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Abstract 

We address in this paper the mid-term planning of chemical complexes with integration 

of stochastic inventory management under supply and demand uncertainty. By using 

the guaranteed service approach to model the time delays in the chemical flows inside 

the chemical process network, we capture the stochastic nature of the supply and 

demand variations, and develop an equivalent deterministic optimization model to 

minimize the total cost including production cost, feedstock purchase cost, cycle 

inventory and safety stock costs. The model simultaneously determines the optimal 

purchases of the feedstocks, production levels of the processes, sales of final products 

and safety stock levels of all the chemicals, as well as the internal demand of the 

production processes. The model also captures “risk-pooling” effects to allow 

centralization of inventory management for chemicals that are consumed/produced by 

multiple processes. We formulate the model as a mixed-integer nonlinear program 

(MINLP) with a nonconvex objective function and nonconvex constraints. To solve the 

global optimization problem with modest computational times, we exploit some model 

properties and develop a tailored branch-and-refine algorithm based on successive 

piece-wise linear approximation. Five examples are presented to illustrate the 

application of the models and the performance of the proposed algorithm. 

 

Key words: tactical planning, MINLP, stochastic inventory control, chemical process 

network 
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Introduction 

The chemical process industry often constructs large production sites, namely 

integrated chemical complexes1-3 that are composed of many interconnected processes 

and various chemicals. The integrated chemical complexes allow the chemical 

production to take advantage of synergies between processes. However, the risks 

associated with demand uncertainty and supply disruptions or delays may significantly 

affect tactical decision-making of a chemical complex.4-9 Although inventory improves 

the service by helping deal with demand uncertainty and providing flexibility, 

excessive inventory can be costly.10, 11 In addition, a chemical complex usually involves 

many chemicals, including feedstocks, intermediates and final products, making it a 

non-trivial task to determine which chemicals should be stored and what is the optimal 

inventory level for each of them so as to achieve a certain service level and production 

target. Thus, cost-effective and agile inventory and production management can 

provide a competitive advantage for a company in a highly dynamic market.12, 13 

Therefore, it is of significant importance to integrate the tactical process planning 

decisions with the stochastic inventory management decisions across the entire 

chemical complex, and coordinate the activities of purchase, production, storage and 

sale to minimize the total cost. There are several challenges to achieve this goal.  

The first challenge is how to model the inventory system of a chemical complex, 

which is more difficult than a multi-echelon inventory system and sometimes involves 

recycle flows. The second one is how to explicitly account for the supply delay and 

demand uncertainty in the inventory management and production planning. The third 

challenge is how to integrate the planning of purchase, production and sale, with 

inventory control, and how to model the information transformation to quantify the 

internal demand uncertainty of each processes. The last challenge is how to effectively 

solve the resulting optimization problem that leads to a large-scale nonconvex 

mixed-integer nonlinear program. 

In this paper, we consider the medium term planning (typically 1- 6 months for 

process companies) of chemical process networks with integration of stochastic 

inventory management to deal with supply and demand uncertainty. By using the 

guaranteed service approach14-17 to model the time delays in the chemical flows, we 

capture the stochastic nature of the supply and demand uncertainty. An equivalent 

deterministic optimization model is developed to minimize the total cost including 
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production cost, feedstock purchase cost, cycle inventory and safety stock costs. The 

model takes into account multiple tradeoffs and simultaneously determines the optimal 

purchase amount of each feedstock, production levels in each process, sale amount of 

each final product and inventory level of each chemical in the chemical process 

network, as well as the internal demand of the production processes. The model also 

captures the risk-pooling effect18 to allow centralization of safety stock management for 

chemicals that are consumed/produced in multiple processes. We first formulate the 

model as a mixed-integer nonlinear program (MINLP) with a nonconvex objective 

function and nonconvex constraints. To solve the problem with modest computational 

times, a tailored branch-and-refine algorithm based on successive piece-wise linear 

approximation is developed to for the global optimization. Five examples of chemical 

complexes with up to 38 processes and 28 chemicals are presented to illustrate the 

application of the model and the performance of the proposed algorithm. 

The outline of this paper is as follows. We first review the related literature and the 

stochastic inventory modeling approach in the next section. The general problem 

statement is provided after the next section, which is followed by the model formulation 

for the problem of joint stochastic inventory management and production planning of a 

chemical process network. In the section of “Illustrative Examples”, we present the 

results for three case studies of chemical complexes. To solve the large scale problem, a 

global optimization algorithm based on successive piecewise linear approximation is 

presented in the Section “Solution Algorithm”. The computational results for 

large-scale instances and the conclusion of this paper are then given at the end of this 

paper. 

 

Literature Review 

The problem of planning under uncertainty for process network has been 

extensively studied in the past 20 years, but the inventory issue is usually neglected or 

coarsely considered without detailed inventory management policy.6-10, 13, 19-29 In these 

models, the safety stock level is given as a parameter, and is usually imbedded by 

including inventory lower bounds of various chemicals, or referred to as a “target 

inventory level” that would lead to some penalty costs if violated. This approach cannot 

optimize the safety stock levels, especially when considering supply and demand 

uncertainty. Thus, it can only provide an approximation of the inventory cost, and may 
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lead to suboptimal solutions. Recently, Jung et al.5 employ a simulation-optimization 

framework to determine the optimal safety stocks levels of a supply chain with 

consideration of production capacity. 

Another body of research closely related to this work is the multi-echelon 

stochastic inventory theory, which can be traced back to the works by Simpson30 and by 

Clark and Scarf.31 There are two major approaches to model the multi-echelon 

inventory system: the stochastic service approach, and the guaranteed service approach. 

For a detailed comparison of these two approaches, see Graves and Willems,15 and 

Humair and Willems.32 Both approaches have pros and cons: stochastic service 

approach allows a more exact system understanding that can serve as the building block 

for more complex systems; guaranteed service approach models the entire system, 

which allows a planner to make tactical decisions without the need to approximate 

portions of the system that are not captured by a simplified topological representation. 

Based on this reason, we choose the guaranteed service approach to model the 

multi-echelon inventory system in this work since we focus on the modeling of 

inventory allocation across the entire process network. Although guaranteed service 

approach has been applied to address diverse problems in multi-echelon stochastic 

inventory management and supply chain optimization,14, 16, 33-37 it has not been 

extended to the inventory systems of chemical complexes that include the production 

mode for arbitrary network topologies. Moreover, integrating stochastic inventory 

management into the tactical planning of process network is non-trivial, and has not 

been addressed in the existing literature to the best of our knowledge. 

 

Guaranteed Service Approach for Multi-Stage Stochastic 

Inventory Systems 

In this section, we briefly review some concepts of guaranteed service approach, 

which is the stochastic inventory management model used in this work. Detailed 

discussions about this approach are given by Graves and Willems15 and You and 

Grossmann.36 

The main idea of the guaranteed service approach is that the service level for each 

node in the multi-echelon inventory system is fixed, and thus the optimal inventory 

level at each node is a function of the worst case replenishment lead time, which is a 

variable depending on the uncertain demand distribution of this node and the inventory 
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level of its upstream node(s). For example, when Node 2 requests a replenishment from 

its upstream Node 1, the replenishment will arrive after a deterministic processing time 

P2, if Node 1 has sufficient inventory to satisfy the demand from Node 2, as shown in 

Figure 1(a). However, if the inventory level in Node 1 is less than the internal demand 

from Node 1, Node 1 needs to further wait for the replenishment from its upstream 

predecessor so as to satisfy the demand from Node 2. In this case, it first takes some 

“waiting time” for the replenishments from the predecessor to arrive at Node 1, and 

then the deterministic processing time P2 for the replenishment from Node 1 to arrive at 

Node 2. Thus, the replenishment lead time of Node 2 is equal to the “waiting time” plus 

the deterministic processing time. It is important to note that the “waiting time” is not 

deterministic, but similarly depends on the inventory levels of all the upstream nodes, 

and thus it is an uncertain variable. Since Node 2 has a fixed service level, the longer the 

worst case “waiting time” is, the more inventories should be hold in Node 2 to deal with 

the uncertain demand and lead time.  

To quantify the “waiting time” for the worst case, the guaranteed service approach 

assumes that each node j in the multi-echelon inventory system guarantees a service 

time jS , which is the maximum time that all the demand from its downstream nodes 

(successor) will be satisfied. Besides, each node j has a net lead time jN , which is the 

required time span to cover demand variation with safety stocks at this node. Thus, The 

timing relationships between the deterministic process time jP  and the times, 

including the guaranteed service time jS , the worst case replenishment lead time jT , 

and the net lead time jN , are given as follows. 

(a) The worst case replenishment lead time jT  should be greater than or equal to 

the summation of the guaranteed service time of a direct predecessor 1jS   and 

the processing time jP  from the direct predecessor to this node, i.e. 

1j j jT S P  . 

(b) The net lead time jN  equals to the difference between the worst case 

replenishment lead time jT  and the guaranteed service time (GST) to its direct 

successor jS , i.e. j j jN T S  . 

These timing relationships are shown in Figure 1b. The relationship (a) follows 

directly from the aforementioned example. The relationship (b) is due to the reason that 
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not all the customer demand of node j at time t  must be satisfied immediately, but by 

the time jt S . Thus, the safety stocks of node j do not need to cover demand 

variations over the entire worst case replenishment lead time, but just the difference 

between the replenishment lead time and the GST to the successors, i.e. the net lead 

time jN . The relationships (a) and (b) imply that if the service time of node j equals to 

the replenishment lead time, i.e. j jT S  and 0jN   as shown in Figure 1c, no safety 

stock is required in node j because all the downstream demand only needs to be 

satisfied within the replenishment lead time, i.e. this node is operating in “pull” mode. 

If the guaranteed service time jS  is 0, i.e. j jN T  as shown in Figure 1d, the node 

holds the most safety stock because all the demand from the successors are satisfied 

immediately, i.e. this node is operating in “push” mode. 

In the guaranteed service approach, each stage in the inventory system is assumed 

to operate under a base-stock policy, which is widely employed for inventory 

management across diverse sectors, with a common review period.5, 38, 39 Furthermore, 

demand over any time interval is assumed to be normally distributed, e.g. mean j  

and standard deviation j  for the daily demand of node j (if the unit of j  is ton/day, 

the unit of j  will be ton/√day). Besides, for node j, there is an associated safety stock 

factor j , which is given and corresponds to the standard normal deviate of the 

required service level, i.e.  Pr jz     where   is the service level and z  is a 

standard normally distributed random variable with  ~ 0,1z N . Since the demand rate 

follows normal distributioin, the uncertain demand over the net lead time also follows 

normal distribution  2,j j j jN N N   . This yields the safety stock of node j as 

j j j jSS N  , and the optimal base-stock level for the inventory position, including 

the inventory on-hand and inventory in-transit, of this node is given by 

j j j j j jBS N N    , which equals to the expected demand over the net lead time 

plus the safety stock. The base-stock level represents the inventory upper bound, and 

the lower bound is given by the safety stock level if there is no demand uncertainty. 

Since the physical inventory level is expected to vary between its upper and lower 

bound if there is no uncertainty (safety stocks are used to hedge uncertain demand), the 

average on-hand inventory level is given by the safety stock level plus half of the 
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expected demand over the net lead time, i.e. / 2j j j j j jInv N N    , where the 

first term / 2j jN   is the average working inventory (or cycle stock). Note that we 

neglect pipeline inventory (work-in-process) in the total inventory cost, because the 

focus of this work is to model the physical storage levels and allocation of chemicals of 

a chemical complex instead of a supply chain. In addition, the review period has been 

taken into account as part of the order processing time and considered in the net lead 

time. 

In the guaranteed service approach, the service times from the external suppliers to 

the inventory system and the service times to the external customers are exogenous 

inputs, which can be treated as parameters, in addition to the deterministic processing 

time jP  and the safety stock factor j . Most of the “virtual” times, including the 

guaranteed service time jS  of internal nodes, the worst case replenishment lead time 

jT , and the net lead time jN , are variables to be optimized. 

