – (31) and 

(36) – (48). In particular, the nonlinear nonconvex terms in this model appear in 

constraints (30), (36) - (38) and (44). In this section, we perform exact linearizations 

to reformulate the MINLP model into an MILP by introducing additional variables 

and constraints. 
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First, we introduce binary variables { }, 0,1k yIx ∈  to represent the integer variable 

xy as follows: 
1

,2 k
y k y

k

x Ix−= ⋅∑  ∀y  (49) 

where ,k yIx  determines the value of the kth digit of the binary representation of xy. 

Note that the elements in set K depend on the upper bound of xy. For example, if 

63U
yx = , we can set K = 1, 2, 3, 4, 5 or 6. 

Further, the reciprocal of yccapic  ( yTccapic ) can be modeled through the 

following equation, 

( )1
j

y
j j

tru
Tccapic

Vtruck loss
=

⋅ −∑  ∀y  (50) 

which comes directly from equation (47).  

With equations (49) and (50), we can linearize the nonlinear constraints. The 

bilinear term in (30) can be reformulated as 1
,2 k

y y y k y
k

LT x LT Ix−⋅ = ⋅ ⋅∑ . By 

introducing a nonnegative continuous variable , ,k y y k yLTIx LT Ix= ⋅ , constraint (30) can 

be reformulated as: 
1

,2 k
k y y

k
LTIx Hz− ⋅ =∑  ∀y  (51) 

which is a linear constraint. 

We also need the following linearization constraints to define the new variable:47  

, ,1k y k y yLTIx LTIx LT+ =  ∀ ,k y  (52.1) 

, ,
U

k y y k yLTIx LT Ix≤ ⋅  ∀ ,k y  (52.2) 

( ), ,1 1U
k y y k yLTIx LT Ix≤ ⋅ −  ∀ ,k y  (52.3) 

, 0k yLTIx ≥ , ,1 0k yLTIx ≥  ∀ ,k y  (52.4) 

where ,1k yLTIx  is an auxiliary variable and the upper bound of yLT  is given by the 

time duration of year y (Hzy). 

Substituting equation (44) into the right hand side of constraint (36), we have: 

, ,n y y n n y y n
n n

y
y y y y

winv x rr winv x rr
seg

x ccapic x ccapic

⋅ ⋅ ⋅ ⋅
= =

⋅ ⋅

∑ ∑
,  ∀y   

Because xy is a positive integer variable and yccapic  is also positive, the above 
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equation implies that constraint (44) is equivalent to the following constraint: 

,y y n y n
n

seg ccapic winv rr⋅ = ⋅∑ ,  ∀y  (53) 

Based on equation (47), we can reformulate the bilinear term in (53) as 

( ), 1y y y j y j
j

seg ccapic seg tru Vtruck loss⋅ = ⋅ ⋅ ⋅ −∑ . By introducing a nonnegative 

continuous variable , ,j y y j yTruSeg seg tru= ⋅ , constraint (53) can be reformulated as 

the following linear constraint: 

( ), ,1j y j n y n
j n

TruSeg Vtruck loss winv rr⋅ ⋅ − = ⋅∑ ∑ ,  ∀y  (54) 

We also need the following linearization constraints: 

, ,1j y j y yTruSeg TruSeg Seg+ =  ∀ ,j y  (55.1) 

, ,
U

j y y j yTruSeg seg tru≤ ⋅  ∀ ,j y  (55.2) 

( ), ,1 1U
j y y j yTruSeg seg tru≤ ⋅ −  ∀ ,j y  (55.3) 

, 0j yTruSeg ≥ , ,1 0j yTruSeg ≥  ∀ ,j y  (55.4) 

where ,1 j yTruSeg  is an auxiliary variable and the upper bound of ySeg  is given by a 

sufficient large number, e.g. ( { }max nN rr⋅ ). 

Based on equation (50), constraint (37) can be easily reformulated as the 

following linear constraint: 

( )2 1y y ymrt seg Tccapic TSP= ⋅ + − ⋅   ∀y  (56) 

Based on equations (46) and (49), we can reformulate the tri-linear term in the 

right hand side of constraint (38) as 
1

, ,2 k
y y y j j y k y y

j k

cunit mrt x ck tru Ix mrt−⋅ ⋅ = ⋅ ⋅ ⋅ ⋅∑∑ . By introducing nonnegative 

continuous variables , ,k y k y ymrIx Ix mrt= ⋅  and , , , ,j k y j y k ymrItru tru mrIx= ⋅ , constraint 

(38) can be reformulated as the following linear constraint: 
1

, ,2 k
y j j k y

j k

crot ck mrItru−= ⋅ ⋅∑∑  ∀y  (57) 

We also need the following linearization constraints: 

, ,1k y k y ymrIx mrIx mrt+ =  ∀ ,k y  (58.1) 

, ,
U

k y y k ymrIx mrt Ix≤ ⋅  ∀ ,k y  (58.2) 
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( ), ,1 1U
k y y k ymrIx mrt Ix≤ ⋅ −  ∀ ,k y  (58.3) 

, 0k ymrIx ≥ , ,1 0k ymrIx ≥  ∀ ,k y  (58.4) 

, , , , ,1j k y j k y k ymrItru mrItru mrIx+ =  ∀ , ,j k y  (59.1) 

, , ,
U

j k y y j ymrItru mrt tru≤ ⋅  ∀ , ,j k y  (59.2) 

( ), , ,1 1U
j k y y j ymrItru mrt tru≤ ⋅ −  ∀ , ,j k y  (59.3) 

, , 0j k ymrItru ≥ , , ,1 0j k ymrItru ≥  ∀ , ,j k y  (59.4) 

where  ,1k ymrIx  and , ,1 j k ymrItru  are auxiliary variables 

Based on equation (49), we can reformulate the bilinear term on the left hand side 

of constraint (44) as 1
, , ,2 k

n y y n y k y
k

winv x winv Ix−⋅ = ⋅ ⋅∑ . By introducing a 

nonnegative continuous variable , . , ,k n y n y k ywIx winv Ix= ⋅ , constraint (44) can be 

reformulated as the following linear constraint: 
1

, , ,2 k
k n y n y

k

wIx Trp− ⋅ =∑  ∀n  (60) 

We also need the following linearization constraints: 

, . , . ,1k n y k n y n ywIx wIx winv+ =  ∀ ,j y  (61.1) 

, . , ,
U

k n y n y k ywIx winv Ix≤ ⋅  ∀ ,j y  (61.2) 

( ), . , ,1 1U
k n y n y k ywIx winv Ix≤ ⋅ −  ∀ ,j y  (61.3) 

, . 0k n ywIx ≥ , , .1 0k n ywIx ≥  ∀ ,j y  (61.4) 

where , .1k n ywIx  is an auxiliary variable. 

