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uncertainty in oil and gas prices and short-term uncertainty in time series parameters. We utilise
the special structure of multi-horizon stochastic programming and propose an enhanced Benders
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pipelines, (2) platform clusters keep producing oil due to the massive profit, and the clusters are
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hanced Benders algorithm is up to 6.8 times faster than the level set stabilised adaptive Benders
decomposition.

Keywords: Stochastic programming, Multi-horizon stochastic programming, Mixed-integer linear13

programming, Large-scale optimisation, Retrofit of energy systems14

∗Corresponding author
Email addresses: hongyu.zhang@ntnu.no (Hongyu Zhang), grossmann@cmu.edu (Ignacio E. Grossmann),

brage.knudsen@sintef.no (Brage Rugstad Knudsen), K.McKinnon@ed.ac.uk (Ken McKinnon),
rodrigo.garciana@gmail.com (Rodrigo Garcia Nava), asgeir.tomasgard@ntnu.no (Asgeir Tomasgard)

Preprint submitted to Elsevier July 18, 2023



1. Introduction15

Accelerating energy transition in all sectors is vital to achieve a carbon-neutral economy by 205016

(European Commission, 2022, 2020). The committed emissions from existing energy infrastructure17

jeopardise the 1.5 °C target (Tong et al., 2019). It may be more beneficial to retrofit existing18

energy infrastructure than to abandon it. Abandoning existing energy infrastructure, such as oil19

and gas infrastructure, may have a substantial cost (Bakker et al., 2019). Also, the oil and gas20

industry involves multi-billion-dollar investments and profits. Therefore, there is motivation to21

retrofit existing oil and gas infrastructure for clean energy production and transportation to (1)22

help the oil and gas industry transition to a clean energy producer, and (2) accelerate the energy23

transition by financing it using the gain from the avoided abandonment cost. Retrofitting existing24

oil and gas infrastructure for hydrogen production and transportation is drawing more attention due25

to the increasing demand for hydrogen. Most offshore pipelines can be used for hydrogen transport26

in Europe (Gentile et al., 2021). The European hydrogen infrastructure can grow to a pan-European27

network by 2040, which is largely based on repurposed existing natural gas infrastructure (Rossum28

et al., 2022). Retrofitting an existing offshore platform to a green hydrogen production platform29

is under exploration (Neptune Energy, 2023). We note that retrofitting may become an important30

pillar for accelerating the energy transition. Therefore, in this paper, we analyse cost drivers that31

have the possibility to trigger widespread retrofit of offshore oil and gas infrastructure to clean32

energy generation and decarbonisation purposes. We use a high-fidelity, detailed spatial-temporal33

stochastic programming model to analyse these drivers for a large region with a substantial role in34

the energy supply to the surrounding countries.35

Energy system infrastructure planning is crucial during the energy transition towards zero emis-36

sion by 2050. Optimisation models are widely used for the investment (Zhang et al., 2022c; Cho37

et al., 2022; Munoz & Watson, 2015) and operational (Schulze & McKinnon, 2016; Philpott et al.,38

2000) planning of energy systems. Traditionally, capacity expansion, retrofitting (Støre et al., 2018)39

and abandonment are planned separately using different models. However, as sector coupling and40

Power-to-X become more important, as well as the possibility to retrofit existing infrastructure41

for renewable energy production and distribution, the ability to analyse investments, retrofit and42

abandonment planning in a single integrated model becomes more important; including all de-43

grees of freedom together minimises the risk of suboptimality. However, such integrated models44

have been less explored than their counterparts that treat investment, retrofit and abandonment45

independently.46

Managing uncertainty is crucial in a long-term planning model. Long-term energy system47

planning problems are normally prone to uncertainty on strategic and operational time horizons.48

Strategic uncertainty includes oil and gas prices, CO2 budget, and CO2 tax. Short-term uncer-49

tainty normally includes the availability of non-dispatchable renewable technologies and the failure50

of conventional generators. Multi-Horizon Stochastic Programming (MHSP) includes uncertainty51

in both time horizons more efficiently than traditional multi-stage stochastic programming (Kaut52

et al., 2014). Most previous studies on energy system planning consider only short-term uncertainty53
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(Backe et al., 2022). In this paper, the proposed model utilises MHSP and includes uncertainty54

from both time horizons.55

The computational difficulty needs to be addressed. The special structure of MHSP allows de-56

composing of a problem with Benders-type algorithms. A stabilised adaptive Benders decomposition57

algorithm was proposed in (Zhang et al., 2022a) and demonstrated on a power system investment58

planning problem with up to 1 billion variables and 4.5 billion constraints. The algorithm showed a59

significant reduction in computational time. However, Zhang et al. (2022a) dealt with a large-scale60

linear programming problem. In this paper, we consider a problem with binary variables in the61

investment planning part in order to capture the economic scale and model retrofit and abandon-62

ment decisions. Because the binary variables only exist in the investment planning part, which is63

the reduced master problem in the Benders-type algorithm, we can still apply stabilised adaptive64

Benders directly. However, the algorithm may slow down due to the combinatorial part of the65

problem.66

To fill the research gaps mentioned above, we first propose the REORIENT (REnewable re-67

sOuRce Investment for the ENergy Transition) model, which is a multi-horizon stochastic Mixed-68

Integer Linear Programming (MILP) model with short-term and long-term uncertainty for the69

investment, retrofit and abandonment planning for energy systems. We consider retrofitting ex-70

isting platforms for offshore green hydrogen production and pipelines for green and blue hydrogen71

distribution. We then demonstrate the REORIENT model on a European energy system planning72

problem. An enhanced Benders decomposition is proposed to solve the problem efficiently. we73

improve the method in (Zhang et al., 2022a) to allow it to solve problems with binary variables74

faster.75

The contributions of the paper are the following: (1) we integrate investment planning, retrofitting,76

and abandonment in a single stochastic optimisation model, (2) we formulate the problem using77

multi-horizon stochastic MILP, (3) we propose an enhanced Benders decomposition method to solve78

such large scale model, and (4) we demonstrate the model on a large-scale planning problem for the79

European energy system to analyse the planning decisions and costs and provide global insights.80

The outline of the paper is as follows: Section 2 introduces the background knowledge regarding81

capacity expansion planning, retrofit planning and abandonment planning, stochastic programming,82

MHSP, and Benders decomposition. Section 3 provides the problem description, modelling strategies83

and assumptions. Section 4 presents the proposed enhanced Benders decomposition. Section 584

presents the REORIENT model. Section 6 reports the computational results and numerical analysis.85

Section 7 discusses the implications of the method and results and summaries the limitations of the86

research. Section 8 concludes the paper and suggests further research.87

2. Literature review88

In the following, we present a brief overview of relevant literature on capacity expansion planning,89

abandonment planning, retrofit planning, MHSP, and Benders decomposition.90
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2.1. Capacity expansion planning91

Capacity expansion planning problems normally consider an existing system with historical92

capacity or a new system and make investment planning to fulfil the demand under, among others,93

environmental restrictions. Capacity expansion problems are formulated either in deterministic94

models (Lara et al., 2018) or stochastic programming models (Backe et al., 2022; Conejo et al., 2016).95

Backe et al. (2022) utilised multi-horizon formulation but did not include long-term uncertainty. To96

capture the economic scale of investment decisions, sometimes MILP is used (Lara et al., 2020). To97

gain enough environmental and economic insights from such models, sometimes a large-scale problem98

needs to be modelled, such as (Li et al., 2022; Zhang et al., 2022c). Munoz et al. (2016) proposed99

a new bounding scheme and combine it with Benders decomposition to solve a large investment100

planning problem that is formulated as MILP. In addition to planning for power, natural gas and101

heat systems separately, planning for integrated multi-carrier systems is also studied. Energy hubs102

that convert, condition and store multiple energy carriers in an investment planning problem were103

studied in (Zhang et al., 2022a). Stochastic programming is also exploited in natural gas systems104

(Fodstad et al., 2016), offshore oil and gas infrastructure planning (Gupta & Grossmann, 2014), and105

hydrogen network (Galan et al., 2019). There is much literature on capacity expansion problems.106

Therefore, we refer the readers to (Krishnan et al., 2016) for a more comprehensive review.107