 

Problem Statement 

We are given a process network (Figure 2) consisting of a set of dedicated 

processes i I  and a set of chemicals j J . Each process i I  has a fixed 

production capacity iCap , a unit production cost i  and a production delay (or 

production time) iPD . Since we consider dedicated processes in this work, the 

production delays are deterministic parameters that are given. The chemicals could be 

feedstocks, intermediates or final products, and each of them can be purchased from the 

suppliers, produced in the chemical complex and sold to the markets. For each chemical 

j, there is a unit inventory holding cost jh  and a safety stock factor j , corresponding 

to the standard normal deviate of the required service level. In every production process 

i, we are also given a mass balance coefficient ij  for chemical j that is consumed or 

produced by this process. In addition, the deterministic transfer times from process i 

that produces chemicals j to the storage tank of this chemical, ij , and the deterministic 

transfer time of chemical j from its storage tank to process i that consumed this 

chemical, ij , are also given and assumed to be deterministic. 

The process network also includes a set of suppliers k K  and a set of markets 
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l L . For every chemical j , each supplier k has a supply lower bound L
jka  and supply 

upper bound U
jka , as well as a unit price jk . The guaranteed service time jkSI  of 

chemical j supplied by supplier k is also known. The GSTs of suppliers represent the 

supply uncertainty in terms of service time under the worst case. For every external 

market l, we are given a normally distributed demand with mean jl  and standard 

deviation jl  for chemical j, and a required maximum guaranteed service time U
jlSO  

of each chemical j demanded by this market. 

The problem is to simultaneously determine the production level of each process, 

the working inventory and safety stock levels of each chemical, as well as the purchase 

amounts from external suppliers and sale amounts to external markets for each 

chemical in order to minimize the total purchase, production and inventory cost. 

 

Model Formulation 

The model will be formulated as an MINLP problem, which will predict the 

production levels, inventory levels, and purchase and sale amounts of a chemical 

complex. To explicitly account for the complex interactions between different states of 

chemicals (feedstocks, intermediate and final products) and production processes, we 

use a chemical process network representation, which is given in Figure 3 for the 

example problem shown in Figure 2. In Figure 3, the numbers inside the boxes indicate 

processes, and the letters inside the circles are for the chemicals. As a physical 

interpretation, one could consider these chemical nodes with red circles as the stocking 

points or storage tanks of chemicals (e.g. see state-task-network40 model for 

scheduling). This representation can greatly facilitate the analysis and modeling of the 

complex interactions between stochastic inventory management and the purchase, 

production and sale activities. An MINLP model built based on this network is 

presented in the following sections. A list of indices, sets, parameters and variables are 

given in the Appendix. 

 

Stochastic Lead Time Constraints 

There is a multi-echelon inventory system imbedded in a chemical process network: 

both chemical nodes and process nodes are stages or echelons of a multi-echelon 

inventory systems, but safety stocks and working inventories (cycle stocks) are only 
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allowed to be maintained in the chemical nodes, i.e. all the processes are operating as a 

“pull” system with zero net lead time and zero inventory. The inventory model used in 

this work is based on the guaranteed service approach, in which the service levels of all 

the stages are known but lead times are variables. Thus, the inventory model is based on 

the timing relationships for all the process nodes and chemical nodes in the chemical 

process network. Thus, we analyze and model the timing relationships, between the 

deterministic processing time, GSTs, worst case replenishment lead times and net lead 

times, for all the process nodes and chemical nodes in the chemical process network.  

 

Timing balance of process nodes 

The first timing constraint for the process nodes is to define the worst case 

replenishment lead time. Since the production node is treated as a stage in the inventory 

system with zero inventories, the deterministic processing time should be the time 

delay of material flow from the “gate” of its direct predecessors to the “gate” of this 

production node. Thus, the deterministic processing time includes the transfer time 

from the storage tank to this process and the production delay of this process. It implies 

that if chemical j is a feedstock of process i, then the worst case replenishment lead time 

of process i ( iTP ) should be greater than or equal to the sum of the GST of chemical j to 

this process ( ijSC ), the transfer time ( ij ) from storage tank of chemical j to process i 

and the production delay of process i ( iPD ). This relationship leads to the following 

inequality. 

i ij ij iTP SC PD   , j , ( )i I j  (1) 

where ( )I j  is the subset of processes that consume chemical j. 

Since the production nodes do not hold safety stocks, their net lead times are zero 

and the GSTs to the successors equal to the worst case replenishment lead time. Thus, if 

chemical j is a product of process i, the guaranteed service time ( ijSP ) of process i to its 

downstream storage tank for chemical j is equal to the worst case replenishment lead 

time of process i. 

ij iSP TP , j , ( )i O j  (2) 

where ( )O j  is the subset of processes that produce chemical j. 
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Timing balance of chemical nodes 

Using a similar analysis, we can derive the timing constraints for each chemical 

node. If chemical j is a product of process i, the worst case replenishment lead time of 

chemical j ( jTC ) should be greater than the sum of the service time ( ijSP ) of its direct 

predecessors, i.e. process i, and the transfer time ( ij ) from process i to storage tank of 

chemical j. 

j ij ijTC SP   , j , ( )i O j  (3) 

If chemical j is also supplied by external supplier k with non-zero flow rate,  the 

worst case replenishment lead time of chemical j should be also greater than the service 

time of this external supplier, jkSI . This relationship can be modeled by the following 

constraint, 

j jk jkTC SI X  , j ,  k SUP j  (4) 

where jkX  is a binary variable that is 1 if part or all of the chemical j in the chemical 

process network is from supplier k, and  SUP j  is the subset of suppliers that can 

provide chemical j. 

If chemical j is a feedstock of process i, the GST of chemical j to its downstream 

process i ( ijSC ) should be greater than the difference between the worst case 

replenishment lead time of chemical j, and the net lead time ( ijN ) of chemical j for the 

demand from process i. 

ij j ijSC TC N  , j , ( )i I j  (5) 

If chemical j is sold to external market l, the guaranteed service time ( jlSO ) of 

chemical j to this market should be greater than the worst case replenishment lead time 

of chemical j minus the net lead time ( jlN ) of chemical j for the demand from market l, 

jl j jlSO TC N  , j ,  l MKT j  (6) 

where  MKT j  is the subset of markets that have positive demand of chemical j. 

In addition, the GST of chemical j to external market l should not exceed its upper 

bound. 

U
jl jlSO SO , j ,  l MKT j  (7) 
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Tactical Planning Constraints 

Since we consider the mid-term planning of process networks, the following 

constraints are introduced to model the production, purchase and sale activities, and 

account for the mass balance relationships.  

 

Capacity constraints: 

The production capacity is measured in terms of the production amount of the main 

product in each process. Thus, it requires that the production amount ( ijW ) of main 

product j in process i does not exceed the capacity, iCap . 

ij iW Cap , i , ij M  (8) 

where iM  is the subset of chemicals that is the main product of process i. 

 

Purchase and sale constraint: 

If supplier k is selected to supply chemical j, the purchase amount ( jkPu ) should lie 

between their lower and upper bounds; if not, the purchase amount should be zero. This 

relationship can be modeled by the following constraint. 

L U
jk jk jk jk jka X Pu a X    , j ,  k SUP j  (9) 

Since the unexpected demand are hedged against by safety stocks, the sale amount 

( jlSa ) of chemical j to market l only needs to satisfy the mean value of the demand, jl , 

as in the deterministic process planning. It yields the following constraint. 

jl jlSa  , j ,  l MKT j  (10) 

 

Mass balance constraints: 

For chemical j, the total input, including the total external purchase amount and the 

total production amount, should be equal to the total output, including the total amount 

consumed by internal processes and the total amount sold to external markets. This 

mass balance relationship is given by the following constraint. 

   ( ) ( )
jk ij ij jl

k SUP j i O j i I j l MKT j

Pu W W Sa
   

      , j  (11) 

where jkPu  is the purchase amount of chemical j from supplier k, and jlSa  is the sale 

amount of chemical j to market l. Note that inventory is not included in the mass 
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balance constraint (11), because we only consider single time period in this work. 

The consumption and production amount ( ijW ) of chemical j in process i is linearly 

related to the production amount ( 'ijW ) of the main product j’ for process i with the mass 

balance coefficient ij . This mass balance relationship is given by the following 

constraint. 

'ij ij ijW W  , i , ij C , ' ij M  (12) 

where iM  is the set of main product of process i. 

 

Internal Demand Quantification 

In addition to the net lead time, the inventory level of chemical j also depends on the 

distribution of the uncertain demand. Since the final demand of each chemical in each 

market is uncertain and follows a normal distribution, the input amount of each 

feedstock for each process, i.e. the internal demand, is also uncertain. The challenge is 

that we are only given the mean ( jl ) and standard deviation ( jl ) of this chemical’s 

demand in the market l, without knowing the detailed distribution of the “internal” 

demands. 

 

Probability Distribution of Internal Demands 

Since the final demand at each market follows a normal distribution, it follows that 

the internal demands are also normally distributed due to the linear mass balance 

constraint (11), to Cramér's theory (if the sum of some independent real-valued random 

variables is a normal random variable, then both all these random variables must be 

normally distributed as well), and to the perfect splitting property of the Gaussian 

distribution (the sum/difference of independent normal random variables also follows 

normal distribution with a mean as the sum/difference of the means of those random 

variables and a variance as the sum/difference of those variances). Since the mass 

balance constraints (11) require that the net input of each chemical should be equal to 

the net output, and the sale constraint (10) considers production targets as the mean 

values of market demands, the consumption amount of the feedstock j in process i ( ijW ) 

corresponds to the mean value of the associated internal demand. 

To determine the variance of an internal demand, let us first consider their 

variance-to-mean (VTM) ratios. The VTM ratio is unchanged when a normal 
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distribution is randomly split into a few distributions, i.e. there is a linear relationship 

between the variance and mean. For process i, if the demands of its products increase, 

its consumption amounts of feedstocks should also increase. Thus, to ensure a 

continuous and stable production of the process, and to hedge against the uncertain 

demand, the VTM ratios for all internal demands of its feedstocks, denoted as iRP , 

should be the same. Since we know that the mean value of the internal demand of 

chemical j in process i, ( )i I j  is ijW , which is the consumption amount of feedstock 

j in this process, the variance ( ijV ) of the internal demand of chemical j in process i is 

then given by the following constraint. 

ij i ijV RP W  , j , ( )i I j  (14) 

 

Uncertainty Propagation through the Chemical Process Network 

Because the information flow transfers from downstream to upstream, i.e. from the 

markets to the suppliers, we can use a “backward” derivation to determine the VTM 

ratios of the internal demands.  

Let us first consider the input and output relationship of a chemical node as shown in 

Figure 4. The successors of chemical node j include process i, ( )i I j  which has 

normally distributed demand of chemical j with variance ijV  and VTM ratio iRP , and 

market l,  l MKT j , which also has normally distribution demand of chemical j with 

variance jlV , i.e. 2
jl jlV  , and VTM ratio jlR , i.e. 2 / /jl jl jl jl jlR V    . Thus, the 

total demand of chemical j from the markets and downstream processes also follows a 

normal distribution with a mean given by 
 ( )

ij jl
i I j l MKT j

W Sa
 

 
  

 
   and a variance given 

by 
 ( )

ij jl jl
i I j l MKT j

V R Sa
 

 
   

 
  . Hence, the VTM ratio of the demand of chemical j is 

given by 
   ( ) ( )

ij jl jl ij jl
i I j l MKT j i I j l MKT j

V R Sa W Sa
   

   
        

   
    . If we denote jRC  as 

the VTM ratio of the demand of product j in process i, ( )i O j , then the value of jRC  

is determined by modeling the uncertainty propagation from the downstream to 

upstream through the chemical node. There are two potential cases for uncertainty 

propagation, the ideal case and the worst case.  
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In the ideal case, jRC  equals to the VTM ratio of the total demand of chemical j 

from markets and downstream processes, i.e. 

   ( ) ( )
ij jl jl ij jl

i I j l MKT j i I j l MKT j

V R Sa W Sa
   

   
        

   
    . One can draw an analogy of this 

“ideal” uncertainty propagation to the “pooling” problem41 with flow rate similar to the 

total demand rate and the concentration similar to the VTM ratio, although in this case 

we model the information flow transfers from downstream to upstream. Thus, the 

uncertainty propagation through a chemical node in the ideal case can be modeled with 

the following constraint. 

   ( ) ( )
j ij jl ij jl jl

i I j l MKT j i I j l MKT j

RC W Sa V R Sa
   

 
      
 
    , j  (15) 

where the right hand side of this constraint involves the product of two variables, i.e. 

bilinear terms.  