With exact linearization, we reformulate the continuous approximation model as 

an MILP, with the objective function (28) and constraints (2) – (4), (7) – (9), (16) – 

(18), (29), (39) – (43), (45) – (52), (54) – (61). 

 

6. Case Studies 
In this section, we present computational results for three examples to illustrate 

the application of the proposed models and the performance of the proposed solution 

strategies. Each example includes a number of new customers, whose tanks need to be 

sized. We do not consider the changes of existing customers’ tanks, although this 

issue can be easily addressed by our computational framework. All the computational 
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studies are performed on an IBM T400 laptop with Intel 2.53GHz CPU and 2 GB 

RAM. The proposed solution procedure is coded in GAMS 23.2.1.48 The MILP 

problems are solved using CPLEX 12. The optimality tolerances are all set to 10-9. 

 

Case study 1: a network with two customers 

The first case study is illustrative and represents a small isolated cluster of an 

industrial gas supply chain, with one production plant and two customers, N15 and 

N16. The supply chain network structure and the monthly demand rates of the first 

year for both customers are given in Figure 4. Note that all the data are scaled with 

volume unit (vu) due to confidential agreement. Other data for this case study are 

given in Tables 1-2. From Figure 4, it is easy to figure out that there are three possible 

routes in this example: 

 Route 1: plant-N15-N16. Total round trip distance is 2,225km. 

 Route 2: plant-N15. The total round trip distance is 2,200km. 

 Route 3: plant-N16. The total distance is 2,200km. 

In addition, it is easy to see that the TSP distance to visit all the customers once is 

50km for this case study 

 

Plant

N151,100 km
25 km

N161,100 km

5,250 L/Month

3,500 L/Month  
Figure 4. Case study 1 – two customer industrial gas supply chain 

We consider two instances of this example. In the first instance, the planning 

horizon is one year, customer N16 has an existing tank of 13,000 L and customer N15 

is a new customer whose tank should be sized. The planning horizon in the second 

instance is three years, and both N15 and N16 are new customers without existing 

tanks. In the three year horizon, we consider a 15% demand growth rate for both 

customers. Both instances are solved using three approaches: a) the integrated MILP 

approach as discussed in Section 4, b) the simultaneous route selection and tank sizing 

approach as presented in Section 5, including an upper level route selection – tank 
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sizing model and a lower level reduced routing model with a subset of possible routes, 

c) the continuous approximation approach as discussed in Section 6, which includes 

an upper level continuous approximation model for tank sizing and a lower level 

detailed routing model.  

 
Table 1   General parameters used in the models 

Number of truck types 4 
Number of tank sizes 6 
Depreciation period (dep) 15 years 
Time duration of year y (Hzy) 365 days 
Maximum number of working hours per day (hpd) 15 hours/day 
Average truck speed in km per hr (speed) 22 km/hour 
Minimum tanker fraction unloaded (frac) 10% 
Product loss percentage per delivery (loss) 5% 
Safety stock as a percentage of the tank size 15% 

 
Table 2   Available tank sizes and the corresponding capital and service costs 

Tank sizes: U
iT  (L) Service cost in terms of percentage of capital cost 

(Cseri/ Ccapi) 
1,000 26.04% 
6,000 16.34% 
10,000 12.95% 
13,000 13.44% 
16,000 12.66% 
20,000 11.92% 

 
Table 3   Optimal solution of the first instance of case study 1 (one year planning 

horizon, N15 is a new customer and N16 has an existing tank of 13,000L) 

 
Simultaneous 

Approach 
(Sec.4) 

 Route Selection – tank sizing 
Approach (Appendix) 

 

Continuous Approximation 
Approach ( Sec. 5) 

 Integrated 
MILP model  

Route selection 
– tank sizing 

model 

Reduced 
routing 
model 

 

Continuous 
approximation 

model 

Detailed 
routing 
model 

Dis. Var. 738  636 408  34 732 
Cont. Var. 1,360  852 896  134 1,358 
Constraints 2,115  1,383 2,018  197 2,110 
CPU (s) 69  12 15  0.1 29 
Total cost $18,128  $18,128  $18,128 
Proposed tank 
size for N15 13,000 L  13,000 L  13,000 L 

 

For the first instance, the problem sizes and computational times of all the models 

in the three approaches, as well as their optimal solutions are shown in Table 3. We 

can see that all the approaches yield the same optimal solution (minimum total cost of 
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$18,128, and installing a 13,000L tank for customer N15), but the CPU times are 

different. The simultaneous approach discussed in Section 4 solves an integrated 

MILP model, which has the largest size and requires the most computational time, 

69s. The second approach solves an upper level route selection – tank sizing model 

and a lower level routing model in the reduced space of possible routes. Both models 

are MILP, and they have fewer variables and constraints than the integrated MILP 

model. Solving the two MILP models in the route selection – tank sizing approach 

takes less CPU times (12s and 15s) than solving the integrated model, and the upper 

level and lower level models require similar computational effort. In the continuous 

approximation approach, the upper level approximation model includes very few 

variables and constraints, and was solved almost instantaneously (0.1s). The lower 

level detailed routing model is equivalent to the integrated MILP model after fixing 

the integer variables for tank sizing. Thus, the detailed routing model has slightly 

fewer discrete variables than the integrated MILP model, and was solved much faster 

(29s) than the integrated MILP model (69s). Presumably, the reason is that each 

integer variable for tank sizing represents long-term decisions that may affect multiple 

integer variables for routing due to the time scale and decision hierarchy, and a pure 

routing can be solved very effectively once tank sizing decisions are fixed.  