2.2. Retrofit planning108

In grassroots design, the decisions on what processes to use are made first to be followed by109

equipment decisions, but the retrofit design also requires models that can rate existing equipment for110

proper analysis. A comparison of grassroots and retrofit design has been presented in (Grossmann111

et al., 1987). The combinatorial nature of the retrofit planning problems makes such models much112

more complex. There are several reasons for retrofit, including (1) processing a new feedstock,113

(2) improving the economics by the use of less energy per unit of production, (3) making a new114

product, and (4) increasing the conversion of the feedstocks. In this paper, we consider retrofitting115

to make a new product. A debottlenecking strategy was proposed for retrofit problems (Harsh et al.,116

1989). A systematic procedure for the retrofit of heat exchanger networks was presented in (Yee117

& Grossmann, 1991). Retrofit of heat exchangers has been extensively studied in the past decades118

(Pan et al., 2013; Wang et al., 2012). A high-level optimisation model for the retrofit planning of119

process networks was presented in (Jackson & Grossmann, 2002), in which the retrofit over several120

time periods was addressed. The proposed strategy consists of a high-level analysis of the entire121

network and a low-level analysis of a specific process flowsheet. The problem is formulated using122

a multi-period generalised disjunctive programming model, which is reformulated using a mixed-123

integer linear program using the convex hull formulation. In this paper, because of the scope and124

size of the problem, we only consider the high-level modelling of the retrofit.125

2.3. Abandonment planning126

Abandonment planning includes the abandonment of power plants that exceed their lifetimes,127

and of mature oil and gas fields. Existing literature focuses on the plug and abandonment campaign128
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in the oil and gas industry. This is because many wells are planned to be plugged and abandoned,129

and such activity will have a substantial cost (Bakker et al., 2019). The plug and abandonment130

cost is estimated at £5-15 million per well, and thousands are expected to be abandoned just in131

offshore regions over the next decade. Plug and abandonment planning is usually formulated as a132

profit maximisation problem (Bakker et al., 2021a) or cost minimisation problem (Bakker et al.,133

2019, 2021b). Real options theory is also used for oil and gas field development (Fleten et al., 2011;134

Støre et al., 2018; Bakker et al., 2019). In addition to abandonment, investment and operational135

scheduling optimisation in the oil and gas sector can be found in (Oliveira et al., 2013; Goel &136

Grossmann, 2004; Gupta & Grossmann, 2012; Iyer et al., 1998).137

From the literature above, we find that the planning of investment, retrofit, and plug and138

abandonment are often treated separately. To overcome the limitations of the separated approach139

for energy systems planning where such decisions are deemed tightly coupled, we propose a modelling140

framework that integrates investment, plug and abandonment and retrofit. An illustrative example141

is presented in Figure 1. The parts marked with red represent the new integrated planning compared142

with traditional investment planning in the literature.
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 turbine
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heat demand
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Figure 1: Integrated investment, retrofit and abandonment planning. The grey dotted box includes some technologies
that can be invested in. The offshore oil and gas platform can be retrofitted or abandoned. Otherwise, it can keep
producing. The Offshore Energy Hubs (OEHs) (Zhang et al., 2022c) can generate electricity, and produce and store
hydrogen.

143

2.4. MHSP144

Investment planning of an energy system often faces uncertainty from two time horizons (Kaut145

et al., 2014; Lara et al., 2020): (a) the uncertainty from the operational time horizon, such as146

the availability of renewable energies. The operational uncertainty becomes even more crucial147
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Figure 2: Illustration of MHSP with short-term and long-term uncertainty (blue circles: strategic nodes, red squares:
operational periods, i : index of the strategic nodes).

for a system with higher penetration of intermittent renewable energies, and (b) the uncertainty148

from the strategic time horizon, e.g., oil and gas price and demand. In traditional multi-stage149

stochastic programming, uncertainty from operational and strategic time horizons can lead to a150

large scenario tree, thus, an intractable planning model. The multi-horizon approach was proposed151

as an alternative formulation that reduces the model size significantly (Kaut et al., 2014). An152

illustration of MHSP with short-term and long-term uncertainty is shown in Figure 2. One can153

have a much smaller model by disconnecting operational nodes between successive planning stages154

and embedding them into their respective strategic nodes. We call an operational problem embedded155

in a strategic node an operational node. The resulting model is called MHSP. MHSP is identical156

to multi-stage stochastic programming provided two requirements are met (Kaut et al., 2014): (a)157

strategic and operational uncertainties are independent, and the strategic decisions must not depend158

on any particular operational decisions, and (b) the operational decisions in the last operational159

period in a stage do not affect the system operation in the first operational period in the next stage.160

If either of these conditions is not met then MHSP gives only an approximation. MHSP has been161

applied in several energy system planning problems (Skar et al., 2016; Backe et al., 2022; Zhang162

et al., 2022b; Durakovic et al., 2023). Furthermore, the bounds in MHSP have been studied in163

(Maggioni et al., 2020).164

2.5. Benders decomposition165

Benders decomposition was proposed to solve problems with complicating variables (Geoffrion166

& Balakrishnan, 1972). Then generalised Benders for nonconvex problems were proposed (Steeger167

& Rebennack, 2017; Li & Grossmann, 2019). Extensive research was conducted on accelerating168

6



Benders decomposition, such as by choosing and adding strong cuts (Magnanti & Wong, 1981;169

Oliveira et al., 2014), developing a multi-cut version of Benders decomposition (You & Grossmann,170

2011), regularised Benders decomposition (Zverovich et al., 2012; Zhang et al., 2022a), and using171

inexact oracles (Mazzi et al., 2020; Zhang et al., 2022a; van Ackooij et al., 2016). In this paper, we172

adopt the approach from (Zhang et al., 2022a) and improve and extend the method to solve MILPs.173

Benders type decomposition algorithms have been used for capacity expansion (Li et al., 2022;174

Munoz et al., 2016). However, we need another enhanced Benders decomposition for solving the175

REORIENT model. Standard Benders decomposition was used for solving a two-stage stochastic176

programming problem (Munoz et al., 2016). In two-stage stochastic capacity expansion problems,177

the investment decisions are first-stage decision variables, and the operational variables are the re-178

course variables. However, a capacity expansion problem becomes a multi-stage stochastic program179

once long-term and short-term uncertainty is included. Nested Benders decomposition is needed180

to solve a multi-stage stochastic program. However, there is no paper on using nested Benders181

decomposition to solve a multi-stage stochastic capacity expansion problem with short-term and182

long-term uncertainty. (Zhang et al., 2022a) first showed that a multi-stage stochastic capacity ex-183

pansion program formulated as MHSP could be decomposed by standard Benders and proposed the184

stabilised adaptive Benders decomposition to solve investment planning problems with short-term185

and long-term uncertainty with up to 1 billion variables and 4.5 billion constraints. As pointed out186

by (Zhang et al., 2022a), MHSP has a special structure that allows solving multi-stage stochastic187

programming using standard Benders. Also, when the subproblems differ only in the right-hand side188

and cost coefficient, Benders decomposition with adaptive oracles can solve MHSP more efficiently.189

Benders decomposition with adaptive oracles has shown 31.9 times faster than standard Benders190

decomposition (Mazzi et al., 2020) for a 1% convergence tolerance, and it has been further improved191

by stabilisation (Zhang et al., 2022a). Therefore, we adopt the stabilised adaptive Benders algo-192

rithm in (Zhang et al., 2022a) for solving the REORIENT model. However, the models in (Zhang193

et al., 2022a; Mazzi et al., 2020) are LPs. The REORIENT model is a mixed-integer MHSP model194

with short-term and long-term uncertainty and is more complex than the model in (Zhang et al.,195

2022a). We notice the limitation of the stabilised adaptive Benders when solving the REORIENT196

model because of the binary variables. Therefore, this paper proposes another enhanced Benders197

based on (Zhang et al., 2022a) to speed up the stabilisation step.198

In addition to Benders decomposition, Lagrangean decomposition (Escudero et al., 2017), col-199

umn generation (Singh et al., 2009), and combined column generation and Benders decomposition200

(Huang et al., 2022) have been proposed for capacity expansion problems. However, these ap-201

proaches did not utilise the special structure of MHSP and are less suitable alternatives than the202

method in (Zhang et al., 2022a). Although these approaches can solve problems with integer vari-203

ables in the operational problem, the complexity of the REORIENT model is from the inclusion204

of short-term and long-term uncertainty rather than integer operational variables. In addition,205