With constraint (15) we can see that the uncertainty propagation under the ideal case 

maintains the conservation of variance. However, in most cases, the level of uncertainty 

amplifies as the information flow transfers from downstream to upstream, i.e. the 

“bullwhip effect”.42 Thus, we address this issue by considering another type of 

uncertainty propagation – the “worst” case propagation. 

In the worst case, the “outbound” information stream from a chemical node to one of 

its direct predecessors (note that information transfers from downstream to upstream) 

should have a VTM ratio equal to the maximum VTM ratios of all the “inbound” 

information stream of this chemical node. In other words, the VTM ratio ( jRC ) of the 

demand of product j of process i, ( )i O j , equals to the maximum VTM ratio of 

chemical j in the downstream processes i, ( )i I j , and markets l,  l MKT j , i.e. 

 
 
  ( )

max max , maxj i jl
i I j l MKT j

RC RP R
 

 . This relationship can be modeled by the 

following two constraints. 

j iRC RP , j , ( )i I j  (16) 

j jlRC R , j ,  l MKT j  (17) 

The differences and similarities of these two approaches will be illustrated in 

Examples 1-3. In general, the worst case approach is relatively conservative and may 

lead to higher inventories and service levels than the ideal case approach. From the 
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modeling perspective, constraint (15) includes non-convex and nonlinear bilinear terms 

on the left hand side, while constraint (16) and (17) are simply linear constraints. 

Although there is no clear rule how the uncertainty propagates through a chemical 

process network from the markets to the suppliers, the ideal case approach and the 

worst case approach represent two extreme scenarios. Since the inventory has to deal 

with unexpected situations and accounts for the worst case, the “worst” case 

uncertainty propagation might be a more suitable approach. A detailed comparison of 

these two approaches will be presented in Example 3. 

Besides the above constraints, we also need to consider how the VTM ratios change 

as the information flow transfers through a process node. The successors of a process 

node i are all chemical nodes, as shown in Figure 5, and all these chemical nodes are the 

products of this process. Since the process operates in the “pull” mode and all the 

products are produced simultaneously with a linear mass balance relationship as in 

constraint (12), the VTM ratio for the all demands of its feedstocks, iRP , should be 

greater than or equal to the corresponding ratio of any of its products. Thus, we have the 

following constraint to model this relationship. 

i jRP RC , j , ( )i O j  (18) 

 

Non-negative Constraints 

All continuous variables must be nonnegative and the binary variables should be 0 

or 1. 

0ijSC  , 0ijN  , 0ijV  , j , ( )i I j  (19.1) 

0ijSP  , j , ( )i O j  (19.2) 

0ijW  , ij C   (19.3) 

0iRP  , 0iTP  , i  (19.4) 

0jRC  , 0jTC  , j  (19.5) 

0jkPu  , j ,  k SUP j  (19.6) 

0jlSa  , 0jlSO  , 0jlN  , j ,  l MKT j  (19.7) 

 0,1jkX  , j ,  k SUP j  (19.8) 
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Objective function 

The objective of this problem is to minimize the total cost, including feedstock 

purchase cost, production cost and inventory cost.  

The purchase cost is given by the summation of products of the unit price of 

chemical and the total purchase amount,   jk jkk j SUP k
Pu


   , where jk  is the unit 

purchase price of chemical j from supplier k.  

The production cost is given by the summation of products of the unit processing 

cost and the production amount of main product, 
i

i iji j M
W


  , where i  is the 

unit production cost of process i. 

The inventory cost includes cycle stock cost and safety stock cost. Since the net lead 

time of chemical j for the uncertain demand from downstream process i and external 

market are jiN  and jN , respectively, the uncertain internal and external demand of 

chemical j follows normal distribution with mean   ( )jl jl ij ijl MKT j i I j
N N W

 
     

and variance   ( )jl jl ij ijl MKT j i I j
N V N V

 
    . Thus, the optimal cycle stock of 

chemical j is given by   ( )
2jl jl ij ijl MKT j i I j

N N W
 

    , and the safety stocks of 

chemical j is given by   ( )j jl jl ij ijl MKT j i I j
N V N V

 
    , where j  is the safety 

stock factor of chemical j. Note that this approach is consistent with the “risk-pooling” 

effect,18 where we centralize the inventory management of chemical j and aggregate all 

the downstream demands into the chemical node. As will be shown in Example 2, this 

centralized approach will lead to potential reduction of total cost when compared with 

the decentralized inventory management, i.e. maintain the inventory in each individual 

process of a chemical complex. 

With the aforementioned cost components, the objective function for minimizing 

the total cost is given in (20). 
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 

 
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( )
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i

i ij
i j M

jk jk
k j SUP k

j
jl jl ij ij

j l MKT j i I j

j j jl jl ij ij
j l MKT j i I j

W

Pu

h
N N W

h N V N V











 

 



  

 
      

 
 

      
 

 

 

  

  

 (20) 

where jh  is the unit inventory holding cost of chemical j. 

 

Non-convex MINLP Model 

The constraints and objective function discussed above yield two MINLP models, 

one is for the “ideal” case uncertainty propagation, denoted as model (P1), and the other 

is for the “worst” case uncertainty propagation, denoted as model (P2). The model for 

ideal case includes constraints (1)-(15), (18)-(19) and the objective function (20). The 

model for worst case includes constraints (1)-(14), (16)-(19) and the objective function 

(20). Both models are nonconvex, because constraints (14) and (15) include bilinear 

terms, and the objective function (20) has both square root terms and bilinear terms. 

 

Illustrative Example 

To illustrate the application of the MINLP models (P1) and (P2), we first consider 

three small-scale examples. 

 

Example 1: Timing Relationship and Mass Balance 

The first example is for a chemical process network with 3 chemicals, 3 processes, 2 

suppliers and 1 market, taken from Sahinidis & Grossmann.3 The chemical process 

network of this problem is given in Figure 6. 

In this problem, the safety stock factor j  for all the chemicals are the same and 

equal to 2.0537, corresponding to a 98% service level, i.e.  Pr 2.0537 98%z    for 

 ~ 0,1z N . The demand of Chemical C in the market follows a normal distribution 

with a mean of 100 ton/day and a standard deviation of 20 ton/√day. The maximum 

GST of Chemical C to the market is fixed to zero. The deterministic transfer times from 
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process i to storage tank of chemical j ( ij ) and from storage tank of chemical j to 

process i ( ij ) are neglected and set to zero. The remaining input data are given in Table 

1. 

 
Table 1   Input data of Example 1 

 Process 1 Process 2 Process 3 
Main product  Chemical B Chemical C Chemical C 
Production capacity iCap  (ton/day) 100 80 70 

Unit production cost i  ($/ton) 50 60 70 

Production delay iPD  (day) 2 3 2 

 Chemical A Chemical B Chemical C 
Unit inventory cost jh  ($/ton/day) 1.5 4.5 9.0 

ij : mass balance coefficients 

 (positive for inputs and negative for outputs) 
 Chemical A Chemical B Chemical C 
Process 1 1.11 -1  
Process 2  1.22 -1 
Process 3  1.05 -1 

jk : unit purchase cost ($/ton) 

 Chemical A Chemical B Chemical C 
Supplier 1 40   
Supplier 2  152  

jkSI : guaranteed service time (day) 

 Chemical A Chemical B Chemical C 
Supplier 1 3   
Supplier 2  8  

U
jka : upper bound of availability (ton/day) 

 Chemical A Chemical B Chemical C 
Supplier 1 200   
Supplier 2  100  

 

The MINLP model (P1) for “ideal case” uncertainty propagation involve 2 binary 

variables, 36 continuous variables and 38 constraints, and the MINLP model (P2) for 

“worst case” uncertainty propagation involve 2 binary variables, 36 continuous 

variables and 39 constraints. Since the problem sizes are rather small, we globally 

optimize both instances using the BARON solver43 with GAMS,44 and both CPU times 

are less than 1 second for obtaining optimal solutions with 0% optimality margin. 

Both instances lead to the same optimal solution, and a minimum daily total cost of 

$22,007.07/day. The reason is that this problem involves only one market, which only 
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has demand of Chemical C. Thus, all the VTM ratios in this chemical process network 

equal to the VTM ratio of this final demand, no matter how we consider the uncertainty 

propagation. Note that in general cases, the “worst case” model (P2) may predict larger 

variances of internal demands, and consequently larger optimal safety stocks and 

higher total cost, compared to the “ideal case” model (P1).  

The optimal solutions are shown in Table 2 and Figure 7. We can see that the daily 

total safety stock cost of this chemical complex is $1,165.4/day, which is around 5.3% 

of the daily total cost, and the total cost of cycle stocks is $3,166.4/day, which is around 

14.4% of the daily total cost. The total purchase cost and total production cost represent 

27.2% and 53.2% of the daily total cost, respectively. The production levels are given in 

Figure 7a. We can see that Process 1 and Process 3 are operating at full capacity. For 

Process 1, the unit cost of Chemical B, including the unit production cost of Process 1 

($50/ton) and the purchase cost of 1.11 tons of Chemical A from Supplier 1 ($44.4/ton 

of Chemical B), is less than the purchase cost of Chemical from Supplier 2 ($152/ton). 

For Process 3, although its unit production cost is higher than the one of Process 2, it 

requires less Chemical B as feedstock for the product of Chemical C, and consequently 

less unit cost of the final product. The purchase and sale activities are then coordinated 

based on the production level to ensure the mass balance in each process, supplier and 

market.  

The detailed optimal net lead times and GSTs of all the nodes in this chemical 

process network are given in Figure 7b. The optimal solution shows that the chemical 

process network does not hold any inventory of the feedstock Chemical A, but the 

intermediate Chemical B and the final product Chemical C are both hold in storage. The 

reason is that the GST of supplier 1 plus the production delay of Process 1 is 5 days, but 

the GST of supplier 2 is 8 days. This implies that no matter how much inventory we 

hold for Chemical A, the worst case replenishment lead time for Chemical B is always 

8 days. Thus, an economic way is to hold zero inventory of Chemical A, i.e. operating 

as “pull” system with zero net lead time, and quote a GST of 3 days to Process 1. Now, 

consider the timing relationship between Chemical B and C and Process 2 and 3. Since 

the unit inventory cost of Chemical B ($4.5/day/ton) is less the one for Chemical C 

($9/day/ton), it is optimal to hold as much inventory of Chemical B as possible, so as to 

reduce the required stock level of Chemical C. Thus, Chemical B quotes a GST of 0 day 

to Process 2 and allows its net lead time to Process 2 equal to its worst case 

replenishment lead time, 8 days. However, Chemical B guarantees a service time of 1 
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day to Process 3, and has the corresponding net lead time as 7 days, instead of the 

maximum of 8 days. This is due to the difference between the production delays of 

Process 2 (3 days) and Process 3 (2 days). Since Chemical 3 needs to have zero GST to 

the market and holds inventories for a net lead time of 3 days, i.e. “push” system, it is 

optimal to have the production delay of Process 3 plus the GST to this process equal to 

3 days as well. These results show that inventory allocation of the chemical process 

network leads to a hybrid “push - pull” system, where each node either does not hold 

inventory or holds maximum required inventory. What we observed in this example is 

consistent and similar to the phenomena discovered by Simpson30 for multi-stage 

“series” inventory system. It is also interesting to note that all the optimal guaranteed 

service times and net lead times happen to be integer, although we do not restrict them 

to be integer values. 

 

Table 2   Optimal solution of Example 1 
 Chemical A Chemical B Chemical C 
Total safety stock (ton) 0 116.70 71.14 
Total cycle stock (ton) 0 403.65 150 
Total safety stock cost ($/day) 0 525.3 640.3 
Total cycle stock cost ($/day) 0 1,816.4 1,350 

ijW : production/consumption amount (ton/day) 

 Chemical A Chemical B Chemical C 
Process 1 111 100  
Process 2  36.6 30 
Process 3  73.5 70 

ijV : variance of internal demand (ton2/day) 

 Chemical A Chemical B Chemical C 
Process 1 444   
Process 2  146.4  
Process 3  294  

jkPu : purchase amount (ton/day) 

 Chemical A Chemical B Chemical C 
Supplier 1 111   
Supplier 2  10  

jlSa : sale amount (ton/day) 

 Chemical A Chemical B Chemical C 
Market   100 
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Example 2: Risk Pooling Effect 

The second example is for another chemical process network with 10 chemicals, 6 

processes, 2 suppliers and 1 market, taken from Iyer & Grossmann45 and shown in 

Figure 8a. In this problem, the safety stock factor for all the chemicals are also set to 

2.0537, corresponding to 98% service level. The maximum GST of all the chemicals to 

the market are zero, and the purchase lower bounds are all set to zero, too. The 

deterministic transfer times from process i to storage tank of chemical j ( ij ) and from 

storage tank of chemical j to process i ( ij ) are neglected. All the external demands of 

chemicals in the market follow normal distributions. There are two suppliers, an 

international one (Supplier 1) and a domestic one (Supplier 2). In general, the 

international supplier has higher GSTs to supply the feedstocks, but lower unit 

purchase costs. The detailed input data are given in Table 3. 