Since all the three approaches lead to the same optimal solution, the optimal 

inventory profiles of customers N15 and N16 are given in Figure 5. The inventory 

profiles include the information regarding the tank sizes, routing/deliveries and 

customer demands. We can see that the maximum inventory level corresponds to the 

tank of 13,000L, and the minimum inventory level is the safety stock level, which is 

15% of the tank size, i.e. 1,950L. Inventory levels decrease following a constant 

demand rate and “jump” up once replenishments arrive. Because customers N15 and 

N16 have different demand rates, N15 needs 5 replenishments per year while N16 

needs only 4 replenishments. Although the optimal inventory-routing decisions do not 

exactly follow the “cyclic” pattern as we assumed in the continuous approximation 

approach, the difference is relatively small. Thus, the continuous approximation 

approach predicts the same optimal tank sizing decisions as the simultaneous 

approach. 
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Figure 5. Optimal inventory profiles of the two customers in the first instance of 
case study 1 (one year planning horizon, N15 is a new customer and N16 has an 

existing tank of 13,000L) 
 

Table 4   Optimal solution of the second instance of case study 1 (three year 
planning horizon, and both N15 and N16 are new customers) 

 Simultaneous 
Approach   Route Selection – tank sizing 

Approach 
 

Continuous Approximation 
Approach  

 Integrated 
MILP model  

Route selection 
– tank sizing 

model 

Reduced 
routing 
model 

 

Continuous 
approximation 

model 

Detailed 
routing 
model 

Dis. Var. 2,182  1,836 1,206  54 2,170 
Cont. Var. 3,996  2,452 2,666  232 3,992 
Constraints 6,302  4,082 6,188  253 6,292 

CPU (s) 21,159 
(>memory)  128.9 35  9 59 

Total cost $53,789 * 
(1.23% gap)  $53,329  $53,329 

Proposed tank 
size for N15 13,000 L*  10,000 L  10,000 L 

Proposed tank 
size for N16 6,000L*  6,000 L  6,000 L 

>memory: computation was terminated due to running out of memory 
*: best found solution with 1.23% gap 
 

In the second instance, we consider a planning horizon of 3 years, and treat both 

N15 and N16 as new customers without any existing tanks. The problem sizes, 

computational times and optimal solutions of the three approaches are given in Table 

4. We can see that the problem sizes for this instance are significantly larger than the 
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ones for the first instance, because we have a longer planning horizon and one more 

new customer. The large problem size makes the simultaneous approach fail to solve 

the problem to global optimum: CPLEX ran out of memory after around 6 hours and 

the best known solution has a gap of 1.23%. The simultaneous approach yields a total 

cost of $53,789 and the optimal tank sizes for customers N15 and N16 are 13,000L 

and 6,000L, respectively. Note that this is a suboptimal solution and the global 

optimal solution may have less total cost and different tank sizing decisions. 
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Figure 6. Optimal inventory profiles of the two customers in the second instance 

of case study 1 (three year planning horizon, and both N15 and N16 are new 
customers) 

 
The routing selection – tank sizing approach needs 129s for solving the upper 

level problem and 35s for solving the reduced routing problem. Compared to the 

simultaneous approach, this method requires much less computational time, and the 

major computational effort is in solving the upper level problem for route selection 

and tank sizing. This approach yields a total cost of $53,329, which is lower than the 

suboptimal cost predicted by the simultaneous approach. The optimal tank sizing 

selection for customer N15 is 10,000L, which is a lower volume than the one 

predicted by the simultaneous approach. Since this approach has a lower total cost, 

sizing a 10,000L tank to customer N15 might be a better decision. The continuous 

approximation approach leads to the same optimal solution as the route selection – 

tank sizing approach, but requires slightly less CPU times. It took only 9s for the 
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upper level continuous approximation model, but the lower level detailed routing 

model requires 59s, which is longer than the one for the reduced routing model in the 

second approach. Note that the reduced routing model only considers those routes 

selected by its upper level problem, and thus has fewer variables and constraints and 

requires less CPU time. The optimal inventory profiles of the customers predicted by 

the continuous approximation approach are given in Figure 6, where we can see the 

tradeoffs between tank sizes, deliveries and customer demands. The two customers 

have different maximum and minimum inventory levels due to their different tank 

sizes. Although they have different demand rates, it turns out that both customers have 

37 replenishments during the three-year planning horizon. 

 
Case study 2: a network with four customers 

In the second case study we consider a four-customer industrial gas cluster, of 

which the network structure and the demand rates of the first year are given in Figure 

7. We also use the data provided in Tables 1-2 for this case study. Based on the 

network structure in Figure 7, there are 15 possible routes for this case study. The set 

of possible routes and the total round trip distance for each route are listed in details in 

Part II.49 From the network structure, it is easy to see that the TSP distance to visit all 

the customers once is 4507.47km for this case study. 

Plant
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1,100 km
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N18

N21

290 km
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1,124 km

 
Figure 7. Case study 2 – four customer industrial gas supply chain 

 

Two instances are considered for this case study. The first instance has a planning 

horizon of one year, and considers N14 as a new customer and each of the other three 

customers has an existing tank of 16,000L. Similar to the previous case study, we 

solve this instance with the three approaches. The computational results are listed in 
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Table 5. Since the number of customers increases, the problem size of the integrated 

MILP also increases. Before running out of memory, the best found solution of the 

simultaneous approach has an optimality gap of 14.75%. The suboptimal solution 

indicates a total cost of $37,559 and a tank size of 13,000L for customer N21. With 

the route selection – tank sizing approach and continuous approximation approach, we 

obtained a better solution with a lower total cost of $33,824. Thus, 10,000L, which is 

the tank size for customer N14 determined by the last two approaches, should be a 

better selection for this instance. The detailed inventory profiles as predicted by the 

last two approaches for the four customers are given in Figure 8. Due to different 

locations, tank sizes and demand rates, the four customers have different numbers of 

replenishments in the one year planning horizon. Note that the maximum and 

minimum inventory levels for customer N14 is 10,000L and 1,500L, respectively, 

while for the other three customers they are 16,000L and 2,400L, respectively. This in 

turn reveals the trade-offs between the strategic tank sizing decisions and the 

operational routing decisions. We note that the number of replenishment cycles may 

be different from the number of replenishments of a customer, because a customer can 

receive more than one replenishment in a replenishment cycle. The number of 

replenishment cycles is determined from the continuous approximation model, and the 

detailed number of replenishments of each customer comes from the solution of the 

detailed routing model. 