(Zhang et al., 2022a) first pointed out that stabilisation is very important for the performance of206

Benders-type decomposition when solving multi-region capacity planning problems, which was not207
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considered in existing Benders type algorithms, such as (Huang et al., 2022; Munoz et al., 2016;208

Li et al., 2022). Therefore, we choose to use an algorithm that is designed to exploit the special209

structure of MHSP (Zhang et al., 2022a) and extend the algorithm to solve the REORIENT model.210

3. Problem description, modelling strategies, modelling assumptions211

In this section, we present the problem description and modelling strategies, including price212

modelling, scenario generation, temporal and geographical representations of the problem, and the213

modelling assumptions.214

The problem under consideration aims to choose (a) the optimal strategy for investment, aban-215

donment and retrofit planning, and (b) operating scheduling for an energy system to achieve emission216

targets at minimum overall costs under short-term uncertainty, including renewable energy avail-217

ability, hydropower production profile and load profile, and long-term uncertainty, including oil and218

gas prices.219

For the investment planning, we consider: (a) thermal generators (Coal-fired plant, OCGT,220

CCGT, Diesel, nuclear plants, co-firing biomass with 10% lignite, lignite); (b) generators with221

Carbon Capture and Storage (CCS) (Coal-fired plant with CCS and advanced CCS, gas-fired plant222

with CCS and advanced CCS, co-firing biomass with 10% lignite with CCS, lignite with CCS,223

lignite with advanced CCS); (c) renewable generators (onshore and offshore wind and solar, wave,224

biomass, run-of-the-river hydropower, geothermal and regulated hydropower); (d) electric storage225

(hydro pump storage and lithium); (e) onshore and offshore transmission lines; (f) onshore and226

offshore clean energy hubs (electrolyser, fuel cell, hydrogen storage); (g) onshore steam reforming227

plant with CCS (SMRCCS) and (h) offshore and onshore hydrogen pipelines. The capital costs and228

fixed operational costs coefficients are assumed to be known.229

For the retrofit planning, we consider: (a) retrofitting existing natural gas pipelines for hydrogen230

transport, and (b) retrofitting existing offshore platforms for clean OEHs. Finally, we consider the231

abandonment of mature fields. The problem is to determine: (a) the capacities of technologies232

and retrofit and abandonment decisions, and (b) operational strategies that include scheduling of233

generators, storage and approximate power flow among regions to meet the energy demand which234

minimises the combined overall expected investment and operational and environmental costs.235

3.1. Modelling strategies and assumptions236

In this section, we present the modelling strategies and assumptions we use in the long-term237

integrated planning problem.238

3.1.1. Price process239

We use a two-factor Short-Term Long-Term (STLT) model to capture a realistic price behaviour
of oil and gas (Schwartz & Smith, 2000). The STLT model has a stochastic equilibrium price and
stochastic short-term deviations (Bakker et al., 2021a). In the STLT model, the logarithm of the
spot price at time t is,

log pt = χt + ξt, (1)
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where χt is the short-term factor in prices and ξt is the long-term factor. (Bakker et al., 2021a)
presents a risk-neutral STLT model in discrete time, which is used in this paper for price modelling.
The price is represented by,

p̃t = eχ̃t+ξ̃t , (2)

χ̃t = χ̃t−1 −
(
1 − e−κ∆t

)
+ σχϵχ

√
1 − e−2κ∆t

2κ
, (3)

ξ̃ = ξ̃t−1 + µ∗
ξ∆t + σξϵξ

√
∆t, (4)

where p̃t, χ̃t and ξ̃t are risk-neutral equivalents to the spot price, short-term factor and long-term240

factor. The volatilities are represented by σχ and σξ, while ϵχ and ϵξ are correlated standard normal241

random variables with correlation coefficient ρχξ. The parameter κ is the mean reverse coefficient,242

λχ is a risk premium that specifies a reduction in the drift got the short-term process, and µ∗
ξ is the243

risk-neutral drift of the equilibrium level, ξ̃t. The length of the time period t (in years) is represented244

by ∆t.245

Based on the historical record, we assume the gas price is correlated with the oil price, although246

recently, they have been less correlated due to the energy crisis.247

3.1.2. Long-term production profile modelling248

There are three phases during the lifetime of oil fields (Støre et al., 2018). We adopt the
production modelling from (Wallace et al., 1987). The long-term production profile of oil and gas
is presented by,

qt =

qP t ≤ tP ,

qP e−m(t−tp) t > tP ,
(5)

where qP is the production rate during plateau period, tP is the length of the plateau period, m249

is the decline constant. We also calibrate the model with the average decline rate of the giant oil250

fields in the world (Höök et al., 2009).251

3.1.3. Scenario generation252

For short-term uncertainty, we consider uncertain time series data including wind and solar253

capacity factors, hydropower generation profiles, load profiles, and platform production profiles.254

We consider operational problems with an hourly resolution. We divide the full year into four255

seasons and select representative time slices from these seasons. The length of the times slices can256

vary in different seasons. To preserve the auto-correlation and correlation between time series data,257

the same hours are used for all the time series data within a scenario. The generated operational258

scenarios are used for all operational nodes.259

For long-term uncertainty, we consider oil and gas price uncertainty. We first generate a large260

number of projections using the price process described in Section 3.1.1. Then we obtain the mean261

values of the prices for each stage and construct the mean scenario. Next, we use a Julia package262
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ScenTrees.jl (Kirui et al., 2020) that utilises the methodology proposed in (Pflug & Pichler, 2015)263

to generate a multi-stage scenario tree. Finally, we reduce the scenario tree by removing the decision264

nodes whose probability is zero.265

3.1.4. Geographical representation of the problem266

The problem potentially consists of many regions and results in a large model. Therefore, we267

use a k-means cluster approach to group platform locations into representative locations, adapted268

from (Zhang et al., 2022c). We use dedicated locations to represent the regions that require higher269

resolution. All generators and storage units within each aggregated region with the same charac-270

teristics are aggregated into clusters. In this way, within aggregated regions, the model does not271

make the investment in individual units but in the total for that technology.272

3.1.5. Modelling assumptions273

We assume that: (a) the Kirchhoff voltage law is omitted and we use a linear direct current power274

flow model for the power system part, (b) the initial storage level of storage units in each operational275

node are assume to be half of their capacities, (c) the switch from natural gas to hydrogen has little276

impact on the capacity of a pipeline to transport energy (Fors et al., 2021), (d) linepack in hydrogen277

pipelines is omitted, (e) investment in new wells is not considered, (f) we simplify the modelling of278

pressure and temperature of the production processes on platforms and use typical values from the279

North Sea region, (g) there is no more oil and gas profit once a platform is retrofitted, and the gas280

profit, associated with a pipeline is lost once it is retrofitted.281

4. Benders decomposition in MHSP282

MHSP has a structure that allows the application of Benders-type decomposition for solving283

large-scale stochastic programming problems. In the following, we first present how a MHSP284

problem can be decomposed by Benders decomposition. We then propose an enhanced Benders285

decomposition for solving the proposed model efficiently.286

4.1. Benders decomposition in MHSP287

Here, we give a general formulation for MHSP and show that it has a special structure allowing288

it to be decomposed by Benders decomposition.289

A MHSP model for strategic planning problems can be formulated as follows

min
x,y

∑
i∈I

πi

c⊤
i xi +

∑
s∈Si

ωisq⊤
isQisyis

 (6a)

s.t. T I
j xj + W I

i xi ≤ hI
i , i ∈ I \ {1}, j = Ii, (6b)

T 0xi ≤ h0, i = 1, (6c)

T O
is xi + W O

is yis ≤ hO
is, i ∈ I, s ∈ Si, (6d)
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where x are the strategic decision variables, x = {xi|i ∈ I}, and xi = {xij ∈ {0, 1}, j = 1, ..., p; xij ∈290

R, j = p + 1, ..., ni} and y are the operational variables, y = {yis|i ∈ I, s ∈ Si}, yis ∈ Rni . The πi is291

the probability of strategic node i, sum of πi in each strategic stage is equal to 1, ci ∈ Rni , hI
i ∈ Rmi ,292