 
 

Table 3   Input data of Example 2 
production capacity iCap  (ton/day) 

Process 1 180 Process 4 400 
Process 2 100 Process 5 200 
Process 3 50 Process 6 100 

unit production cost i  ($/ton) 

Process 1 55 Process 4 50 
Process 2 60 Process 5 50 
Process 3 70 Process 6 90 

production delay iPD  (day) 

Process 1 2 Process 4 4 
Process 2 3 Process 5 5 
Process 3 2 Process 6 4 

unit inventory cost jh  ($/ton/day) 

Acetylene 1.5 Acrylonitrile 8 
Propylene 2.5 Isopropanol 5 
Benzene 5.0 Phenol 3 

Nitric Acid 5.0 Acetone 7 
Acetaldehyde 10 Cumene 2 

mass balance relationship 
Process 1 0.63 Acetylene + 0.58 Nitric Acid => Acrylonitrile 
Process 2 0.64 Acetylene => 0.55 Nitric Acid + Acetaldehyde 
Process 3 1.25 Propylene => 0.9 Nitric Acid + Acrylonitrile 
Process 4 0.4 Propylene + 0.69 Benzene => Cumene 
Process 5 2.3 Cumene => 1.7 Phenol + Acetone 
Process 6 0.74 Propylene => Isopropanol 
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jl : mean value of external demands (ton/day) 

Acetaldehyde 80 Phenol 200 
Acrylonitrile 110 Acetone 100 
Isopropanol 70 Cumene 70 

jl : standard deviation of external demands (ton/√day) 

Acetaldehyde 20 Phenol 50 
Acrylonitrile 30 Acetone 30 
Isopropanol 20 Cumene 20 

jk : unit purchase cost ($/ton) 

 Acetylene Propylene Benzene Nitric Acid 
Supplier 1 550 400 440 820 
Supplier 2 600 405 445 820 

jkSI : guaranteed service time (day) 

 Acetylene Propylene Benzene Nitric Acid 
Supplier 1 14 13 13 19 
Supplier 2 2 3 2 4 

U
jka : upper bound of availability (ton/day) 

 Acetylene Propylene Benzene Nitric Acid 
Supplier 1 100 200 200 50 
Supplier 2 50 250 100 100 

 

In this example, we consider two instances, the centralized inventory management 

and the decentralized inventory management. The difference between them is that the 

centralized one takes into account the “risk pooling” effect18 in the inventory model, as 

in model (P1) and (P2), while the decentralized one does not group the inventories of 

the chemicals, but use a simple “rule of thumb” to maintain the individual storages for 

the feedstocks and/or products of all the processes and markets, i.e. each process 

manages its own inventories without coordination throughout the chemical complex. 

The chemical process networks of these two instances are given in Figure 8a and 8b, 

respectively, and the chemicals in these two chemical process networks are listed in 

Table 4. Compared to the centralized inventory management instance, the 

“decentralized” one has more chemical nodes due to the disaggregation of some 

chemicals as feedstocks and products of process. 

 
Table 4   List of Chemicals in Example 2 

 A Acetylene  F Acrylonitrile 
 B Propylene  G Isopropanol 
 C Benzene  H Phenol 
 D Nitric Acid  I Acetone 
 E Acetaldehyde  J Cumene 
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We first solved the instance for centralized inventory management with models (P1) 

and (P2) using GAMS/BARON, since there are only 8 binary variables, 108 continuous 

variables and 124 constraints in (P1) and 8 binary variables, 108 continuous variables 

and 128 constraints in (P2). The CPU times are both less than 1 second, and both 

models lead to the same global optimal solution with a minimum daily total cost of 

$312,288.81/day. The reason is that all the VTM ratios of internal demands in the 

chemical process networks are the same in both optimal solutions, except those for the 

feedstocks of Process 4, Chemical B and C. However, the optimal net lead times of 

Chemical B to Process 4 and of Chemical C to Process 4 are zero in both optimal 

solutions. This implies that no safety stocks are held for the feedstocks of Process 4. 

Therefore, the differences between the two approaches for uncertainty propagation are 

not reflected in the total minimum cost.  

The optimal inventory levels and production, purchase and sale levels are shown in 

Table 5. The optimal total daily safety stock cost is $5,296.6/day, which is around 1.7% 

of the daily total cost, and the total cost of cycle stocks is $13,390.4/day, which is 

around 4.3% of the daily total cost. The total purchase cost and total production cost 

represent 81% and 13% of the daily total cost, respectively. Thus, the total inventory 

cost is almost half of the production cost, despite the high feedstock cost. In terms of the 

production levels, we can see from Table 5 that all the processes are operating with 

around 80% capacity due to the relatively low demand. We can also see that all the 

purchases of acetylene are from the internal supplier (Supplier 1) due to the relatively 

low price ($550/ton vs. $600/ton). However, all the purchases of propylene are from the 

domestic supplier (Supplier 2), because the long lead time of the international supplier 

leads to higher inventory costs, which offsets its price advantage ($400/ton vs. 

$405/ton). The results reveal the trade-offs between process planning and inventory 

management. It is interesting to note that due to the co-production of phenol and 

acetone in Process 5, the sale amount of acetone is higher than the production target. 

 
Table 5   Optimal solution of the “centralized” inventory management Instance 

in Example 2 
production amount in terms of main product 

mijW  (ton/day) 

Process 1 66.89 Process 4 340.59 
Process 2 80 Process 5 117.65 
Process 3 43.11 Process 6 70 
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total safety stock (ton) 
Acetylene 188.35 Acrylonitrile 87.13 
Propylene 96.56 Isopropanol 82.15 
Benzene 0 Phenol 229.61 

Nitric Acid 51.746 Acetone 137.77 
Acetaldehyde 71.142 Cumene 520.77 

total cycle stock (ton) 
Acetylene 653.39 Acrylonitrile 110 
Propylene 158.53 Isopropanol 140 
Benzene 0 Phenol 500 

Nitric Acid 38.80 Acetone 250 
Acetaldehyde 120 Cumene 2,895 

jkPu : purchase amount (ton/day) 

 Acetylene Propylene Benzene 
Supplier 1 93.34 0 200 
Supplier 2 0 241.92 35.01 

jlSa : sale amount to the market (ton/day) 

Acetaldehyde 80 Phenol 200 
Acrylonitrile 110 Acetone 117.647 
Isopropanol 70 Cumene 70 

 

In the second instance of this problem we consider the decentralized inventory 

management, of which the chemical process network is given in Figure 8b. The models 

for the decentralized inventory management instance are almost the same as (P1) and 

(P2), except the safety stock cost term in the objective function. Recall that for chemical 

j, its uncertain demand from downstream process i has a variance of ijV  and a net lead 

time of jiN , and its uncertain demand from downstream market l (if applicable) has a 

variance of jlV  and a net lead time of jN . Thus, in the decentralized inventory 

management case, the optimal safety stocks of chemical j for downstream process i is 

j ij ijN V  , and for market l is j jl jlN V  . Therefore, the total safety stock of 

chemical j under the decentralized inventory management mode is 

  ( )j jl jl ij ijl MKT j i I j
N V N V

 
    . Using a similar approach, it is easy to prove 

that the optimal cycle stocks of chemical j is the same in both instances, and is given by 

  ( )
2jl jl ij ijl MKT j i I j

N N W
 

    . Therefore, the models for the decentralized 

inventory management have the same constraints as (P1) and (P2), but a new objective 

function is given in (21).  
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 (21) 

We again use GAMS/BARON to solve the new models, which have the same 

variables and constraints as (P1) and (P2), respectively. Similarly to the previous 

instance, the ideal case and the worst case uncertainty propagation both lead to the same 

global minimum cost, $ 312,785.15/day, of which $5,792.9/day is safety stock cost, 

$13,390.4/day is the cycle stock cost, $40,708.4/day is the production cost and 

$252,893.4/day is the purchase cost. The new models predict exactly the same optimal 

production, purchase and sales levels and costs as in the previous instance, but higher 

inventory levels. The optimal inventory levels of chemicals are listed in Table 6, and a 

comparison between the optimal safety stocks of the centralized and decentralized 

inventory management are presented in Figure 9, which shows that the safety stocks of 

acetylene, propylene and cumene have been significantly reduced by using centralized 

inventory management to account for “risk pooling”, and in turn suggests the 

applicability of the proposed models. 

 
Table 6   Optimal solution of the “decentralized” inventory management 

Instance in Example 2 
total safety stock (ton) 

Acetylene 265.63 Acrylonitrile 87.13 
Propylene 135.89 Isopropanol 82.15 
Benzene 0 Phenol 229.61 

Nitric Acid 51.75 Acetone 137.77 
Acetaldehyde 71.14 Cumene 661.81 

total cycle stock (ton) 
Acetylene 653.39 Acrylonitrile 110 
Propylene 158.53 Isopropanol 140 
Benzene 0 Phenol 500 

Nitric Acid 38.80 Acetone 250 
Acetaldehyde 120 Cumene 2,895 
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Example 3: Recycle and Uncertainty Propagation 

In the third example, we consider a chemical process network with 7 chemicals, 8 

processes, 2 suppliers and 1 market. The chemical process network of this problem is 

given in Figure 10. In this example, we still consider 98% service level for all the 

chemicals. The demands of Chemicals D and G in the market follow a normal 

distribution with mean values of 120 ton/day and 90ton/day, and standard deviation of 

40 ton/√day, 50 ton/√day, respectively. The purchase lower bounds, the maximum 

GSTs of chemicals to the market , and the deterministic transfer times from process i to 

storage tank of chemical j ( ij ) and from storage tank of chemical j to process i ( ij ) are 

all set to zero. The remaining input data are given in Table 7. 

 
Table 7   Input data of Example 3 
production capacity iCap  (ton/day) 

Process 1 60 Process 5 50 
Process 2 50 Process 6 80 
Process 3 90 Process 7 80 
Process 4 90 Process 8 100 

unit production cost i  ($/ton) 

Process 1 50 Process 5 50 
Process 2 60 Process 6 90 
Process 3 140 Process 7 75 
Process 4 20 Process 8 100 

production delay iPD  (day) 

Process 1 5 Process 5 5 
Process 2 3 Process 6 4 
Process 3 7 Process 7 2 
Process 4 4 Process 8 4 

unit inventory cost jh  ($/ton/day) 

A 1.5 E 6 
B 5.5 F 8 
C 7 G 5 
D 5   

mass balance relationship 
Process 1 0.63 A => B 
Process 2 0.58 A => B 
Process 3 1.25 B => 4 C + E + 1.5 F 
Process 4 0.1 B + 0.05 D => C 
Process 5 0.8 B => E 
Process 6 2.04 C => D 
Process 7 2.3 C => D 
Process 8 0.93 E + 0.77 F => G 
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jk : unit purchase cost ($/ton) 

 A E 
Supplier 1 (international) 550 567 
Supplier 2 (domestic) 820 840 

jkSI : guaranteed service time (day) 

 A E 
Supplier 1 (international) 12 2 
Supplier 2 (domestic) 13 7 

U
jka : upper bound of availability (ton/day) 

 A E 
Supplier 1 (international) 60 50 
Supplier 2 (domestic) 100 100 

 

Table 8   Optimal solution of the “centralized” inventory management Instance 
in Example 2 

production amount in terms of main product 
mijW  (ton/day) 

Process 1 45.71 Process 5 37.50 
Process 2 50 Process 6 80 
Process 3 46.20 Process 7 43.98 
Process 4 79.55 Process 8 90 

jkPu : purchase amount (ton/day) 

 A E 
Supplier 1 (international) 57.79 0 
Supplier 2 (domestic) 0 0 

jlSa : sale amount to the market (ton/day) 

 D G 
Market 120 90 

optimal cycle stock (ton) 
A 317.76 E 0 
B 197.33 F 0 
C 0 G 495 
D 675.91   

optimal safety stock from Model (P1) (ton) 
A 266.91 E 0 
B 212.76 F 0 
C 0 G 340.57 
D 275.72   

optimal safety stock from Model (P2) (ton) 
A 272.87 E 0 
B 212.76 F 0 
C 0 G 340.57 
D 275.72   
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From Figure 10, we can see that the chemical process network of this example is 

different from the previous ones – there is a recycle from Process 6 and 7 to Process 4. 