 
Table 5   Optimal solution of the first instance of case study 2 (one year planning 
horizon, N14 is a new customer, N15, N18 and N21 all have an existing tank of 

16,000L) 

 Simultaneous 
Approach   Route Selection – tank sizing 

Approach  
 

Continuous Approximation 
Approach  

 Integrated 
MILP model  

Route selection 
– tank sizing 

model 

Reduced 
routing 
model 

 

Continuous 
approximation 

model 

Detailed 
routing 
model 

Dis. Var. 3,630  3,108 2,648  58 3,618 
Cont. Var. 6,190  4,760 5,220  232 6,194 
Constraints 7,965  8,676 6,804  705 7,960 

CPU (s) 16,390 
(>memory)  9,492 4,113  2 6,420 

Total cost $37,559* 
(14.75% gap)  $33,824  $33,824 

Proposed tank 
size for N14 13,000L*  10,000 L  10,000 L 

>memory: computation was terminated due to running out of memory 
*: best found solution with 14.75% gap 
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Figure 8. Optimal inventory profiles of the four customers in the first instance of 
case study 2 (one year planning horizon, N14 is a new customers, N15, N18 and 

N21 all have an existing tank of 16,000L) 
 

Table 6   Optimal solution of the second instance of case study 2 (three year 
planning horizon, and N14, N15, N18 and N21 are all new customers) 

 
Simultaneous 

Approach 
(Sec.4) 

 Route Selection – tank sizing 
Approach (Appendix) 

 

Continuous Approximation 
Approach ( Sec. 5) 

 Integrated 
MILP model  

Route selection 
– tank sizing 

model 

Reduced 
routing 
model 

 

Continuous 
approximation 

model 

Detailed 
routing 
model 

Dis. Var. 10,848  9,108 N/A  78 10,800 
Cont. Var. 18,440  13,960 N/A  576 18,428 
Constraints 23,834  25,776 N/A  726 23,814 

CPU (s) 51,406 
(>memory)  54,718 

(>memory) N/A  5.3 31,420 

Total cost $156,774 * 
(74.54% gap)  N/A  $101,402 

Proposed tank 
size for N14 16,000L*  N/A  10,000 L 

Proposed tank 
size for N15 20,000L*  N/A  16,000 L 

Proposed tank 
size for N18 10,000L*  N/A  10,000 L 

Proposed tank 
size for N21 20,000L*  N/A  20,000 L 

>memory: computation was terminated due to running out of memory 
*: best found solution with 74.54% gap 
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Figure 9. Optimal inventory profiles of the four customers in the second instance 
of case study 2 (three year planning horizon, and N14, N15, N18 and N21 are all 

new customers) 
In the second instance of case study 2, we consider a three-year planning horizon 

and treat all the customers as new customers without any existing tanks. In the three 

year horizon, we consider a 15% demand growth rate for all customers. The 

computational results of solving this instance with three approaches are given in Table 

6. We can clearly see that the problem sizes increase significantly and some problems 

include more than 10,000 binary variables. The simultaneous approach ran out of 

memory after around 4 hours, and the best found solution ($156,774) has a gap as 

large as 74.54%. Because there are 4 customers and 15 possible routes in this 

instance, the problem size of the route selection – tank sizing model also becomes 

computationally intractable when considering the three-year planning horizon. 

Because the route selection – tank sizing problem ran out of memory, we were not 

able to obtain the selected routes and solve the reduced routing model in the lower 

level. With the continuous approximation approach, the problem size of the upper 

level approximation model is still rather small and can be solved very efficiently (only 

5.3s for the global optimum), although this instance is relatively large. The detailed 

routing model, despite its large size, was solved to global optimality in about 9 hours. 

The solution predicted by this approach has a lower optimal total cost of $101,402, 

and the optimal tank sizes for customers N14, N15, N18 and N21 are 10,000L, 
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16,000L, 10,000L and 20,000L, respectively. The detailed inventory profiles are 

given in Figure 9, where we can see similar trade-offs between tank sizes, demand 

rates and deliveries.  

 

Case study 3: large scale instances with 30, 60, 100 and 200 customers 

In the last case study, we consider four large-scale industrial gas supply chains 

with 30, 60, 100 and 200 customers, respectively. In all these four instances, a 3-year 

planning horizon is considered and all the customers are treated as new customers 

without any existing tanks. As we can see from case study 2, the simultaneous 

approach and the route selection – tank sizing approach can be computationally 

intractable for such a large scale instance. Thus, we only use the continuous 

approximation approach for this case study.  

The data provided in Tables 1-2 are used for the four instances in this case study. 

Due to the large number of customers, we generate randomly their locations and 

demand rates. All the customer locations are generated in a 400km 400km× square 

following uniform distribution, and the plant is located in the center of this square. 

The detailed locations of the customers and plant for these four instances are given in 

Figures 10(a) – 10(d). The TSP distances to visit all the customers once (not including 

the plant) for different scenarios and years are obtained with Concorde TSP Solver50 

through its NEOS interface51 with CPLEX 12. The resulting TSP distances for the 

four instances are 1,600km, 2,402km, 3,005km and 4,335km, respectively. We note 

that the Concorde TSP solver is computationally very effective – for a 200 customer 

case that will be solved later, it took less than 2 seconds to obtain the global optimal 

solution for the TSP values.  

The monthly demand rates of customers in the first year ( ,n ydemc , L/month) are 

generated using normal distributions as follows:  

For the 30 customer instance: [ ], 100 100 0,  40n ydemc N= + ×  

For the 60 customer instance: [ ], 100 100 0,  30n ydemc N= + ×  

For the 100 customer instance: [ ], 100 100 0,  15n ydemc N= + ×  

For the 200 customer instance: [ ], 100 100 0,  5n ydemc N= + ×  

Note that we take the absolute values of the normal distribution so that the monthly 

demand rates are always higher than 100L/month. Although the normal distribution is 
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unbounded, the maximum monthly demand rate we obtained from the sampling is 

16,966.61L/month. In the three year horizon, we consider a 15% demand growth rate 

for all customers. 

 
Table 7   Optimal solution of case study 3 using continuous approximation  

 Dis. Var. Cont. Var. Constraints CPU (s) Total cost ($) 
30 customer instance 1,260 1,062 2,944 30.5 337,195.75 
60 customer instance 4,290 3,862 5,494 21.3 721,413.51 
100 customer instance 11,130 6,262 8,894 350.8 965,453.32 
200 customer instance 42,230 12,262 17,394 299.4 1,664,093.11 
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10(a)  Location map of the 30 customers 
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10(b)  Location map of the 60 customers 
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10(c)  Location map of the 100 customers 
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10(d)  Location map of the 200 customers 

Figure 10. Case study 3 – industrial gas supply chains consisting of 30, 60, 100 
and 200 customers (three year planning horizon, and all the customers are new 

customers without any existing tank) 
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Figure 11. The breakdown of the total cost for the 200 customer case 

 
In Table 7, we report the problem sizes, computational times and optimal 

solutions of the continuous approximation model for the four instances. Note that the 

computational costs for solving the TSP problems are not included in the CPU times 

reported in this Table. Although the problem sizes increase exponentially as the 

number of customers increases, we can still solve the 200 customer instance, which 

includes 42,230 binary variables, 12,262 continuous variables and 17,394 constraints, 
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in less than 5 minutes. The results clearly show that the continuous approximation 

model has very high computational efficiency and is capable of handling the strategic 

tank sizing problems for large-scale industrial gas supply chains. The breakdown of 

the total cost for the 200 customer instance is given in Figure 11. We can see that the 

total distribution cost is close to the capital cost, which again reveals the tradeoff 

between vehicle routing and tank sizing. 