W I
i ∈ Rmi×ni , are vectors and matrices at strategic node i ∈ I, and T I

j ∈ Rmi×nj is the matrix for293

its ancestor node j = Ii. The probability of operational scenario s that is embedded in strategic294

node i is denoted by ωis, and
∑

s∈Si
ωis = 1. Operational vectors and matrices at operational node295

i, in operational scenario s, are given by T O
is ∈ Rmi×ni , W O

is ∈ Rmi×ni , qis ∈ Rni , hO
is ∈ Rni .296

In MHSP, the complicating variables are the strategic decisions, xi, that link all the decision
nodes. By fixing the complicating variables xi, we can decompose the full size problem using
Benders-type decomposition. For a given node i, the subproblem is formulated as

min
y

πi

∑
s∈Si

ωisq⊤
isQisyis (7a)

s.t. T O
is xi + W O

is yis ≤ hO
is, i ∈ I, s ∈ Si, (7b)

the subproblems can be solved in parallel. The reduced master problem is

min
x

∑
i∈I

πi(c⊤
i xi + βi) (8a)

s.t. T I
j xj + W I

i xi ≤ hI
i , i ∈ I \ {1}, j = Ii (8b)

T 0xi ≤ h0, i = 1, (8c)

βi ≥ θ + λ⊤(xi − x), (x, θ, λ) ∈ Fi(j−1), i ∈ I, (8d)

where βi is a variable for the approximated cost of the operational subproblem that is embedded in
strategic node i. Constraint (8d) are the Benders cuts built up to iteration j − 1. To simplify the
notation, we write the operational subproblem as

g(xi, ci) := min
yi∈Y

{c⊤
i Cyi|Ayi ≤ Bxi}, (9)

where Y is a convex polyhedron. Also, the Reduced Master Problem (RMP) is,

min
x∈X ,β

f(x) +
∑
i∈I

πiβi (10a)

s.t. βi ≥ θ + λ⊤(xi − x), (x, θ, λ) ∈ Fi(j−1), i ∈ I, (10b)

where f(x) =
∑

i∈I πicixi, X is the feasible region of variable x, Fi(j−1) is the set of cuts associated297

with subproblem i built up to iteration j − 1.298

4.2. Enhanced Benders decomposition299

In this section, we present the solution method for solving the proposed problem. The algorithm300

is adapted from (Zhang et al., 2022a) and improved for solving MILP. (Zhang et al., 2022a) utilised301
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adaptive oracles (Mazzi et al., 2020) and level method regularisation and achieved a significant302

reduction in solution time. When g(xi, ci) is convex and decreasing w.r.t. xi, and concave and303

increasing w.r.t. ci, one of the adaptive oracles approximates g(xi, ci) from below the other from304

above adaptively. By using these, one can avoid solving all subproblems every iteration to reduce the305

computational cost compared to standard Benders decomposition. The RMP in adaptive Benders306

is similar to the one in standard Benders, the set of cuts F in Equation (10b) different due to the307

inexact adaptive oracles. The adaptive oracles provide inexact and valid upper and lower bounds308

on θ, θ and θ, and a lower bound on λ, λ. To evaluate adaptive oracles, ϕ, the sensitivity of the309

cost coefficients from the subproblem is needed. The level set stabilisation problem is to minimise310

the distance from a previous reference point subject to all the constraints from the RMP and an311

extra target constraint that is based on the lower and upper bounds and a stabilisation factor, γ312

that is the ratio of the new targeted bound gap to the existing bound gap. The level set constraint313

is to restrict the objective value of the RMP. The level method problem is a quadratic program314

if L2 norm is used (Zverovich et al., 2012) and becomes a mixed-integer quadratic program after315

adding integer variables. In this paper, we use a centre point approach to avoid solving the mixed-316

integer quadratic programming but still obtain a stabilised solution. Finding a well centred point317

is a built-in function in solvers like Gurobi (Gurobi Optimization, LLC, 2022) with certain solver318

parameter settings. The solvers utilise some methods to get well centred points. By doing so, the319

time spent on regularisation is reduced significantly.

x

f
(x
)

xRMP
j

Uj−1

Lj

Lj+1

(a) standard Benders

x

f
(x
)

xCP
j

Uj−1

Uj

Lj

Lj+1

(b) Benders with centre point

Figure 3: An illustrative example of iteration j of standard Benders and Benders with centre point. (Red
dots: upper bounds, blue solid lines: cuts built before iteration j, green lines: cuts built in iteration j.)

320

The Centre Point problem (CP) is the relaxed RMP problem that excludes the objective function
and subjects to, in addition to RMP constraints, an extra level set constraint,

f(x) +
∑
i∈I

πiβi ≤ L∗
j + γ(U∗

j−1 − L∗
j ), (11)
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where U∗
j−1 and L∗

j are the best upper bound at iteration j − 1 and lower bound at iteration j,321

respectively. The CP is a feasibility problem because there is no objective function. An illustration322

of the centre point approach is presented in Figure 3.323

The method is presented in Algorithm 1. The stabilisation factor γ is adjusted using an approach324

that is analogous to trust region method which is called level set management step. (Zhang et al.,325

2022a) has pointed out that by adjusting the stabilisation factor, Benders type algorithm is more326

robust. In the early tests in this paper, we noticed that level set management is much more efficient327

than using fixed stabilisation factor. We omit the details of the level set management step, and for328

that refer the readers to (Zhang et al., 2022a).329

4.3. Convergence of Algorithm 1330

To prove the convergence of Algorithm 1, we first give the following proposition.331

Proposition 1. The Benders cuts generated by calling oracles at xCP underestimate the objective332

function value of the original MILP problem.333

Proof. The constraints of CP are linear relaxation of those of the RMP. The xCP is a feasible solution334

of CP. It is trivial that the optimal value of the linear relaxation underestimates the optimal value of335

the original problem. Therefore, following the proof by (Birge, 1985) that Benders cuts are valid for336

linear programming problems, the Benders cuts are also valid for the original MILP problem.337

Following the convergence proof of Algorithm 2 in (Mazzi et al., 2020) and Proposition 1,338

Algorithm 1 terminates in a finite number of iterations with an ϵ-optimal solution to problem (6).339

5. The REORIENT model340

This section presents the energy system integrated planning and operational optimisation model.341

The full model is decomposed by having an investment planning master problem and an operational342

subproblem. We use the conventions that calligraphic capitalised Roman letters denote sets, upper343

case Roman and lower case Greek letters denote parameters, and lower case Roman letters denote344

variables. The indices are subscripts, and name extensions are superscripts. The same lead symbol345

represents the same type of thing. The names of variables, parameters, sets and indices are single346

symbols. We give a brief definition of some of the main sets and variables, and their corresponding347

domains as we explain the equations. For a complete overview of all sets and indices, parameters348

and variables used in the RIORIENT model, we refer to Appendix A.349

5.1. Investment planning model (RMP in Benders decomposition)350

The investment master problem Equations (12)-(24) follows the general formulation given by
Equations (10). The total discounted cost for investment planning, Equation (12), consists of actual
investment costs cINV as well as the expected operational cost of the system over the time horizon
κ

∑
i∈IOpe πic

OP E
i which is total approximated subproblem costs in Benders decomposition. Here,

κ is a scaling factor that depends on the time step between two successive investment nodes. The
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Algorithm 1 Regularised Benders decomposition with adaptive oracles
1: choose ϵ (convergence tolerance), γ ∈ (0, 1) (stabilisation factor), β (initial lower bound βi),

U∗
0 := M (initial upper bound), and level set management steps related parameters;

2: set j := 0, Fi0 := {(βi0, 0, 0)} for each i ∈ I;
3: solve subproblem at the special point (x, c) and obtain θ, λ and ϕ; set S := {(x, c, θ, λ, ϕ)};
4: repeat
5: set j := j + 1;
6: solve RMP and obtain βij and xRMP

j ; set L∗
j := f(xRMP

j ) +
∑

i∈I πiβij ;
7: set CP target: L∗

j + γ(U∗
j−1 − L∗

j );
8: solve CP and obtain xCP

j ;
9: for i ∈ I do

10: call adaptive oracles at (xCP
ij , ci) and obtain θij , θij , and λij ;