Recycle usually occur in chemical complexes, which makes it a challenging problem to 

employ a stochastic inventory approach to determine the optimal stock levels of this 

type of inventory systems.46 With the proposed model that integrates process planning 

with inventory management, we can explicitly address this challenge and handle it with 

the direct optimization approach without the need of detailed flow analysis. We solve 

the problem with the nonconvex MINLP models (P1) and (P2) using GAMS/BARON 

with 0% optimality margin. In contrast to the previous examples, the optimal solutions 

of using the “ideal” case uncertainty propagation and the “worst” case uncertainty 

propagation are different for this example. Model (P1), which is for the “ideal” case 

uncertainty propagation, leads to a global minimum daily cost of $78,572.72/day, 

including $4,652/day for safety stock cost, $7,416.5/day for cycle stock cost, 

$34,717.5/day for production cost and $31,786.7/day for purchase cost. Model (P2), 

which is for the “worst” case uncertainty propagation, leads to a global minimum daily 

cost of $ 78,581.70/day, including $4,660.9/day for safety stock cost, $7,416.5/day for 

cycle stock cost, $34,717.5/day for production cost and $31,786.7/day for purchase 

cost. Note that in this case the difference between the “ideal” and “worst” case is very 

small. 

The optimal production, purchase, sale and inventory levels predicted by the two 

models are listed in Table 8 and Figure 11a-b. We can see that the optimal production, 

purchase and sale levels, as well as the cycle stock levels are the same for both 

solutions. In particular, Process 2 and Process 6 are operating with full capacity, while 

their parallel processes are not. The reason is that Process 2 has less unit production 

cost than Process 1, and Process 6 requires less feedstock than Process 7. In terms of 

inventory, it is interesting to note that the optimal solutions do not to hold inventories 

for intermediates – Chemical C, E and F, in order to achieve the optimal inventory 

allocation. In addition, we can see from Figure 11b that the “worst” case approach leads 

to slightly higher safety stocks for Chemical A (272.87 tons vs. 266.91 tons), although 

the optimal cycle stocks are the same for both approaches. A comparison of the optimal 

VTM ratios with these two approaches is given in Figures 12. We can see that the ratios 

increase from downstream to upstream in both cases, and the ones for “ideal” case 

uncertainty propagation are always less than or equal to the ones for the “worst” case. 

Besides, the ratios are the same in both cases for the downstream chemicals and 
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processes, but different for Chemical A and B and Process 1 and 2. The reason is that 

the information flows of demand uncertainty from Chemical D and “cross” with the one 

from Chemical G at the chemical node B. Due to the two different ways of quantifying 

the upstream demand uncertainties, the optimal VTM ratios for Chemical B are 

different in the two cases, and the difference consequently affects the upstream 

chemical nodes and process nodes. 

From this example, we can also see that there are not too many differences between 

the optimal solutions predicted by the “ideal” and “worst” case models. Since model 

(P2) involves fewer nonconvex terms, and represents the most conservative “worst” 

case, it can be used to deal with the large-scale problem for higher computational 

efficiency without sacrificing accuracy. In addition, the main purpose of holding 

inventory is to deal with the unexpected situation and account for the worst case. To 

this end the “worst” case uncertainty propagation might be a more practical approach. 

In the next section, we first explore some properties of model (P2), and then the present 

an efficient computational algorithm, followed by another two large-scale examples. 

 

Solution Algorithm 

Although small scale problems can be solved to global optimality effectively by 

using a global optimizer, medium and large-scale problems are often computationally 

intractable with a direct solution approach due to the combinatorial nature and 

nonlinear nonconvex terms. In this section, we present an effective solution algorithm 

based on the model properties and successive piecewise linear approximation to 

globally optimize (P2) with modest computational expense. 

 

Reformulation 

In model (P2) with the “worst” case uncertainty propagation, the only nonconvex 

constraint is (14), which involves the VTM ratio and the internal demand’s variance. 

Although the linear constraints (16)-(18) can be used to define the VTM ratios under 

the worst case, we can get rid of these constraints and determine the ratios in a 

pre-optimization step due to the following model property. 

 

Property 1. At the optimal solution of problem (P2), the optimal variance-to-mean 
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ratios of internal demands, denoted as ( *
jRC , *

iRP ) must be equal to one of the 

variance-to-mean ratios of the final demands jlR . In other words, at the optimum 

 ', 'j l  such that *
' 'j j lRC R , and '', ''j l  such that *

'' ''i j lRP R . 

Proof: If there is a positive directed flow from the chemical node j to the chemical node 

j’ which connects to market l’, then due to the constraints (16)-(18), we can have 

' 'j j lRC R . By figuring out all the possible flows that start from chemical node j and 

end at another chemical node j’, which has positive uncertain demand in the external 

market l’, we can have ' 'j j lRC R  for j and j’ are on the same directed flow and 

 ' 'l MKT j . Thus, the lower bound of jRC  is given by 
 
 ' '

', ' '
max j l

j l MKT j
R


. Since the 

objective function is to minimize the total cost, including the safety stock cost, while a 

larger VTM ratio implies a higher variance of an internal demand, and consequently 

higher safety stock cost. Therefore, we can conclude that the optimal VTM ratio should 

lie at on its lower bound defined by the uncertainty propagation, i.e. 

 
 *

' '
', ' '
maxj j l

j l MKT j
RC R


 . Using a similar approach, one can show that 

 
 *

'' ''
'', '' ''

maxi j l
j l MKT j

RP R


  for i and j’’ are on the same directed flow and  '' ''l MKT j .

 □ 

 

Based on Property 1, we can determine the optimal VTM ratios in a pre-optimization 

step. Various path-search algorithms can be implemented to handle this issue. 

Alternatively, one can use the following algorithm that requires at most  max ,i j  

iterations. 

 

Step1: Initialize 1iter  , 0iter
iRP  , 0iter

jRC  . If ( )MKT j   , set 

 
 maxiter

j jl
l MKT j

RC R


 . 

Step2: For all i, j such that ( )i O j ,    1 max ,iter iter iter
i i jRP RP RC   

Step3: For all i, j such that ( )i I j ,  1 max ,iter iter iter
j i jRC RP RC   

Step4: For all j such that ( )MKT j   , 
 
  1 1max , maxiter iter

j j jl
l MKT j

RC RC R 


  
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Step5: Evaluate    2 21 1iter iter iter iter
j j i ij i

diff RC RC RP RP      .  

Step6: If 610diff  , then set * 1iter
j jRC RC   and * 1iter

i iRP RP  , and stop. Else, set 

1iter iter   and go to Step 2.  

 

For instance, applying this algorithm to Example 3, of which the chemical process 

network is given in Figure 10, requires 8 iterations. The values of jRC  and iRP at 

each iteration are given in Table 9. 

 

Table 9   Variance-to-mean ratios in each iteration 

iRP  Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8 

Proc. 1 0 0 0 0 0 27.778 27.778 27.778 
Proc. 2 0 0 0 0 0 27.778 27.778 27.778 
Proc. 3 0 0 0 27.778 27.778 27.778 27.778 27.778 
Proc. 4 0 0 0 13.333 13.333 13.333 13.333 13.333 
Proc. 5 0 0 0 27.778 27.778 27.778 27.778 27.778 
Proc. 6 0 13.333 13.333 13.333 13.333 13.333 13.333 13.333 
Proc. 7 0 13.333 13.333 13.333 13.333 13.333 13.333 13.333 
Proc. 8 0 27.778 27.778 27.778 27.778 27.778 27.778 27.778 

jRC  Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 Iter. 6 Iter. 7 Iter. 8 

A 0 0 0 0 0 0 27.778 27.778 
B 0 0 0 0 27.778 27.778 27.778 27.778 
C 0 0 13.333 13.333 13.333 13.333 13.333 13.333 
D 13.333 13.333 13.333 13.333 13.333 13.333 13.333 13.333 
E 0 0 27.778 27.778 27.778 27.778 27.778 27.778 
F 0 0 27.778 27.778 27.778 27.778 27.778 27.778 
G 27.778 27.778 27.778 27.778 27.778 27.778 27.778 27.778 

 

With Property 1 we can determine the VTM ratios before solving the MINLP 

model (P2) and avoid the bilinear constraint (14). The second property of this model is 

about the timing relationship and is as follows. 

 

Property 2. Denote M  as the maximum positive value such that for all the “timing” 

parameters iPD , jkSI , U
jlSO , ij , ij , have integer values for iPD M , jkSI M , 

U
jlSO M , ij M , ij M , then at the optimal solution of (P2), all the optimal net lead 

times, denoted as ( *
ijN , *

jlN ) also have integer values for *
ijN M  and *

jlN M .  

Proof: Since iPD M , jkSI M , U
jlSO M , ij M , ij M  are all integers, the 
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stochastic lead time constraints (1)-(7) can be reformulated as follows: 

ij iji i
SCTP PD

M M M M


   , j , ( )i I j  (1) 

ij i
SP TP

M M
 , j , ( )i O j  (2) 

j ij ijTC SP

M M M


  , j , ( )i O j  (3) 

j jk
jk

TC SI
X

M M
  , j ,  k SUP j  (4) 

ij j ijSC TC N

M M M
  , j , ( )i I j  (5) 

jl j jlSO TC N

M M M
  , j ,  l MKT j  (6) 

U
jl jlSO SO

M M
 , j ,  l MKT j  (7) 

Since the right hand side of constraints (1), (3), (4) and (7) are all integers, these 

stochastic lead time constraints define an integral polyhedron with all the extreme 

points ( *
ijN M , *

jlN M , *
jlSO M , *

ijSC M , *
ijSP M , *

jTC M , *
iTP M ) on the 

integer values. Note that these are the only constraints in model (P2) that relates to net 

lead time variables ijN  and jlN . Besides, if we fix all the production, purchase and 

sale variables, the objective function is concave for variables  ijN M  and 

 jlN M .35 Similarly to the problem addressed by You and Grossmann,35 this is a 

concave minimization problem over an integer polyhedron. Thus, the optimal solution 

always lies on the integer extreme points,47, 48 i.e. *
ijN M  and *

jlN M must be 

integers.  □ 

 

Property 2 allows us to restrict ijN M  to be on integer values. Each integer 

variable ijN M  can be represented by a set of binary variables as follows:49  

12 m
ij ijm

m

N M Z   , j , ( )i I j  (22.1) 

 0,1ijmZ  , ,j m , ( )i I j  (22.2) 

where ijmZ  determines the value of the mth digit of the binary representation of 
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ijN M . Note that the upper bound of m depends on the upper bound of ijN  and the 

value of M, which also depends on the timing parameters. For example, if 50U
ijN   

and M = 1, we can set m = 1, 2, 3, 4, 5, 6. 

With this transformation, we can reformulate model (P2) to reduce the 

nonlinearities. Substituting (22) into the objective function (20), it can then be 

reformulated as follows. 