In this case study, we do not solve the detailed routing model due to the large 

problem size. Although solving an integrated MILP for a 200-customer routing 

problem is a nontrivial task, there are many existing heuristics and decomposition 

methods that can help to obtain a “good” near-optimal solution for the pure routing 

problem within reasonable computational time. One possible approach is to employ 

an integrated clustering method and location-based heuristics to group the customers 

into a number of small clusters and solve the routing problem within each cluster 

independently. By iteratively changing the customers in the clusters, we can obtain a 

near-optimal solution within the required computational time. The details of this 

method will be introduced in the second part of this paper.49 The key point is that once 

we can determine the strategic tank sizing decisions for large-scale industrial gas 

supply chains with the proposed approaches (e.g. continuous approximation method), 

the lower level detailed routing problem is very similar to the many vehicle routing 

problems that have been well studied in the past decades.  

This case study illustrates the application of the proposed continuous 

approximation method and the effectiveness of this approach for large-scale problems. 

After all, solving an integrated MILP with the simultaneous approach for the tank 

sizing decisions of a 200 customer industrial gas supply chain is most likely beyond 

the capability of the current state-of-the-art computational architecture and software. 

 

7. Conclusion 
In this paper, we have proposed an MILP model to simultaneously optimize the 

tank sizing and vehicle routing decisions in the distribution-inventory planning of 

industrial gas supply chains. To effectively integrate the strategic and operational 

decisions and to handle long planning horizon, we have also proposed two 

computational strategies. The first approach includes an upper level route selection - 

tank sizing problem and a lower level reduced routing problem. The upper level 
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problem predicts the optimal tank sizing decisions and the routes for deliveries, and 

the lower level problem is then solved with fixed tank sizes and those selected routes 

for higher computational efficiency. The second approach is based on a continuous 

approximation method, which can provide a rough estimation of the total distribution 

cost without considering detailed routing decisions. We have proposed an MINLP 

model in the upper level based on continuous approximation to determine the tank 

sizing decisions. The model is then reformulated as an MILP, which can be globally 

optimized very effectively even for large-scale instances. The lower level of this 

approach is to solve the detailed routing problem in the reduced variable space after 

fixing the tank sizing decisions. These models and computational strategies were 

applied to three case studies for industrial gas supply chains with up to 200 customers. 

The results clearly show that the proposed computational strategies, especially the 

continuous approximation approach, are very effective for solving the distribution-

inventory planning problem of large-scale industrial gas supply chains 
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Appendix  

Simultaneous Route Selection and Tank Sizing Approach 
The simultaneous route selection and tank sizing approach consists of two steps. 

First, the tank sizes and the potential routes to be used in the second step are selected 

by solving an aggregated MILP model. The MILP model accounts for the “worst 

case” working inventory, and simultaneously predicts the optimal routes to supply the 

different customers and the optimal tank sizes for satisfying the specified demand. In 

the second step, a vehicle routing problem is solved in the reduced space with the 

selected routes and the installed tank capacities. 
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The detailed vehicle routing model in the second step can be considered as a 

reduced model of the integrated MILP presented in Section 4, after limiting the 

elements in the set r R∈  to the selected routes and fixing the binary variables for tank 

sizing ,i net  and ,i nyt . Therefore, in this section we only present the formulation of the 

simultaneous route selection and tank sizing model that is solved in the first step. 

The simultaneous route selection and tank sizing model aims at determining the 

optimal routes and tank sizes so as to minimize the total cost, regardless of the 

synergies of truck deliveries. The main assumption in this model is that the tank size 

should be greater than the sum of the minimum inventory, safety stocks and the 

maximum delivered amount among all the replenishments, i.e. the “worst case” 

working inventory. Additionally, the set ∈d D  is introduced for considering the 

deliveries, that is, the occasions in which a given route is covered in a year. The 

detailed formulation of this aggregated model is given as follows. 

 

A.1 Objective function 

The objective function of simultaneous route selection and tank sizing model as 

given in (28) is to minimize the summation of the total capital investment, service and 

distribution costs. Note that the outage cost is neglected in this model.  

 

Min: Cost capcost servcost distcost= + +  (A1) 

The detailed cost components are given in constraints (2) – (4) and (A2).  

( )
, , ,

1
r j j r d y

y
j r d y

dist ck Dz
distcost

wacc

⋅ ⋅
=

+
∑∑∑∑  (A2) 

Note that constraints (2) - (4) are the same as those given in Section 4.1. 

Capital and service costs have the same formulation as in Section 4. The total 

distribution cost represents an aggregated formulation as given in (A2), where Dzj,r,d,y 

is a binary variable that equals to 1 if truck j is used for route r in trip d in year y. 

Therefore, the sum over the set d of Dzj,r,d,y represents the number of times that route r 

is covered with a given truck j in year y. 

 

A.2 Tank selection constraints 

In this model, we have the same tank selection constraints (7) – (9) as in Section 
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4.2. 

 

A.3 Truck delivery constraints 

Constraint (A3) defines that at most one truck can be assigned to a selected route. 

If a given route is selected (Dzzj,r,y = 1), then it can be replenished by the selected 

truck as stated in Constraint (A4), 

, , 1j r y
j

Dzz ≤∑  ,r y∀  (A3) 

, , , , ,j r d y j r yDz Dzz≤  , , ,  nj d y r R∀ ∈   (A4) 

where Dzzj,r,y is a binary variable that equals to 1 if truck j is used for delivery with 

route r in year y, and the binary variable Dzj,r,d,y allows to account for the trips using a 

given route r is covered with truck j in year y. 

A new continuous variable Dpn,r,y is introduced to represent the replenishment 

amount of a trip to customer n with route r in year y. This variable is defined through 

the following constraint, 

, , , , ,n r d y n r yDpr Dp≤  , , ,r nn N r R d D y Y∀ ∈ ∈ ∈ ∈  (A5) 

where Dprn,r,d,y is the replenishment amount to customer n with route r in trip d of 

year y. 