11: end for
12: repeat
13: n := n + 1;
14: set i := argmaxi∈I πi(θij − θij);
15: solve subproblem i at (xCP

ij , ci) exactly and obtain θij , λij , ϕij ;
16: set S := S ∪ {(xCP

ij , ci, θij , λij , ϕij)};
17: for i ∈ I do
18: call adaptive oracles at (xCP

ij , ci) and obtain θij , θij , and λij ;
19: end for
20: set LLBO

j := f(xCP
j ) +

∑
i∈I πiθij ;

21: set UUBO
j := f(xCP

j ) +
∑

i∈I πiθij ;
22: until UUBO

j − LLBO
j ≤ U∗

j−1 − L∗
j−1 or LLBO

j ≥ U∗
j−1;

23: for i ∈ I do
24: set Fij := Fi(j−1) ∪ {(xCP

ij , θij , λij)};
25: end for
26: for i ∈ I do
27: call adaptive oracles at (xRMP

ij , ci) and obtain θij , θij , ϕij and λij ;
28: end for
29: set Uj := f(xRMP

j ) +
∑

i∈I πiθij ;
30: set U∗

j := min(U∗
j−1, Uj);

31: level set management steps;
32: until U∗

j − L∗
j ≤ ϵ.

scaling factor scales the operational costs between two successive investment nodes. By doing this,
we can evaluate the operational subproblem on the represented operational hours and scale the cost
up to obtain the total operational costs. Equation (13) calculates the investment cost which com-
prises capacity-dependent and capacity-independent costs, retrofitting costs, abandonment costs,
fixed operating and maintenance costs, and profit of existing technology (e.g., oil and gas platform).

min cINV + κ
∑

i∈IOpe

πic
OP E
i , (12)
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where

cINV =
∑

i∈IInv

πInv
i

∑
p∈P

(
CInvV

pi xInv
pi + CInvF

pi yInv
pi

)
+

∑
p∈PRT

(
CReT V

pi xReT
pi + CReT F

pi yReT
pi

) +

κ
∑

i∈IOpe

πOpe
i

∑
p∈P

CF ix
pi xAcc

pi +
∑

p∈PRT

CReT F ixO
pi xAccReT

pi +
∑

p∈PR

CReF F ixO
pi xAccReF

pi

 .

(13)

Constraint (14) states that the accumulated capacity of a technology xAcc
pi in an operational node

equals the sum of the historical capacity XHist
p and newly invested capacities xInv

pi in its ancestor
investment nodes IInv

i that are not retired.

xAcc
pi = XHist

pi +
∑

j∈IInv
i |κ(SOpe

i −SInv
j )≤Hp

xInv
pj , p ∈ P, i ∈ IOpe. (14)

Constraint (15) ensures the maximum XMaxInv
pi capacity that is built in an investment node.

The binary variable yInv
pi equals 1 if a technology p ∈ P in investment node i ∈ IInv is invested.

Parameter XMaxAcc
p gives the maximum capacity that can be installed for different technologies.

xInv
pi ≤ XMaxInv

pi yInv
pi , p ∈ P, i ∈ IInv. (15)

Constraints (16)-(18) establish that the invested capacity and accumulated capacity of newly
invested technologies and retrofitted technologies should be within the capacity limits.

xAcc
pi ≤ XMaxAcc

p , p ∈ P, i ∈ IOpe, (16)

xAccReT
pi ≤ XMaxAccReT

p , p ∈ PRT , i ∈ IOpe, (17)

xReT
pj ≤ XMaxReT

p yReT
pi , p ∈ PRT , i ∈ IInv, j ∈ IInv

i . (18)

Constraint (19) dictates that the existing capacity is zero if a technology is retrofitted to a new
technology.

xAccReF
pj = XHistReF

pj (1 − yReF
pi ), p ∈ PR, i ∈ IInv, j ∈ IOpe

i . (19)

Constraint (20) states that only one technology can be retrofitted to.

∑
p∈PR

p

yReT
pi ≤ yReF

pi , p ∈ PR, i ∈ IInv. (20)

Constraint (21) ensures that retrofit can only happen once for a technology during the planning
horizon. ∑

i∈IInv

yReF
pi ≤ 1, p ∈ PR. (21)

Constraint (22) states that the accumulated capacity of a technology xAccReT
pi in an operational
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node equals the newly invested capacities xReT
pi in its ancestor investment nodes IInv

i that are not
retired. Parameter XMaxAccReT

p is the maximum accumulated capacity of a technology that is
retrofitted from another.

xAccReT
pi =

∑
j∈IInv

i |κ(SOpe
i −SInv

j )≤Hp

xReT
pj , p ∈ PRT , i ∈ IOpe. (22)

The Benders cuts built up to iteration k − 1 are given by Equation (23).

cOP E
i ≥ θ + λ⊤(xi − x), (x, θ, λ) ∈ Fi(k−1), i ∈ I. (23)

The domains of variables are given as follows

xInv
pi , xAcc

pi , xReT
pi , xAccReT

pi , xAccReF
pi , cINV ∈ R+

0 , yInv
pi , yReF

pi , yReT
pi ∈ {0, 1}. (24)

The vector xi =
(
{xAcc

pi , p ∈ P}, {xAccReT
pi , p ∈ PRT }, {xAccReF

pi , p ∈ PR}, µDP
i , µDH

i , µDHy
i , µE

i

)
351

collects all right-hand side coefficients that will be fixed in operational subproblem, Equations (25)-352

(37). The vector ci =
(
CCO2

i

)
collects all the cost coefficients. The vectors xi and ci will be fixed as353

parameters in the operational problem. The long-term uncertain parameters including load scaling354

µDP
i , µDH

i , and µDHy
i µE

i are fixed in the following operational problem because they affect the355

system operation.356

5.2. Operational problem (subproblem in Benders decomposition)357

We now present the operational problem and note that we omit index i in the operational model358

for ease of notation because all variables and parameters are defined for each operational node.359

The right hand side parameters P Acc
p , V Acc

c , P AccG
g , P AccHRor

g , P AccSE , QAccSE
s , P AccL

l , V AccLHy
l ,360

µDP , µDH , µE , µDHy are fixed by the solution xi from solving the master problem Equations (12)-361

(24). The CO2 cost of generators that is included in parameter CG
g is fixed by ci from the master362

problem.363

The operational cost cOP E(xi, ci) at one operational node i is computed by solving subproblem
Equations (25)-(37) given the decisions xi and ci made in Equations (12)-(23). The operational
subproblem Equations (25)-(37) correspond to the general formulation Equations (9). The objec-
tive function, the operational cost, includes total operating costs of generators CG

g pG
gt, energy load

shedding costs for heat, power, and hydrogen CShedpShed
zt and CShedvShed

zt and fuel cost of steam
reforming plants CRvR

rt. CG
g includes the variable operational cost, fuel cost and the CO2 tax, CCO2 ,

charged on the emissions of generator g. The inclusion of load shedding variables pShed
zt and vShedHy

ensures the operational problem is always feasible. The load shedding costs CShed are high enough
so that the optimal solution has little or nor load shed.

min
∑
t∈T

πtHt

∑
g∈G

CG
g pG

gt +
∑
r∈R

CRvR
rt +

∑
z∈Z

 ∑
l∈{H,P }

CShed,lpShed,l
zt + CShedHyvShedHy

zt

 . (25)
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Constraints (26) ensure that the technologies operate within their capacity limits.

ppt ≤ P Acc
p , p ∈ P∗, t ∈ T , (26a)

vvt ≤ V Acc
v , v ∈ V∗, t ∈ T , (26b)

pG
gt + pResG

gt ≤ P AccG
g , g ∈ G, t ∈ T , (26c)

pSE−
st + pResSE

st ≤ P AccSE
s , s ∈ SE , t ∈ T , (26d)

qSE
st ≤ QAccSE

s , s ∈ SE , t ∈ T , (26e)

− P AccL
l ≤ pL

lt ≤ P AccL
l , l ∈ L, t ∈ T , (26f)

− V AccLHy
l ≤ vLHy

lt ≤ V AccLHy
l , l ∈ LHy, t ∈ T . (26g)

Constraint (27) captures how fast generators can ramp up or ramp down their power output,
respectively.