 

 

 

1

( )

1

( )

min       

         

         2
2

         2

i

i ij
i j M

jk jk
k j SUP k

mj
jl jl ij ijm

j l MKT j i I j m

m
j j jl jl ijm ij

j l MKT j i I j m

W

Pu

h
N M W Z

h N V M Z V













 



 



  

 
        

 
 

        
 

 

 

   

   

 (23) 

Introducing two non-negative variables jG  and jQ , with the following 

equations: 

 

1

( )

2 m
j jl jl ijm ij

l MKT j i I j m

G N V M Z V

 

        , j  (24) 

 

1

( )

2 m
j jl jl ij ijm

l MKT j i I j m

Q N M W Z 

 

        , j  (25) 

Then the objective function can be further reformulated to (26) as follows. 

 
 min       

2
i

j
i ij jk jk j j j j

i j M k j SUP k j j

h
W Pu Q h G 

 

               (26) 

 

The linearization50 of ( ijm ijZ V ) in constraint (24) requires two new continuous 

non-negative variable ijmZV  and 1ijmZV , and the following constraints,  

1ijm ijm ijZV ZV V  , ,j m , ( )i I j  (27.1) 

U
ijm ij ijmZV V Z  , ,j m , ( )i I j  (27.2) 

 1 1U
ijm ij ijmZV V Z   , ,j m , ( )i I j  (27.3) 

0ijmZV  , 1 0ijmZV  , ,j m , ( )i I j  (27.4) 

where constraints (27.2), (27.3), (27.4) ensure that if ijmZ  is zero, ijmZV  should be 

zero; if ijmZ  is one, 1ijmZV  should be zero. Combining with constraint (27.1), we can 
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have jkSZ  equivalent to the product of jS  and jkZ . 

Similarly, the nonlinear terms ( ij ijmW Z ) in constraint (25) can be linearized as 

follows, 

1ijm ijm ijZW ZW W  , ,j m , ( )i I j  (28.1) 

U
ijm ij ijmZW W Z  , ,j m , ( )i I j  (28.2) 

 1 1U
ijm ij ijmZW W Z   , ,j m , ( )i I j  (28.3) 

0ijmZW  , 1 0ijmZW  , ,j m , ( )i I j  (28.4) 

where ijmZW  and 1ijmZW  are two new continuous variables, and ijmZW  is equivalent 

to ( ij ijmW Z ). 

Thus, constraints (24) and (25) can be replaced with the following equations. 

 

1

( )

2 m
j jl jl ijm

l MKT j i I j m

G N V M ZV

 

       , j  (29) 

 

1

( )

2 m
j jl jl ijm

l MKT j i I j m

Q N M ZW 

 

       , j  (30) 

 

With the above equations, we can reformulate model (P2) with a new model, 

denoted as (P3), which includes the objective function (26) and constraints (1)-(14), 

(19), (22), (27)-(30). Note that the value of iRP  in constraint (14) is pre-determined, 

and thus all the constraints are linear in model (P3). 

 

Piece-wise Linear Approximation 

After the reformulation and linearization, we have the new model (P3) with all the 

constraints linear. The only nonlinear terms are in the objective function as univariate 

square root terms, jG . To improve the computational efficiency, we consider a 

piece-wise linear approximation for the concave square root terms. There are several 

different approaches to model piecewise linear functions for a concave term. In this 

work, we use the “multiple-choice” formulation51-54 to approximate the square root 

term jG . Let  1,2,3, ,jP p   denote the set of intervals in the piecewise linear 

function ( )jG , and ,0ju , ,1ju , ,2ju ,… ,j pu ,  be the lower and upper bounds of jG  

for each interval. The “multiple choice” formulation of ( )j jG G   is given by, 
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 ( ) min    j jp jp jp jp
p

G E F     (31) 

s.t. 

1jp
p

E   (32) 

jp j
p

F G  (33) 

, 1 , , , ,j p j p j p j p j pu E F u E   , p  (34) 

 , 0,1j pE  , 0jpF  , p  (35) 

where 
, , 1

,
, , 1

j p j p

j p
j p j p

u u

u u
 







 and , , , ,j p j p j p j pu u   , p P . 

Substituting (31) into the objective function (26) yields a mixed-integer linear 

programming (MILP) model (P4), which is piece-wise linear under-estimator of the 

MINLP model (P3). The model formulation of (P4) is given as follows. 

 

min 
 

( )
2

i

j j
i ij jk jk j j jp jp jp jp

i j M k j SUP k j j p

h Q
W Pu h E F   

 

 
     

 
        (36) 

s.t.  Constraints (1)-(14), (19), (22), (27)-(30), (32)-(35) 

 

As can be seen in Figure 13, the more intervals that are used in (P4), the better is the 

approximation of the nonlinear concave function jG , but more additional variables 

and constraints are required. Note that any feasible solution obtained from problem (P4) 

is also a feasible solution of (P3), and for each feasible solution the objective value of 

(P4) is always less than or equal to the objective value of (P3), i.e. the MILP model (P4) 

is a lower-bounding problem of the nonconvex MINLP problem (P3). 

 

Branch-and-Refine Algorithm 

In order to globally optimize the non-convex MINLP problem (P3), we can first 

solve the MILP problem (P4), whose solution provides a valid lower bound of the 

global optimal solution, and then solve a reduced nonlinear programming (NLP) 

problem by fixing the binary variables jkX  and ijmZ . Since the optimal solution of the 

reduced NLP is also a feasible solution of (P3), its objective value provides a valid 

global upper bound of the MINLP problem (P3). The remaining challenge is how to 



-36- 

iteratively refine and improve the solution so that the global optimal solution can be 

obtained after a finite number of iterations. If we use a sufficiently large number of 

intervals in the piecewise linear approximation problem (P4), we are able to obtain the 

solution with sufficiently a small optimality margin. The reason is that the more 

intervals that are used, the better is the approximation of the square root function. 

However, more intervals require more additional variables and constraints in model 

(P3). To control the size of the problem, we use an iterative branch-and-refine strategy 

based on successive piece-wise linear approximation.  

In the first step of this algorithm, we consider a one-piece linear approximation in 

(P4), i.e. replacing all the square root terms in (P3) with their secants as shown in Figure 

14a. Thus, the optimal solution of the MILP problem (P4) provides the first lower 

bound LB1. Note that the optimal solution of (P4) is also a feasible solution of the 

MINLP problem (P3). Thus, an upper bound can be obtained by, a) substituting the 

optimal solution of (P3) into (P4) and directly evaluate the objective function, or b) 

fixing the values of the binary variables jkX  and ijmZ  and then solve the reduced NLP 

problem of (P4). Solving the reduced NLP may provide a better solution, but sometimes 

the NLP subproblems might become infeasible due to numerical difficulties. Thus, we 

use a combined approach: First, solve the reduced NLP; if it is feasible and return 

optimal solution, we move on to the next’s step; if not, we use function evaluation with 

the optimal solution from (P4). The combined approach allows us to obtain an upper 

bound in each iteration, regardless if the reduced NLP is feasible or not. 

In the next step, we use the optimal solution of variable jG  in the upper bounding 

problem as the lower bound of a new interval, and consider a two-interval linear 

approximation of the square root terms as shown in Figure 14b. Note that for those 

jG , the optimal solution of the upper bounding problem in the previous iteration lies 

at the bounds of some intervals, then we do not add a new interval for these square root 

terms. After we construct the two-interval linear approximation MILP model (P4), we 

can similarly obtain a lower bound, and then an upper bound by function evaluation or 

solving the reduced NLP.  

As shown in Figure 14c, as the iteration number increases, the number of intervals 

increases in (P4), and the best lower bound increases while the best upper bond 

decreases. The algorithm keeps iterating until the lower bound and upper bound are 

close enough to reach an optimality tolerance, e.g. 10-6. Note that the number of 
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intervals does not always equal to the number of iterations, because the optimal 

solutions in some iterations may lie at the bounds of the intervals and in that case we do 

not increase a new interval for the corresponding square root terms. 

To summarize, the proposed branch-and-refine algorithm based on successive 

piece-wise linear approximation is as follows: 

 

Step 1: (Initialization) 

Set 1iter  , 0LB  , UB   . Set 1iter
jNP  ,  0,1,..., iter

j jp P NP  . Construct 

one-interval linear approximation, i.e. the secant, of the square root terms. To achieve 

this, we set ,0 0ju   and ,1
U

j ju G , as well as 
,1 ,0

,1
,1 ,0

1j j

j U
j j j

u u

u u G



 


 and 

,1 ,1 ,1 ,1 0j j j ju u    .  

 

Step 2:  

At iteration iter , solve the piece-wise linear approximation MILP model (P4). 

Denote the optimal objective function value as iter  and the optimal solution of 

variables jkX  and ijmZ  as ( *iter
jkX , *iter

ijmZ ). Fix the values of binary variables  

*iter
jk jkX X  and *iter

ijm ijmZ Z , and solve the original model (P3) in the reduced space as 

an NLP to obtain the local optimal objective function iter  and optimal solution iter
jG . 

If the reduced NLP problem (P3) is infeasible, then substitute the optimal solution of 

the MILP problem into the original model (which is always feasible) and evaluate the 

objective function value as iter  and optimal solution iter
jG . 

 

Step 3:  

If iter UB   , then set iterUB   , store the current optimal solution of the (P3). If 

the NLP is infeasible, store the optimal solution of the MILP model (P4). 

If iter LB   , then set iterLB  . 

Find iter
jn such that the optimal solution iter

jG  lies in the iter
jn th interval. i.e. 

, 1 ,iter iter
j j

jj n j n
u G u


  . One approach to find the proper iter

jn  is to compute the product 
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   , 1 ,
iter iter
j j p j j pG u G u    for all the p = 2, 3, …, iter

jNP , and then denote the first p 

that leads to a non-positive value (zero or negative value) of the product as iter
jn , i.e. if 

   , 1 , 0iter iter
j j p j j pG u G u    , set iter

jn p . 

If UB LB    (e.g. 10-9), stop and output the optimal solution; otherwise, go to the 

next step. 

 

Step 4:  

For those j J  such that 
, iter

j

iter
j j n

G u , set 1iter iter
j jNP NP  , 1

, ,
iter iter
j p j pu u  , 

1
, ,

iter iter
j p j p    and 1

, ,
iter iter
j p j p   . 

For other j J , set 1 1iter iter
j jNP NP    and update set jP , i.e. 

 10,1,..., ,iter iter
j j jp P NP NP   . Then update ,j pu , ,j p  and ,j p  as follows: 

(a) For iter
jp n  (i.e. p = 0, 1, 2 … , 1iter

jn  ), set 1
, ,

iter iter
j p j pu u  , 1

, ,
iter iter
j p j p    and 

1
, ,

iter iter
j p j p   . 

(b) For iter
jp n , set 1

, iter
j

iter iter
jj n

u G  , 
, 11

,
, 1

iter
j

iter
j

iter
j

iter
j j niter
iterj n
j j n

G u

G u










 and 

1 1

, ,iter iter
j j

iter iter iter iter
j jj n j n

G G      

(c) For 1iter
jp n  , set 1

, 1 ,iter iter
j j

iter iter

j n j n
u u


 , 

,1

, 1
,

iter
j

iter
j

iter
j

iter
jj niter

iterj n
jj n

u G

u G
 







 and 

1 1

, 1 , , ,iter iter iter iter
j j j j

iter iter

j n j n j n j n
u u  


    

(d) For 1iter
jp n   (i.e. p = 2iter

jn  , 3iter
jn  , …, iter

jNP ),, set 1
, , 1

iter iter
j p j pu u

 ,  

1
, , 1

iter iter
j p j p 

  and 1
, , 1

iter iter
j p j p 

 . 

Then, set 1iter iter   and go to Step 2. 

 

 

 We should note that the entire procedure requires only an MILP solver. An NLP 

solver can be used to solve the upper bounding problem in the reduced variable space in 

Step 2, but it is not necessary. The reason is that the solution of the nonlinear 
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optimization problem (P3), which reduces to an NLP from MINLP after jkX  and ijmZ   

are fixed, can be substituted by simple function evaluation as stated in Step 2, although 

the solution quality may be sacrificed.  

 

Computational Results 

In order to illustrate the performance of the proposed solution strategies, we 

consider two large-scale problems, Examples 4 and 5. All the computational 

experiments are performed on an IBM T400 laptop with Intel 2.53GHz CPU and 2 GB 

RAM. The proposed solution procedure is coded in GAMS 23.2.1.44 The MILP 

problems are solved using CPLEX 12, the NLP problems in Step 2 of the 

branch-and-refine algorithm are solved with solver KNITRO 6.0.0. We use DICOPT as 

the convex MINLP solver and the global optimizer used in the computational 

experiments is BARON 8.1.5. The optimality tolerances of DICOPT, BARON and the 

proposed algorithm are all set to 10-6 and optimality margins of solving the piecewise 

linear approximation MILP model (P4) and the reduced NLP model (P3) are both 10-9. 