Constraint (A6) enforces that the quantity delivered to a given customer (Dprn,r,d,y) 

has to be the same as (Dpn,r,y) in every replenishment to the customer through route r. 

Additionally, constraint (A7) imposes the amount to be replenished (Dprn,r,d,y) is 

different from 0, if the binary variable Dzj,r,d,y is 1. 

{ }, , , , , , , ,max 1n r y j j r d y n r d yj j
Dp Vtruck Dz Dpr

⎛ ⎞
− ⋅ − ≤⎜ ⎟

⎝ ⎠
∑  , , ,r nn N r R d D y Y∀ ∈ ∈ ∈ ∈  (A6) 

{ }, , , , , ,maxn r d y j j r d yj j

Dpr Vtruck Dz≤ ⋅∑  , , ,r nn N r R d D y Y∀ ∈ ∈ ∈ ∈  (A7) 

Constraint (A8) ensures that the total amount received by all the customers served 

by a given route r cannot exceed the capacity of the truck j that delivers through that 

route. In addition, a minimum quantity of the truck must be delivered to the customers 

included in route r, which is imposed as a fraction of the total truck capacity through 

constraint (A9). 

( )
,

, , , , 1
r n

n r y j r y j r
n NC j

Dp Dzz vtru loss N
∈

≤ ⋅ ⋅ − ⋅∑ ∑  ,nr R y Y∀ ∈ ∈  (A8) 
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( ), , , , 1n r y j r y j r
j

Dp fraction Dzz vtru loss N≥ ⋅ ⋅ ⋅ − ⋅∑  , ,nn r R y Y∀ ∈ ∈  (A9) 

The minimum number of visits to a customer can be estimated as a function of its 

demand and the capacity of the largest truck as in constraint (A10), 

{ }
,

, , , maxn

n y
j r d y

j r R d jj

dem
Dz

Vtruck∈

≥∑∑∑  ,n y∀  (A10) 

The above equation represents a lower bound of the overall number of trips that must 

be done to a customer n in a given year y, considering that the largest truck supplies 

all routes, and that the whole capacity is delivered to that customer n. 

 

A.4 Mass balance constraints 

Constraint (A11) ensures that the total amount received by a customer plus its 

initial inventory must satisfy the demand for that year plus the minimum level of the 

tank and the safety stock. 

, , , , n ,
n

n r d y n y y n n y
r R d

Dpr dem Hz Vzero Vl safety
∈

≥ − + +∑∑            ,n y∀  (A11) 

In addition, the maximum level of the tank installed in a customer location cannot 

be exceeded by any delivery to that customer in any of the routes, as stated in 

constraint (A12). The existing level is calculated as the sum of the lower level plus the 

delivered quantity and the safety stock. 

, , ,n n n r y n yvu vl Dp safety≥ + +   ,  ,  nn N r R y Y∀ ∈ ∈ ∈  (A12) 

Note that in this aggregated model, we neglect the detailed timing issues of the 

deliveries, and constraints (10)-(14) of the integrated model are aggregated into 

constraints (A11) and (A12). 

The constraints for modeling the minimum, maximum and initial inventory level 

of customer n are the same as Constraints (16) – (18) given in Section 4.3. 

The following constraint avoids the degeneracy in the set D so that the 

convergence to the solution is faster. It imposes that the first elements of the set D are 

assigned first.  

, , , , , 1,j r d y j r d y
j j

Dz Dz −≤∑ ∑  ,  nr R y Y∀ ∈ ∈  (A13) 
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A.5 Computational complexity 

The simultaneous route selection and tank sizing problem corresponds to an 

MILP model with the objective function in (A1) and constraints (2)-(4), (7)-(9), (16)-

(18) and (A2)-(A13). By approximating the maximum inventory levels and 

underestimating the distance costs, this first step selects the delivery routes without 

going into the details of the timing. A reduced vehicle routing problem is then solved 

by fixing tank sizing and route selection decisions. This approach can significantly 

reduce the computational time of the routing problem by considering a subset of all 

the possible routes. Since the upper level aggregated model has potentially smaller 

size than the original integrated model, it should be computationally more efficient 

than the integrated MILP model presented in Section 4. However, as the problem size 

increases, solving the aggregated model can also become intractable due to the 

combinatorial complexity of route enumeration.  

 

Nomenclature 
Sets/Indices 

d  set of trips 

i  set of tank sizes 

j  set of truck sizes 

k  set for binary representation of integers 

n  set of customers 

r  set of all possible routes 

t  set of events 

y  set of years 

 

Subsets 

rn N∈   subset of customers that are served by route r 

nr R∈   subset of routes used by customer n 

 

Parameters 

Ccapi  capital cost of tank of size i 

Coutn,y  outage cost for customer n in year y 

Cseri  service cost of tank of size i 
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jck   delivery cost per distance traveled of truck j  

car  1 if route r is considered for detailed routing 

demn,y  demand of customer n in year y 

demcn,y  monthly demand rate of customer n in year y 

dep  depreciation period in years 

distr  distance of route r 

espacen 1 if there is extra space for installing another tank at customer n 

frac   minimum tanker fraction unloaded  

FT_load loading time for each customer  

FT_del  loading time for each delivery from the plant 

hpd  maximum number of working hours per day 

Hzy  time duration of year y 

loss  product loss percentage per delivery 

newn  1 if customer n is new 

ntj  number of tankers of size j 

oti,n  1 if tank size i originally installed at customer n  

rrn  distance between the plant and customer n 

safetyn,y safety level in year y for customer n 

speed     average truck traveling speed in km per hr 
L

iT   lower bound for discrete tank size i 

U
iT    upper bound for discrete size of tank i 

tm  maximum number of slots 

tsizen  1 if tank of customer n is sized 

TSP  traveling sales man distance of all the customers (exclude the plant) 

Vtruckj  full transportation capacity of truck j 

Vzeron  initial volume at customer n 

wacc  working capital discount factor  

 

Binary Variables (0-1) 

eti,n  1 if customer n has tank of size i installed in extra space; 0 otherwise 

yti,n  1 if customer n has tank of size i installed; 0 otherwise 

zj,r,t,y  1 if truck j is used for delivery with route r in time event t of year y 