−αG
g P AccG

g ≤ pG
gt + pResG

gt − pG
g(t−1) − pResG

g(t−1) ≤ αG
g P AccG

g , g ∈ G, n ∈ N , t ∈ Tn. (27)

Constraint (28) dictates that the spinning reserve of generator pResG
gt , plus the reserve of the

electricity storage pResES
st must exceed the minimum reserve requirement, where σRes is a percentage

of the power load.

∑
g∈Gz

pResG
gt +

∑
s∈SE

z

pResSE
st ≥ σRes

z P DP
zt , z ∈ Z, t ∈ T . (28)

Constraints (29) and (30) ensure that run-of-the-river hydropower and regulated hydropower
production are within their limits and according to the generation profiles, separately.

∑
t∈Tn

pH
gt ≤

∑
t∈Tn

P HSea
gt , g ∈ GHSea, n ∈ N , (29)

pH
gt ≤ P HRor

gt P AccHRor
g , g ∈ GHRor, t ∈ T . (30)

Constraint (31) ensures that, in one operational period t, the sum of total power generation
of generators pG

gt, power discharged from all the electricity storage pSE−
st , renewable generation

RR
ztp

AccR
rt , hydro power generation pH

gt, fuel cell generation pF
ft, power transmitted to this region,

and load shed pShedP
zt equals the sum of power demand µDP P DP

zt , power consumption of electric
boilers pBE

bt , power consumption of all electrolysers pE
et, power transmitted to other regions, and

power generation shed pGShedP
zt . The parameter RGR

rt is the capacity factor of the renewable unit
that is a fraction of the nameplate capacity P AccR. The subset of a technology in the region z is
represented by Rz := {r ∈ R : r is available in region z}, where R can be replaced by other sets
of technologies. The power load shed pShedP allows power demand unmet at a high cost to ensure
feasibility of the operational subproblem. The same idea applies to hydrogen mass balance and heat
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energy balance.∑
g∈Gz

pG
gt +

∑
l∈LIn

z

ηLpL
lt +

∑
s∈SE

z

pSE−
st +

∑
r∈GR

z

RGR
rt P AccGR

r +
∑

g∈GH
z

pH
gt +

∑
f∈Fz

pF
ft + pShedP

zt =

µDP P DP
zt +

∑
b∈BE

z

pBE
bt +

∑
e∈Ez

pE
et +

∑
l∈LOut

z

ηL
l pL

lt +
∑

s∈SE
z

pSE+
st + pGShedP

zt , z ∈ Z, t ∈ T .
(31)

The hydrogen mass balance Constraint (32) dictates that hydrogen produced by electrolyser
Htρ

EpE
et and steam reforming plant vR

rt, hydrogen transmitted to this region, withdraw from a hy-
drogen storage vSHy−

st and hydrogen production shed vGShedHy
zt equals the hydrogen demand V DHy

zt ,
fuel supply to fuel cell Htρ

F pF
ft, hydrogen injected into the storage vSHy+, hydrogen transmitted

from this region plus the hydrogen load shed vShedHy
zt .

∑
s∈SHy

z

vSHy+
st +

∑
l∈LHyOut

z

vLHy
lt +

∑
f∈Fz

Htρ
F pF

ft + vShedHy
zt + µDHyV DHy

zt =

∑
l∈LHyIn

z

vLHy
lt +

∑
e∈Ez

Htρ
EpE

et +
∑

r∈Rz

vR
rt +

∑
s∈SHy

z

vSHy− + vGShedHy
zt , z ∈ Z, t ∈ T .

(32)

The heat energy balance Constraint (33) states that the heat recovery of gas turbines ηHrG
g pG

gt,
plus electric boiler heat generation ηBE

b pBE
bt , plus heat load shed pShedH

zt equals the heat demand
µDHP DH

zt plus the heat generation shed pGShedH
zt .

∑
g∈G

ηHrG
g pG

gt +
∑

b∈BE
z

ηBE
b pBE

bt + pShedH
zt = µDHP DH

zt + pGShedH
zt , z ∈ ZP , t ∈ T . (33)

Constraint (34) states that the state of charge qSE
st in period t + 1 depends on the previous

state of charge qSE
st , the charged power µSE

s pSE+
st and discharged power pSE−

st . The parameter ηSE
s

represent the charging efficiency.

qSE
s(t+1) = qSE

st + Ht(ηSE
s pSE+

st − pSE−
st ), s ∈ SE , n ∈ N , t ∈ Tn. (34)

The hydrogen storage balance Constraint (35) shows that the hydrogen storage level vSHy
st at

period t + 1 equals to storage level at the previous period, plus the hydrogen injected vSHy+
st , minus

the hydrogen withdrawn vSHy−
st .

vSHy
s(t+1) = vSHy

st + vSHy+
st − vSHy−

st , s ∈ SHy, n ∈ N , t ∈ Tn. (35)

Constraint (36) restricts the total emission. The parameter µE is the CO2 budget.

∑
t∈T

πt

∑
g∈G

EG
g pG

gt +
∑
r∈R

ERvR
rt

 ≤ µE . (36)
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The domains of variables are given as follows

pL
lt, vLHy

lt ∈ R, pG
gt, pShedP , pShedH , vShedHy

zt , pAcc
p , pBE

bt , pResG, pResSE ∈ R+
0 ,

pAccG
g , pGShedP

zt , pGShedH
zt , vGShedHy

zt , vSHy+
st , vSHy−

st , vSHy
st , pE

et, pH
gt, pAccGR

r ∈ R+
0 ,

pSE+
st , vAccLHy

l , pSE−
st , qAccSE

s , qSE
st , pAccL

l , pAccR
r , pF

ft, vR
rt ∈ R+

0 .

(37)

6. Results364

In this section, we first present the case study. Then we report the computational performance365

of the enhanced Benders decomposition, followed by the sensitivity analysis of the retrofitting cost366

of natural gas pipelines and offshore platforms. Finally, we compare the solutions and costs between367

the REORIENT and investment-only models. The investment-only model is the REORIENT model368

without the retrofit and abandonment planning functions.369

6.1. Case study370

We demonstrate the REORIENT model on the integrated strategic planning of the European371

energy system. The network topology is shown in Figure 4. We make investment planning towards

NO1
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NO3

NO4

NO5

NE

EE

WE

UK1

UK2

UK3 UK4
UK5

IE

NOO1
NOO2

NOO3
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NOO5
NEO

EEO

WEO1
WEO2

UKO1

UKO2

UKO3

UKO4

candidate hydrogen pipeline

candidate line

existing line

natural gas pipeline

Figure 4: Illustration of the considered European energy system. The considered system includes 27 regions (each
region can deploy 36 technologies), 87 transmission lines, 7 existing natural gas pipelines that can be retrofitted for
hydrogen transport (some are overlapped), and 87 candidate new hydrogen pipelines.

372

2050 with a 5-year planning step. We implemented the algorithm and model in Julia 1.8.2 using373
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JuMP (Dunning et al., 2017) and solved with Gurobi 10.0 (Gurobi Optimization, LLC, 2022). The374

problem instances contain up to 13 million continuous variables, 1860 binary variables, and 30375

million constraints. We run the code on nodes of a computer cluster with a 2x 3.6GHz 8 core Intel376

Xeon Gold 6244 CPU and 384 GB of RAM, running on CentOS Linux 7.9.2009. The parameters377

for the price process for oil and gas prices are presented in Table 1.378

Table 1: Estimated parameters for the price process, taken from (Bakker et al., 2021a).

κ σχ λχ σξ µ∗
ξ ρχξ

Estimate 0.407 0.273 -0.147 0.149 -0.007 0.306

Table 2: Existing natural gas pipelines considered in the case study and their potential hydrogen transport capacity.