 

Examples 4: Computational Performance, Inventory Allocation 

To test the performance of the proposed algorithm, we consider Example 4, which 

has 20 chemicals, 13 processes. The chemical process network of Example 4 is given in 

Figure 15. We consider 10 instances of this example, ranging from 1 supplier and 1 

market instance to 10 supplier and 10 market instances.  

 

Table 10   Input data of the first instance of Example 4 (1 supplier and 1 market) 
production capacity iCap  (ton/day) 

Process 1 15 Process 14 100 
Process 3 150 Process 16 150 
Process 4 180 Process 17 50 
Process 5 90 Process 28 50 
Process 8 50 Process 32 250 
Process 12 50 Process 38 120 
Process 13 40   

unit production cost i  ($/ton) 

Process 1 80 Process 14 200 
Process 3 120 Process 16 100 
Process 4 150 Process 17 130 
Process 5 110 Process 28 100 
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Process 8 250 Process 32 200 
Process 12 70 Process 38 100 
Process 13 70   

production delay iPD  (day) 

Process 1 2 Process 14 3 
Process 3 3 Process 16 2 
Process 4 2 Process 17 4 
Process 5 4 Process 28 5 
Process 8 5 Process 32 4 
Process 12 4 Process 38 3 
Process 13 2   

list of chemicals 
A Nitric Acid K Acetaldehyde 
B Propylene L Acetone 
C Benzene M Cumene 
D Ethylene N Chlorobenzene 
E Acetylene O Phenol 
F Carbon Monoxide P Styrene 
G Ethylbenzene Q Ethanol 
H Naphtha R Acetic Acid 
I Methanol S Ethylene Glycol 
J Acrylonitrile T Byproducts 

unit inventory cost jh  ($/ton/day) 

A 1.5 F 8.0 K 1.5 P 8.0 
B 2.5 G 5.0 L 2.5 Q 5.0 
C 3.0 H 5.0 M 3.0 R 3.0 
D 5.0 I 7.0 N 5.0 S 7.0 
E 6.0 J 2.0 O 10 T 2.0 

mass balance relationship 
Process 1 0.58 Nitric Acid => 0.63 Acetylene + Acrylonitrile 
Process 3 1.25 Propylene => 0.055 Nitric Acid + Acrylonitrile 
Process 4 0.40 Propylene + 0.69 Benzene => Cumene 
Process 5 2.3 Cumene => Acetone + 1.7 Phenol 
Process 8 Benzene => Chlorobenzene 
Process 12 0.76 Benzene + 0.28 Ethylene => Ethylbenzene 
Process 13 1.14 Ethylbenzene => Styrene 
Process 14 0.78 Propylene => Acetone 
Process 16 0.60 Ethylene => Ethanol 
Process 17 0.67 Ethylene => Acetaldehyde 
Process 28 0.56 Carbon Monoxide + 0.56 Methanol => Acetic Acid 
Process 32 0.53 Ethylene => Ethylene Glycol 

Process 38 
3.08 Naphtha => 0.38 Propylene + 0.22 Benzene + Ethylene  

+ 1.81 byproducts 

jl : mean value of demands of Market 1 (ton/day) 

Acrylonitrile 150 Styrene 25 
Acetaldehyde 30 Ethanol 70 
Acetone 30 Acetic Acid 30 
Cumene 80 Ethylene Glycol 250 
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Chlorobenzene 30 Byproducts 250 
Phenol 70   

jl : standard deviation of demands of Market 1 (ton/√day) 

Acrylonitrile 50 Styrene 5 
Acetaldehyde 10 Ethanol 20 
Acetone 10 Acetic Acid 10 
Cumene 20 Ethylene Glycol 80 
Chlorobenzene 10 Byproducts 70 
Phenol 20   

jk : unit purchase cost of Supplier 1($/ton) 

Nitric Acid 820 Carbon Monoxide 40 
Propylene 400 Ethylbenzene 660 
Benzene 440 Naphtha 410 
Ethylene 350 Methanol 260 
Acetylene 550   

jkSI : guaranteed service time of Supplier 1 (day) 

Nitric Acid 8 Carbon Monoxide 1 
Propylene 4 Ethylbenzene 6 
Benzene 4 Naphtha 4 
Ethylene 5 Methanol 3 
Acetylene 5   

U
jka : upper bound of availability of Supplier 1 (ton/day) 

Nitric Acid 200 Carbon Monoxide 600 
Propylene 225 Ethylbenzene 240 
Benzene 300 Naphtha 990 
Ethylene 200 Methanol 220 
Acetylene 250   

 

The safety stock factors in all the instances are set to 2.0537, corresponding to 98% 

service level. All the external demands of chemicals in the market follow a normal 

distribution. The purchase lower bounds, the maximum GSTs of chemicals to the 

market , and the deterministic transfer times from process i to storage tank of chemical 

j ( ij ) and from storage tank of chemical j to process i ( ij ) are all set to zero. The 

remaining input data for the first instance with one supplier and one market are given in 

Table 10. Input data for other instances are available upon request. 

 

 



Table 11   Problem sizes for the 10 instances of Example 4 

 MINLP Model (P2)  
MILP Model (P4) for Piecewise linear 

Approximation (largest model size) 
Reduced (P3) - NLP
(largest model size) 

Number 
of 

Suppliers 

Number 
of 

Markets  Dis. Var. Con. Var. Const. Dis. Var. Con. Var. Const. Con. Var. Const. 

Maximum 
Iterations 

1 1  9 212 238 179 746 1,105 684 962 4 
2 2  18 254 298 183 784 1,144 716 1,012 4 
3 3  27 296 358 190 824 1,188 746 1,060 4 
4 4  36 338 418 213 880 1,266 778 1,110 6 
5 5  45 380 478 231 930 1332 808 1,158 5 
6 6  54 422 538 244 1,220 1,390 840 1,208 5 
7 7  63 464 598 246 1,012 1,424 870 1,256 5 
8 8  72 506 658 259 1,058 1,482 902 1,306 5 
9 9  81 548 718 262 1,094 1,518 932 1,354 4 
10 10  90 590 778 262 1,126 1,550 964 1,404 6 

“Dis. Var.” = discrete variables; “Con. Var.” = continues variable; “Const.” = constraints. 
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Table 12   Comparison of the performance of the algorithms for the 10 instances of Example 4 

 
Solving MINLP Model (P2) with 

DICOPT directly 
Solving MINLP Model (P2) with 

BARON directly 
Proposed Algorithm 

Number 
of 

Suppliers 

Number 
of 

Markets  Solution Time (s) Gap Solution LB Gap Time (s) Solution Time (s) Max. Iter. 
1 1  537,891 0.8 0.92 % 532,919 531,089 0.34 % 3,600 532,919 8.3 4 
2 2  477,306* 3.5 0.05 % 479,165 467,393 2.46 % 3,600 477,051 3.5 4 
3 3  485,200 4.5 0.06 % 485,200 456,645 5.89 % 3,600 484,898 7.4 4 
4 4  488,231 22.4 1.73 % 482,855 459,065 4.93 % 3,600 479,770 52.4 6 
5 5  496,636 14.8 2.11 % 511,998 458,780 10.4 % 3,600 486,146 11.3 5 
6 6  487,181 22.0 1.29 % 508,040 455,821 10.3 % 3,600 480,918 18.3 5 
7 7  496,736 20.1 6.19 % 496,317 455,754 8.17 % 3,600 465,995 37.3 5 
8 8  481,114* 42.9 0% 504,710 467,810 7.31 % 3,600 481,114 52.0 5 
9 9  495,382 28.1 4.15 % 497,375 457,441 8.03 % 3,600 474,814 38.4 4 
10 10  524,721 67.4 10.7 % 583,188 458,796 21.3 % 3,600 474,009 46.7 6 
*: infeasible before adding a sufficient small number ε (e.g. 0.0001) under each square root terms in the objective function 

 

 



The problem sizes of all the 10 instances are listed in Table 11. For each instance, 

we first solve the original non-convex MINLP model (P2) with MINLP solvers 

BARON and DICOPT directly, and then implement the proposed algorithm by 

iteratively solving the piecewise linear approximation MILP model (P4) with CPLEX 

and the reduced model (P3), which is an NLP after fixing the binary variables, with 

KNITRO. Note that for the MILP model (P4) and the reduced NLP model (P3) after 

fixing the binary variables, we only report the maximum problem sizes, i.e. the model 

sizes in the last iteration of the branch-and-refine algorithm. From Table 11, we can see 

that problem sizes of (P2) increases as the number of suppliers and markets increases. 

The maximum problems sizes of (P4) and (P3) also increase as the number of markets 

and suppliers increases, although the number of required iterations for the 

branch-and-refine algorithm does not strictly increases as the problems sizes increases. 

The computational performance of DICOPT, BARON and the proposed algorithm 

for these 10 instances are presented in Table 12. Note that there are two types of “Gap” 

in this table. The column “Gap” for solving (P2) with DICOPT is for the differences 

between the solutions obtained by using DICOPT and the global optimal solutions, 

which are obtained with the proposed algorithm. The “Gap” column for solving (P2) 

with BARON is for the differences between the lower and upper bounds returned by 

BARON. 

As we can see from Table 12, DICOPT can solve all the instances in less than 70 

seconds, but usually leads to suboptimal solutions with relatively large global 

optimality margin (up to 10.7%) for large scale instances. For the second and the eighth 

instances, DICOPT was not able to return a feasible solution initially due to the 

numerical difficulty in its NLP subproblems. After adding a sufficiently small number ε 

(e.g. 0.0001) under all the square root terms in the objective function, we can avoid 

unbounded gradient in the NLP subproblems and obtain near-optimal solutions as 

shown in Table 12. Compared to DICOPT, the performance of the global optimizer 

BARON is not very good – BARON could not globally optimize any of the 10 

instances after running for one hour, and most of the suboptimal solutions returned after 

3,600 CPUs have relatively large optimality gaps (in average around 10% and the 

maximum is 21.3%), although BARON does return feasible solutions for all the 

instances. Compared with solving (P2) with DICOPT and BARON directly, the 

proposed algorithm has a significantly better performance. Although the number of 

iterations may vary from instances to instances (usually 4 – 6 iterations), the total CPU 
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times for iteratively solving the MILP problem (P4) and the reduced NLP problem (P3) 

with binary variables fixed, are always less than one minute for all the 10 instances. In 

addition, the proposed algorithm can guarantee global optimality with similar 

computational times required by DICOPT. The computational results suggest the 

significant advantage of using the proposed branch-and-refine algorithm for solving 

medium and large scale instances. The change of bounds during the branch-and-refine 

algorithm for the largest instance with 10 suppliers and 10 markets are given in Figure 

16. We can see that as iterations proceed, the lower bound keeps increasing, and the 

upper bound, which is the objective value of a feasible solution, keeps decreasing, until 

the termination criterion is satisfied. In particular, we can see that the upper bound 

obtained in the first iteration is rather close to the global optimal solution. Recall that 

we use the optimal solution of the MILP (P4) as the initial point for solving the NLP 

(P3) to obtain the upper bounds. The tight upper bound in the first iteration implies that 

replacing the square root terms in (P3) with the one-piece under-estimator, i.e. the 

secant, and then solving the resulting MILP problem can lead to very good initial point 

for solving the NLP, and potentially yield very tight upper bound of the original 

problem. Similar performance of this approach was also observed and discussed in You 

and Grossmann.35 

The optimal solutions of the first instance of Example 4 with 20 chemicals, 13 

processes, 1 supplier and 1 market are given in Figure 17 and 18. Figure 17 shows the 

optimal production level in terms of the production amount of main product, and the 

unused production capacity of all the processes. We can see that Processes 1, 3, 4, 32 

and 38 are operating with almost full capacity, Processes 5, 8, 13, 16, 17 and 28 are 

using around half of the capacity, while Processes 12 and 14 do not produce any 

product. The reason is that ethylbenzene is mainly purchased from the supplier instead 

of being produced from Process 12 due to the price advantage, and acetone is produced 

from Process 5 instead of Process 14 for lower production cost. Figure 18 shows the 

optimal inventory levels of all the 20 chemicals in the chemical process network. We 

can see that intermediates benzene and acetylene, and feedstocks carbon monoxide and 

methanol have zero inventories, although their downstream chemicals hold sufficiently 

large safety stocks and cycle stocks. The results show that optimal inventory allocation 

is a very non-trivial problem for large scale chemical complexes, and it is difficult to 

use a “rule of thumb” to make such decisions. 
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Example 5: Computational Performance, Responsiveness and Pareto 

Optimization 

In the last example, let us consider the large-scale chemical process network 

discussed at the beginning of this paper and shown in Figure 3. A list of all chemicals 

included in the chemical complex is given in Table 13. We still consider 98% service 

level for all the chemicals and the maximum GST to the external market are all set to 

zero. Due to the large size of the problem, the remaining input data are not listed here, 

but are all available upon request. 