Dzj,r,d,y  1 if truck j is used for route r in trip d in year y 
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Dzzj,r,y  1 if truck j is used for delivery with route r in year y 

tru,j,y  1 if truck j is selected for replenishmsnt in year y 

Ixk,y 0-1 variable for the binary representation of the number of  

replenishments in year y (xy) 

 

Continuous Variables (0 to+∞ ) 

Cost  total cost 

capcost capital cost 

ccapicy  effective capacity of truck for the replenishments in year y 

cunity  unit transportation cost of year y  

croty  approximated routing cost of year y  

distcost distribution cost 

Dpn,r,y  maximum single delivery amount to customer n with route r in year y 

Dprn,r,d,y replenishment amount to customer n with route r in trip d of year y 

LTy  worst case replenishment lead time of year y 

mrty  minimum routing distance to visit all the customers once in year y  

outn,t,y  outage for customer n in time t in year y  

outcost  outage cost 

pn,t,y  delivery to customer n in time event t of year y 

prn,r,t,y  delivery to customer n in route r at time event t of year y 

segy  auxiliary variable, for groups of all the customers 

servcost service cost 

Tccapicy reciprocal of ccapicy 

ti t,y  initial time in time event t of year y 

Δtt,y  time interval in time event t of year y 

Trpn,y  total replenishment amount from the plant to customer n in year y 

Vendn,y  inventory level of customer n at the end of  year y 

nn VuVl ,  minimum and maximum volume of tank at customer n  

Von,t,y  volume at customer n in time event t of year y 

Vmn,y  maximum inventory level of customer n in year y 

winvn,y  maximum working inventory of customer n in year y 

xy  number of replenishment in year y in scenario s 
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Auxiliary Variables (0 to+∞ ) 

tinsi,n  auxiliary variable 

LTIxk,y  auxiliary variable for the product of Ixk,y and LTy 

LTIx1k,y auxiliary variable for linearization 

TruSegj,y auxiliary variable for the product of tru,j,y and segy 

TruSeg1j,y auxiliary variable for linearization 

mrIxk,y  auxiliary variable for the product of Ixk,y and mrty 

mrIx1k,y auxiliary variable for linearization 

mrItruj,k,y auxiliary variable for the product of tru,j,y and mrIxk,y 

mrItru1j,k,y auxiliary variable for linearization 

wIxn,k,y  auxiliary variable for the product of Ixk,y and winvn,y  

wIx1n,k,y auxiliary variable for linearization 

 

References 
1. Daganzo, C., Logistics Systems Analysis. In Lecture Notes in Economics and 
Mathematical Systems, Beckmann, M.; Krelle, W., Eds. Springer Verlag: Berlin, 1996. 
2. Dasci, A.; Verter, V., A continuous model for production-distribution system 
design. European Journal of Operational Research 2001, 129, 287-298. 
3. Langevin, A.; Mbaraga, P.; Campbell, J. F., Continuous Approximation 
Models for Freight  Distribution: An Overview. Transportation Research B 1996, 30, 
163-188. 
4. Glankwamdeea, W.; Linderoth, J.; Shen, J.; Connard, P.; Hutton, J., 
Combining  optimization and simulation for strategic and operational industrial gas 
production and  distribution. Computers & Chemical Engineering 2009, 32, 2536-
2546. 
5. Choi, J.; Lee, J. H.; Realff, M. J., An algorithmic framework for improving 
heuristic solutions Part II. A new version of the stochastic traveling salesman problem. 
Computers & Chemical Engineering 2004, 28, 1297-1307. 
6. Jetlund, A. S.; Karimi, I. A., Improving the logistics of multi-compartment 
chemical  tankers. Computers & Chemical Engineering 2004, 28, 1267-1283. 
7. Huang, W.; Chung, P. W. H., Integrating routing and scheduling for pipeless 
plants in  different layouts. Computers & Chemical Engineering 2005, 29, 1069-1081. 
8. Dondo, R.; Mendez, C. A.; Cerda, J., Optimal management of logistic 
activities in multi-site environments. Computers & Chemical Engineering 2008, 32, 
2547-2569. 
9. Dondo, R., G.; Cerdá, J., A hybrid local improvement algorithm for large-scale 
multi- depot vehicle routing problems with time windows. Computers & Chemical 
Engineering 2009, 33, 513-530. 
10. Dondo, R.; Mendez, C. A.; Cerda, J., Managing Distribution in Supply Chain 
Networks. Industrial & Engineering Chemistry Research 2009, 48, 9961–9978. 
11. Laporte, G., What You Should Know about the Vehicle Routing Problem. 
Naval Research  Logistics 2007, 54, 811-819. 



-47- 

12. Baita, F.; Ukovich, W.; Pesentib, R.; Favaretto, D., Dynamic routing-and-
inventory problems: a review. Transportation. Research-A 1998, 32, 585-598. 
13. Moin, N. H.; Salhi, S., Inventory routing problems: a logistical overview. 
Journal of  Operations Research Society 2007, 58, 1185-1194. 
14. Nagy, G.; S., S., Location-routing: Issues, models and methods. European 
Journal of  Operational Research 2007, 177, 649-672. 
15. Webb, I. R.; R.C., L., Period and phase of customer replenishment: A new 
approach to  the Strategic Inventory/Routing Problem. European Journal of 
Operational Research 1995, 85, 132-148. 
16. Campbell, M.; Savelsbergh, M. W. P., A Decomposition Approach for the 
Inventory-Routing Problem. Transportation Science 2004, 38, 488-502. 
17. Lei, L.; Liu, S.; Ruszczynski, A.; Park, S., On the integrated production, 
inventory and  distribution routing problem. IIE Transactions 2006, 38, 955-970. 
18. Benders, J. F., Partitioning procedures for solving mixed-variables 
programming problems. Numerische Mathematik 1962, 4, 238-252. 
19. Fisher, M. L., The Lagrangean relaxation method for solving integer 
programming problems. Management Science 1981, 27, 18. 
20. Guignard, M.; Kim, S., Lagrangean decomposition: A model yielding stronger 
lagrangean  bounds. Mathematical Programming 1987, 39, 215-228. 
21. Iyer, R. R.; Grossmann, I. E., A Bilevel Decomposition Algorithm for Long-
Range Planning  of Process Networks. Industrial & Engineering Chemistry Research 
1998, 37, 474-481. 
22. Daichendt, M. M.; Grossmann, I. E., Integration of hierarchical decomposition 
and mathematical programming for the synthesis of process flowsheets. Computers & 
Chemical Engineering 1995, 22, 147-175. 
23. Pinto, J. M.; Grossmann, I. E., Optimal cyclic scheduling of multistage 
continuous  multiproduct plants. Computers & Chemical  Engineering 1994, 18, 797-
816. 
24. You, F.; Wassick, J. M.; Grossmann, I. E., Risk Management for Global 
Supply Chain Planning under Uncertainty: Models and Algorithms. AIChE Journal 
2009, 55, 931-946. 
25. You, F.; Grossmann, I. E., Balancing Responsiveness and Economics in the 
Design of Process Supply Chains with Multi-Echelon Stochastic Inventory. AIChE 
Journal 2009, In press, DOI: 10.1002/aic.12244. 
26. Chen, P.; Pinto, J. M., Lagrangean-based techniques for the supply  chain 
management of flexible process networks. Computers & Chemical Engineering 2008, 
32, 2505-2528. 
27. Neiro, S. M. S.; Pinto, J. M., A general modeling framework for the 
operational planning of petroleum supply chains. Computers & Chemical Engineering 
2004, 28, 871-896. 
28. You, F.; Grossmann, I. E., Mixed-Integer Nonlinear Programming Models and 
Algorithms for Large-Scale Supply Chain Design with Stochastic Inventory 
Management. Industrial & Engineering Chemistry Research 2008, 47, (20), 7802-
7817. 
29. You, F.; Grossmann, I. E., Integrated Multi-Echelon Supply Chain Design with 
Inventories under Uncertainty: MINLP Models, Computational Strategies. AIChE 
Journal 2010, 56, (2), 419 - 440. 
30. Bok, J.-K.; Grossmann, I. E.; Park, S., Supply Chain Optimization in 
Continuous Flexible Process Networks. Industrial & Engineering Chemistry Research 
2000, 39, (5), 1279-1290. 