Model name Name From To Capacity (Ktonne/hour)
Pipeline 1 Vesterled NOO3 UK1 0.46
Pipeline 2 Langeled NOO4 UK2 0.98
Pipeline 3 Zeepipe 1 NOO4 WE 0.58
Pipeline 4 Franpipe NOO4 WE 0.75
Pipeline 5 Norpipe NOO5 EE 0.61
Pipeline 6 Europipe 1 NOO4 EE 0.69
Pipeline 7 Europipe 2 NOO4 EE 0.92

We use Gurobi as the base solver. We use the dual simplex algorithm to solve the RMP due to its379

relatively small size. The parameter DegenMoves has been turned on because we notice degeneracy380

makes the solver slow. We use the Barrier algorithm to solve the centre point problem to obtain a381

centre point. If Presolve is off and Crossover is off, then Gurobi will give a centre point. However,382

we turn on Presolve to reduce the problem size further. In addition, considering the scale of the383

problem, we choose to solve all the following instances to 1% convergence tolerance.384

6.1.1. Computational results385

This section presents an overview of the problem instances and a performance analysis of the386

proposed algorithm. An overview of the test instances is presented in Table 3. In the test instances,387

we consider operational problems with hourly time resolution. The test instances vary in the number388

of operational hours in each short-term scenario, short-term scenarios, and long-term scenarios.389

The problem instances have six stages, which makes the problem instances big even with a few390

realisations of the parameters in each stage. The computational time is given in Tables 4 and 5,391

and note that Gurobi cannot solve Cases 2 and 3.392

Table 3: Overview of the cases used in the computational study.

Operational periods Short-term Long-term Number of decision nodes Problem size (undecomposed)
per short-term scenario scenarios scenarios Operational nodes Investment nodes Continuous variables Binary variables Constraints

Case 1 96 4 1 6 6 7.0 × 105 180 1.6 × 106

Case 2 672 4 1 6 6 4.8 × 106 180 1.1 × 107

Case 3 96 4 53 114 62 1.3 × 107 1860 3.0 × 107

Case 4 672 8 53 114 62 1860
Case 5 96 4
Case 6 672 8
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Table 4: Computational time of level set stabilised Benders. (Iters: iterations, Evals: subproblem evaluations)

Iters/Evals Total time spent (h) Master problem (%) Stabilisation problem (%) Subproblems and adaptive oracles (%) Lower bound Upper bound
Case 1 714/3615 5.53 16.34 43.06 40.58
Case 2 894/4249 31.04 4.02 12.76 83.21
Case 3
Case 4
Case 5
Case 6

This method did not solve Case 3 after 10 days of running, and it reached 34.6% convergence tolerance before termination.

Table 5: Computational time of centre point stabilised Benders. (Iters: iterations, Evals: subproblem evaluations)

Iters/Evals Total time spent (h) Master problem (%) Stabilisation problem (%) Subproblems and adaptive oracles (%) Lower bound ( Upper bound
Case 1 152/641 0.37 8.42 3.35 88.08
Case 2 119/516 4.54 0.44 0.20 99.35
Case 3 161/6502 49.61 9.26 8.88 81.85
Case 4
Case 5
Case 6

By comparing Tables 4 and 5, we can see that by utilising the centre point, we reduce the393

computational time significantly. By comparing the percentage of the time spent on solving the394

stabilisation problem, we can see that solving CP takes much less of the total time than solving a395

quadratic programming stabilisation problem. We can also see that as we increase the number of396

strategic nodes, the percentage of time spent on the RMP and CP increases in both algorithms.397

This is because we add one cut per node per iteration, and as we have more nodes, the RMP and CP398

grow faster every iteration. Also, by comparing Cases 2 and 3, we observe no significant difference399

in the number of iterations, but the increase in time is more significant. This is because Cases 2400

and 3 have the same amount of strategic decisions, but the subproblem in Case 3 is larger.401

6.1.2. Sensitivity analysis402

In this section, we use Case 3 to conduct a sensitivity analysis on the fixed retrofitting cost of403

pipelines and platforms. In addition, we also present the results of the investment decisions for a404

future energy system with a large amount of green and blue hydrogen production and transportation.405

We first conduct a sensitivity analysis on the retrofitting cost of natural gas pipelines. To this406

end, we consider two cases: Case A, oil and gas production has stopped, and there is no natural gas407

transportation value in the pipelines, and Case B, oil and gas production is ongoing, and the natural408

gas pipelines are used for natural gas transport. Using Case A, our motivation is to understand409

under what cost range it would be more beneficial to retrofit natural gas pipelines that are not in410

operation compared with building new hydrogen pipelines. Case B is a more realistic case because411

most of the pipelines in the North Sea are in operation and have an export role. Using Case B, we412

want to analyse if retrofit to hydrogen will occur if that means the loss of oil and gas export profit.413

According to Fors et al. (2021), the cost of retrofitting the pipelines can be estimated at around414

10-15% of the new construction. Here, we conduct sensitivity on the cost from 5%-30% with a 5%415

step.416

From Table 6, for pipelines 2-7, if the retrofitting cost is below 15% of newly built cost, they will417

be retrofitted in all scenarios. However, for pipeline 1, when the retrofitting cost is less than 15%418

of building a new one, it is retrofitted in 28 scenarios, and the retrofitting takes place in the third419
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strategic stage. Pipeline 5 is only retrofitted at the end of the planning horizon when the cost is 15%420

of building a new one. When the retrofitting cost is higher than 20%, some of the pipelines are not421

retrofitted. Instead, the model decides to build new pipelines and a different network topology to422

achieve the minimum cost. We can see that different oil and gas price scenarios affect the retrofitting423

decisions.

Table 6: Results of the expected retrofitting decisions in Case A.

Cost (% of new one) Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Pipeline 7
5% (0, 0, 2, 4, 8, 16, 28) ∗ ∗ ∗ ∗ ∗ ∗
10% (0, 0, 2, 4, 8, 16, 28) ∗ ∗ ∗ ∗ ∗ ∗
15% (0, 0, 2, 4, 8, 16, 28) ∗ ∗ ∗ (0, 0, 0, 0, 0, 2, 3) ∗ ∗
20% − ∗ ∗ − − ∗ ∗
25% − − ∗ ∗ (0, 0, 0, 2, 4, 7, 11) ∗ ∗
30% − − ∗ − (0, 0, 0, 0, 2, 4, 7) ∗ ∗

∗: the pipeline is retrofitted in all strategic nodes, −: the pipeline is not retrofitted.
({xi, i = 1, .., 7}) : the number of decision nodes, xi, that retrofitting of the pipeline takes place in stage i.

424

Table 7: Results of the expected retrofitting decisions in Case B.

Cost (% of new one) Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 Pipeline 6 Pipeline 7
5% − (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 7) (0, 0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 7) (0, 0, 0, 0, 2, 4, 7)
10% − − (0, 0, 0, 2, 4, 8, 14) (0, 0, 2, 4, 8, 16, 28) (0, 0, 0, 0, 0, 2, 4) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 2, 4, 8, 14)
15% − − (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 7)
20% − − (0 ,0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 8)
25% − − (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 0, 2, 4, 6) (0, 0, 0, 2, 4, 8, 14) (0, 0, 0, 2, 4, 8, 14)
30% − − − − − (0, 0, 0, 0, 2, 4, 8) (0, 0, 0, 0, 2, 4, 6)

−: the pipeline is not retrofitted.
({xi, i = 1, .., 7}) : the number of decision nodes, xi, that retrofitting of the pipeline takes place in stage i.

From Table 7, it can be observed, compared with Case A, that the economic viability of pipeline425

retrofit is harder if the pipelines are already used for natural gas transport. However, most pipelines426

are still retrofitted for hydrogen transportation in later investment stages. From Tables 6 and 7,427

we can see that retrofit decisions are sensitive to the retrofitting cost, and oil and gas prices. Also,428

retrofit sometimes only take place in specific price scenarios.429

Secondly, we conduct a sensitivity analysis on the retrofitting cost of oil and gas platforms. By430

doing so, we aim to analyse: (1) if retrofitting can help delay or even avoid the costly abandonment431

campaign and (2) understand the relation between retrofitting existing platforms for OEHs and432

building new OEHs. We assume that the fixed part of the retrofitting cost is half of the removal433

cost, and conduct sensitivity around this cost. For each platform cluster, we consider a fixed part of434

the retrofitting cost ranging from €10 million to €2 billion. However, the results suggest that it is not435

economical to retrofit platforms for hydrogen production under this price range due to the massive436

loss of oil and gas export profit. The model decides to conduct an abandonment campaign for all437

platform clusters by the end of the planning horizon. This means that based on the cost models438

that are used, retrofitting platforms for hydrogen production is more costly than abandonment.439

Also, due to the oil and gas export profit, the platforms will produce as long as possible until they440

must be abandoned. In this case study, the platforms must be retrofitted or abandoned by 2050.441

This suggests that repurposing platforms for other use may need stronger incentives in addition to442

economic factors.443
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Figure 5: Expected solution of the grid design towards 2050 (investment only model).