 
Table 13   List of chemicals in Example 5 

A Nitric Acid O Phenol 
B Propylene P Styrene 
C Benzene Q Ethanol 
D Ethylene R Acetic Acid 
E Acetylene S Ethylene Glycol 
F Carbon Monoxide T Byproducts 
G Ethylbenzene U Vinyl Acetate 
H Naphtha V Acetic Anhydride 
I Methanol W Ethylene Dichloride 
J Acrylonitrile X Ethylene Glycol 
K Acetaldehyde Y Formaldehyde 
L Acetone Z Byproducts 
M Cumene AA Ketene 
N Chlorobenzene AB Ethylene Chlorohydrin 

 

Similarly to the previous example, we consider 5 instances with different numbers 

of suppliers and markets. All the problem sizes are listed in Table 14 and the 

computational performance of the solvers and the proposed algorithm are shown in 

Table 15. Similar to what we observed in the previous example, the problem sizes 

increases as the number of suppliers and markets increases. For these large-scale 

instances, DICOPT failed to return any feasible solutions without adding a sufficient 

small number ε (e.g. 0.0001) in the square root terms of the objective function,  due to 

numerical difficulty in the NLP subproblems. After the minor modification of the 

objective function, we can avoid unbounded gradients in the NLP subproblems and 

obtain near-optimal solutions (with optimality gap up to 5.8%) as shown in Table 15. 

The global optimizer BARON still yields relatively large gaps between the lower and 

upper bounds after running for 3,600 seconds. However, the proposed algorithm is able 

to globally optimize all the instances with modest CPU times (less than 1,000 seconds), 
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and the number of iterations is still modest (2 - 4 iterations) so that the sizes of (P4) and 

reduced (P3) are not too large. All these five instances again show that the proposed 

algorithm is able to efficiently solve to global optimality the joint stochastic inventory 

management and tactical process planning problem, compared to the commercial 

MINLP solvers. 

In addition to illustrating the performance of the proposed algorithm, we address the 

“responsiveness” issue of this chemical complexes using an approach similar as the one 

discussed in You and Grossmann.37 Since the maximum GST of chemicals to external 

markets ( U
jlSO ) is the measure of responsiveness, changing the values of this parameter 

will lead to changes of the optimal inventory levels and probably the optimal 

production, purchase and sale levels as well. Thus, we generate 51 instances of this 

example (with the one supplier and one market instance) by fixing the parameter U
jlSO  

to 51 values evenly distributed in [0, 50], i.e. 0, 1, 2, ……, 49, 50. All the instances are 

then solved with the proposed algorithm. All the 51 instances require a total CPU time 

of 1,716.5 seconds. The results produce a Pareto optimal curve shown in the line of 

Figure 19, which reveals the trade-off between the total daily cost and the measure of 

responsiveness, the maximum GST to the markets. We can see that as the maximum 

GST to the markets increases from 0 to 50 days, the optimal total daily cost decreases 

monotonically from $397,945/day to $349,145/day. In particular, there is a steep 

decrease of the optimal total daily cost from $397,945/day to $380,663/day when the 

maximum GST to the markets increases from 0 to 3 days. Thus, setting the maximum 

GST to the markets to 3 days might be a good choice in terms of balancing the 

economics and responsiveness. Similar to the total daily cost, the optimal total 

inventory also decreases monotonically from 14,391 tons to 0 ton, as the maximum 

GST to the markets increases from 0 to 50 days. However, the decreasing rate of the 

optimal inventory level does not strictly follow the one of the total daily cost. It implies 

that as maximum GST to the markets increases, not only the inventory levels but also 

the production, purchase and sale activities change in order to reduce the total daily 

cost. Figure 20a-20f show the optimal safety stocks and cycle stocks for all the 

chemicals under six different specifications of the maximum GST to the markets (0 

day, 10 days, 20 days, 30 days, 40 days and 50 days). There is a clear trend that as the 

maximum GST to the market increases, the inventories of all the chemicals decrease. In 

particular, we can see in Figure 20a that when the maximum GST to the markets is zero, 
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it is optimal to hold sufficiently high inventories for the propylene, benzene and 

ethylene, which are the major feedstocks of this chemical process network. In addition, 

there are some inventories for other feedstocks and intermediates, but very few stocks 

for the final products. Particularly, the optimal inventory levels of acetylene, carbon 

monoxide, ketene and ethylene chlorohydrin are zero in this case. When the maximum 

GST to the markets increases to 10 days, the optimal inventory levels for most 

chemicals decreases to zero, although there are still significant inventories for 

propylene, benzene and ethylene, and a few stocks for nitric acid, ethylbenzene, 

naphtha, methanol, acrylonitrile, acetaldehyde and vinyl acetate. If the maximum GST 

to the markets further increases to 20 days, the optimal inventory level of methanol 

decreases to zero. When the maximum GST to the markets equals to 40 days, we only 

need to hold inventory for nitric acid, propylene and acetaldehyde. The optimal 

inventory levels of all the chemicals are zero when the maximum GST to the markets is 

50 days.  

 

Conclusion 

In this paper, we have developed an MINLP model to simultaneously optimize the 

inventory management decisions and the mid-term process planning decisions for the 

production, purchase and sale levels with the presence of supply and demand 

uncertainty. The guaranteed service approach is used to model the inventory system of a 

chemical complex, and the risk pooling effect is taken into account in the model by 

relating the demands in the downstream nodes to their upstream nodes. Three 

illustrative examples are presented to demonstrate the applicability of the proposed 

model. To efficiently solve the resulting MINLP problem for large scale instances, we 

exploited some model properties and then proposed an efficient branch-and-refine 

algorithm based on successive piece-wise linear approximation. Computational 

experiments on large-scale problems show that the proposed algorithm can obtain 

global optimal solutions very quickly without the need of a global optimizer.  
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Table 14   Problem sizes for the 5 instances of Example 5 

 MINLP Model (P2) 
MILP Model (P4) for Piecewise linear 

Approximation (largest model size) 
Reduced (P3) - NLP
(largest model size) 

Number 
of 

Suppliers 

Number 
of 

Markets  Dis. Var. Con. Var. Const. Dis. Var. Con. Var. Const. Con. Var. Const. 

Maximum 
Iterations 

1 1  10 470 522 405 1,864 2,708 1,788 2,534 3 
5 5  50 702 834 447 2,098 2,960 1,956 2,782 4 
10 10  100 992 1,224 494 2,384 3,264 2,166 3,092 3 
15 15  150 1,282 1,614 538 2,668 3,562 2,376 3,402 2 
20 20  200 1,572 2,004 588 2,958 3,872 2,586 3,712 2 

“Dis. Var.” = discrete variables; “Con. Var.” = continues variable; “Const.” = constraints. 
 
 

Table 15   Comparison of the performance of the algorithms for the 5 instances of Example 5 

 
Solving MINLP Model (P2) with 

DICOPT directly 
Solving MINLP Model (P2) with 

BARON directly 
Proposed Algorithm Number 

of 
Suppliers 

Number 
of 

Markets  Solution Time (s) Gap Solution LB Gap 
Time 

(s) 
Solution Time (s) Max. Iter. 

1 1  409,705* 42.8 2.96 % 407,595 381,209 6.92 % 3,600 397,945 119.5 3 
5 5  367,113* 88.9 5.80 % 360,612 328,452 9.79 % 3,600 347,014 230.7 4 
10 10  351,404* 81.2 1.79 % 372,469 325,984 14.3 % 3,600 345,208 729.9 3 
15 15  343,754* 105.4 1.93 % 360,808 322,278 12.0 % 3,600 337,235 299.8 2 
20 20  344,215* 247.5 2.27 % 396,641 321,795 23.3 % 3,600 336,562 981.7 2 
*: infeasible before adding a sufficient small number ε (e.g. 0.0001) under each square root terms in the objective function 

 



Appendix: Nomenclature 

Sets/Indices 

I: Set of processes indexed by i  

J:  Set of chemicals indexed by j  

K: Set of external suppliers indexed by k 

L: Set of external markets indexed by l 

M: Set of integers for binary representation indexed by m 

P: Set of pieces for piece-wise linear approximation indexed by p 

 

Subsets 

( )i I j : The subset of processes that consume chemical j (for 0ij  ) 

( )i O j :  The subset of processes that produce chemical j (for 0ij  ) 

ij C :   The subset of chemicals that are input of output of processes i 

ij M :  The subset of main products of processes i 

 k SUP j : The subset of external supplier k that supplies chemical j  

 l MKT j : the subset of external market l that has demand of chemical j  

 

Parameters 

j :  Safety stock factor for chemical j  

jh :  Unit inventory holding cost of chemical j 

iCap : Total capacity of process i 

i :   Unit operating cost for process i 

iPD : Production time delay of process i 

ij :  Mass balance coefficient of chemical j for process i 

jl :  Mean value of external demand of chemical j from the market l 

jl :  Standard deviation of external demand of chemical j to the market 

jlV :  Variance of external demand of chemical j from the market l 

jlR :  Variance to mean ratio for the demand of chemical j from market l 

  ( 2 / /jl jl jl jl jlR V    ) 
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L
jka :  Lower bound for the availability of chemical j in the external supplier k 

U
jka :  Upper bound for the availability of chemical j in the external supplier k 

jk : Price of purchase of chemical j from the supplier k 

jkSI :  Guaranteed service time for chemical j of external supplier k 

U
jlSO : Maximum service time for chemical j to external market l 

ij :  Deterministic transfer time from process i to storage tank of chemical j 

ij :  Deterministic transfer time from storage tank of chemical j to process i 

M : The maximum positive value such that iPD M , jkSI M , U
jlSO M , ij M ,  

ij M  are all integers 

jp : Piece-wise linear approximation parameter, 
, , 1

,
, , 1

j p j p

j p
j p j p

u u

u u
 







 

jp : Piece-wise linear approximation parameter, jp jp jp jpu u    

jpu :  Parameters for the bounds of intervals in piecewise linear approximation 

 

Binary Variables (0-1) 

jkX :  0-1 variable. Equal to 1 if there is positive flow rate from external supplier k   

to the storage tank of chemical j 

ijlY :  0-1 variable. Equal to 1 if the variance to mean ratio of raw materials of  

process i equal to the one of chemical j from market l 

ijmZ :  0-1 variable for the binary representation of the net lead time of chemical j for  

  the demand from downstream process i 

,j pE :  Auxiliary 0-1 variable for piece-wise linear approximation. 

 

Continuous Variables (0 to ) 

ijSP : Guaranteed service time of process i to its downstream storage tank of 

chemical j 

ijSC :  Guaranteed service time of chemical j to its downstream process i 

jTC :  Worst case replenishment lead time of the storage tank for chemical j 
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iTP :  Worst case replenishment lead time of process i 

jlSO :  Guaranteed service time of chemical j to external market l 

ijN :  Net lead time of chemical j for the demand from downstream process i 

jlN :  Net lead time of chemical j for the demand from external market l 

ijV :  Variance of internal demand of chemical j in process i 

ijW :  Amount of flow of chemical j to/from process i 

jkPu :  Amount of chemical j purchased from external supplier k 

jlSa :  Amount of chemical j sold to external market l 

jRC :  The variance to mean ratio for all the demands of chemical j 

iRP :  Variance to mean ratio for the demands of input chemicals of process i 

 

Auxiliary Variables (0 to ) 

, ,i j lWY :   Auxiliary variable, , , , ,i j l ij i j lWY W Y   

, ,1i j lWY :  Auxiliary variable  

jG :   Auxiliary variable,   ( )j jl jl ij ijl MKT j i I j
G N V N V

 
     . 

jQ :   Auxiliary variable,   ( )j jl jl ij ijl MKT j i I j
Q N W N W

 
      

ijmZV :   Auxiliary variable, for the product of ijmZ  and ijV . 

1ijmZV :   Auxiliary variable. 

jpF :   Auxiliary variable for piece-wise linear approximation 
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