-48- 

31. Carvalho, M. C. A.; Pinto, J. M., An MILP model and solution technique for 
the planning of infrastructure in offshore oilfields. Journal Of Petroleum Science And 
Engineering 2006, 51, 97-110. 
32. You, F.; Grossmann, I. E.; Wassick, J. M., Multisite Capacity, Production and  
Distribution Planning with Reactor Transformation: MILP Model, Bilevel 
Decomposition Algorithm vs.  Lagrangean Decomposition Scheme. Industrial & 
Engineering Chemistry Research 2010, In press, DOI: 10.1021/ie100559y. 
33. Lainez, J. M.; Puigjaner, L.; Reklaitis, G. V., Financial and financial 
engineering  considerations in supply chain and product development pipeline 
management. Computers & Chemical  Engineering 2009, 33, 1999-2011. 
34. Papageorgiou, L. G.; Rotstein, G. E.; Shah, N., Strategic Supply Chain 
Optimization  for the Pharmaceutical Industries. Industrial & Engineering Chemistry 
Research 2001, 40, 275-286. 
35. Tsiakis, P.; Shah, N.; Pantelides, C. C., Design of multi-echelon supply chain 
networks  under demand uncertainty. Industrial & Engineering Chemistry Research 
2001, 40, 3585-3604. 
36. You, F.; Grossmann, I. E., Design of Responsive Supply Chains under 
Demand Uncertainty. Computers & Chemical Engineering 2008, 32, (12), 2839-3274. 
37. You, F.; P. M. Castro; Grossmann, I. E., Dinkelbach’s algorithm as an efficient 
method to solve a class of MINLP models for large-scale cyclic scheduling problems. 
Computers & Chemical Engineering 2009, 33, 1879-1889. 
38. You, F.; Grossmann, I. E., Stochastic Inventory Management for Tactical 
Process Planning  under Uncertainties: MINLP Model and Algorithms. AIChE 
Journal 2010, In press, DOI: 10.1002/aic.12338. 
39. Shen, Z.-J. M.; Qi, L., Incorporating inventory and routing costs in strategic 
location  models. European Journal of Operations Research 2007, 179, 372-389. 
40. Burns, L. D.; Hall, R. W.; Blumenfeld, D. E., Distribution Strategies that 
Minimize Transportation and Inventory Costs. Operations Research 1985, 33, 469-
489. 
41. Zipkin, P. H., Foundations of Inventory Management. McGraw-Hill: Boston, 
MA, 2000. 
42. Viswanathan, S.; Mathur, K., Integrating Routing and Inventory Decisions in 
One-Warehouse Multiretailer Multiproduct Distribution Systems. Management 
Science 1997, 43, 294. 
43. Jung, J.; Mathur, K., An Efficient Heuristic Algorithm for a Two-Echelon Joint 
Inventory  and Routing Problem. Transportation Science 2007, 41, 55-73. 
44. Sindhuchao, S.; Romeijn, H. E.; Akcali, E.; Boondiskulchok, R., An Integrated 
Inventory- Routing System for Multi-item Joint Replenishment with Limited Vehicle 
Capacity. Journal of Global  Optimization 2005, 32, 93-118. 
45. Haimovich, M.; Rinnooy-Kan, A. H. G., Bounds and Heuristics for 
Capacitated Routing Problems. Mathematics of Operations Research 1985, 10, 527-
541. 
46. Agarwal, R.; Ahuja, R. K.; Laporte, G.; Shen, Z. J., A composite very large-
scale neighborhood search algorithm for the vehicle routing problem. In Handbook of 
Scheduling: Algorithms, Models, and Performance Analysis, Leung, J. Y.-T., Ed. 
Chapman Hall / CRC: 2004. 
47. Balas, E., Disjunctive Programming and a Hierarchy of Relaxations for 
Discrete Continuous Optimization Problems. SIAM Journal on Algebraic and 
Discrete Methods 1985, 6, (3), 466-486. 
48. Rosenthal, R. E., GAMS - A User’s Manual. In GAMS Development Corp.: 



-49- 

Washington, DC, 2008. 
49. You, F.; Grossmann, I. E.; Pinto, J. M.; Megan, L., Optimal Distribution-
Inventory Planning of Industrial Gases: II. MINLP Models and Algorithms for 
Stochastic Cases. Industrial & Engineering Chemistry Research 2010, Submitted. 
50. Applegate, D.; Bixby, R. E.; Chvátal, V.; Cook., W. J. Concorde TSP Solver 
(http://www.tsp.gatech.edu/concorde), 2005. 
51. Mittelmann, H. http://www-
neos.mcs.anl.gov/neos/solvers/co:concorde/TSP.html. (Access on Feb. 8, 2010),  
 
 