6.1.3. Comparison between the REORIENT model and an investment planning only model444

In this section, we use Case 3 and analyse the difference between an investment-planning-only445

model and the proposed integrated model regarding investment decisions and costs. We fix the446

retrofitting cost of pipelines to 15% of the cost of its newly built counterpart. In the following,447

we report the results of expected strategic decisions regarding the grid design and capacities of the448

technologies in each decision stage.449

From Figures 5 and 6, we can see that the network topology is noticeably different. By 2050,450

there will be 32 pipelines built compared with 28 pipelines in the investment-only model. The line451

connecting NE and NO1 has less capacity in the REORIENT model compared with the investment-452

only model. In both cases, the UK onshore power system transmission is reinforced, however, a453

3 GW difference in the line connecting UK3 and UK5 is observed, followed by a 2 GW difference454
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Figure 6: Expected solution of the grid design towards 2050 (REORIENT model).

in UK4-UK5. By 2050, the line NEO-EEO will have 44.90 GW capacity in REORIENT model455

compared with 36.81 GW in its counterpart. NOO3-NEO presents a significant difference as well456

with 4.4 GW capacity in REORIENT model and 12.26 GW in the investment-only model by 2050.457

NOO2 and NOO3 are not connected in the REORIENT model but are connected in the other458

model.459

By comparing Figures 7 and 8, we notice that in both models, NOO3 is an important offshore460

region which receives significant investment in offshore wind and electrolysers due to its location and461

high wind availability. A major difference is found in offshore wind capacity in NEO and UKO4.462

The REORIENT model has a higher investment in offshore wind in NEO in all investment steps.463

Tables 8 and 9 present the accumulated capacity of each technology in each region offshore wind464

will surpass onshore wind and become the most important renewable power supply by 2050. In465
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Figure 7: Expected investment decisions towards 2050 (investment only model).

Table 8: Results of accumulated capacity in Europe (investment-only model).

Year Offshore wind Onshore wind Onshore solar Electrolyser offshore Electrolyser onshore Transmission line Hydrogen pipeline
(GW) (GW) (GW) (GW) (GW) (GW) (ktonne/hour)

2025 35.72 279.24 119.83 0.00 0.00 148.66 0.00
2030 36.26 354.17 119.83 0.00 0.00 190.46 0.00
2035 212.08 364.02 146.29 12.46 8.66 586.61 0.73
2040 397.01 373.98 146.29 161.64 14.74 909.83 6.98
2045 465.95 355.11 150.86 174.57 20.51 985.28 7.80
2050 608.14 269.46 171.42 248.01 27.19 1084.87 15.70

Table 9: Results of accumulated capacity in Europe (REORIENT model).

Year Offshore wind Onshore wind Onshore solar Electrolyser offshore Electrolyser onshore Transmission line Hydrogen pipeline
(GW) (GW) (GW) (GW) (GW) (GW) (ktonne/hour)

2025 35.92 277.39 119.83 0.00 0.00 148.84 2.94
2030 38.33 348.67 119.83 0.00 0.00 190.73 3.19
2035 215.35 366.35 146.29 20.25 9.35 536.56 3.59
2040 394.34 371.60 146.29 156.90 20.38 904.63 6.19
2045 461.80 357.82 151.91 172.95 21.44 998.00 6.93
2050 593.89 293.15 171.42 253.37 24.85 1061.02 13.63

the investment-only model, more than 23 GW more transmission line capacity is needed by 2050466

compared with the results using the REORIENT model. In both models, hydrogen is produced467

mainly from SMRCCS at the initial stages but gradually replaced by electrolysers. Also, both468

models decide to produce green hydrogen mainly offshore. The hydrogen pipeline capacity is lower469

in the REORIENT model compared with the counterpart by the end of the planning stage.470
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Figure 8: Expected investment decisions towards 2050 (REORIENT model).

In addition, the total cost over the given planning horizon is €1694.47 billion in the investment-471

only model and €1691.50 billion in the REORIENT model. Furthermore, the REORIENT yields472

24% lower investment cost in the North Sea region compared with the traditional investment-only473

model. This shows the potential value of doing integrated planning. The value of REORIENT474

model can be further revealed once more retrofitting options are included, e.g., by including more475

existing natural gas pipelines.476

7. Discussion477

In this paper, we integrated investment, retrofit and abandonment planning in a multi-horizon478

stochastic MILP model. The model is generally applicable to studying a specific planning problem479

for a production plant or a large-scale energy system planning problem for a region.480

We used the model to study the investment planning of a European energy system. We consid-481

ered regional retrofit at a high level and conduct a techno-economical analysis. Unlike traditional482

retrofit models for process systems, we have omitted detailed modelling of the processes, which is483

a compromise due to the large scale of the study. The sensitivity analysis presented in this paper484

can be used as a benchmark for future studies.485

In the case study, we find that although reducing retrofitting costs can trigger the retrofitting of486

some oil and gas infrastructures, it may not be a sufficiently strong incentive for platform retrofitting487
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compared with pipeline retrofitting. This is because the loss of oil and gas profit is much larger than488

the reduction in retrofitting cost. Additionally, for platforms, a lot of investment needs to be made489

for producing green hydrogen upon removing the existing structure. Other driving factors, such as490

policies, are therefore needed to encourage oil and gas operators to retrofit their infrastructure or491

reduce production for the energy transition.492

From an algorithm perspective, the proposed algorithm solved the problem instances efficiently.493

The problem instances have many regions and technologies and, therefore, are highly degener-494

ate. The CP helps the proposed enhanced Benders algorithm to converge faster. In addition, the495

proposed enhanced Benders decomposition can be applied to a class of problems that can be formu-496

lated as Equations (10) and (9). Other strategies to accelerate Benders decomposition, including497

adding combinatorial cuts, trust region, local branching methods, and partial surrogate are tested.498

However, the improvement in performance is not significant.499

There are some limitations of the case study: (1) in the case study, the offshore fields are500

aggregated into representative fields, which loses the modelling of the retrofit and abandonment for501

specific fields; (2) there are other parameters that may affect the investment decisions such as CO2502

budget can be an uncertain parameter and change the results. We believe that oil and gas prices have503

a more direct relation and economic trade-off with retrofit and abandonment decisions; therefore,504

we choose to consider oil and gas prices as the uncertain parameter, and (3) we only consider green505

and blue hydrogen. However, hydrogen produced by other means may also be relevant and affect506

the results. In addition, although the MHSP can include uncertainty from short-term and long-term507

time horizons more efficiently, uncertain parameters such as oil and gas prices can be affected by508

decisions taken. This can not be captured using MHSP. However, there have been modelling and509

computational strategies for multi-stage stochastic programming with endogenous and exogenous510

uncertainties (Goel & Grossmann, 2006; Apap & Grossmann, 2017). It may be possible to combine511

the approaches in (Goel & Grossmann, 2006; Apap & Grossmann, 2017) with MHSP to address512

this limitation.513

8. Conclusions and future work514

This paper has presented the REORIENT model, a multi-horizon stochastic MILP for integrated515

investment, retrofit and abandonment energy-system planning. The major novelties and contribu-516

tions are: (1) we developed an MHSP model for integrated investment, retrofit and abandonment517

planning of energy systems, (2) we included uncertainty from both strategic and operational time518

horizons in such a model, (3) an enhanced Benders algorithm was developed to solve large-scale519

MILP faster and (4) the triggering parameters for retrofitting is investigated by conducting sensitiv-520

ity analysis and a comparison between the REORIENT model and investment planning only model521

is made. Results from our case study indicate that: (1) for pipelines that are not in use, when the522

retrofitting cost is below 20% of the cost of building new ones, it is more economical to retrofit most523

of the pipelines than building new ones. For pipelines that transport natural gas, it is economical524

to be retrofitted in some natural gas price scenarios, (2) platform clusters keep producing oil and525
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gas rather than being retrofitted for hydrogen use, and the clusters abandonment takes place at the526

last investment stage, (3) compared with an investment planning model, the REORIENT model527

yields €3 billion lower total cost, and 24% lower investment cost in the North Sea region, and (4)528

the proposed Benders algorithm can solve the model efficiently and is 6.8 times faster than the level529

set stabilised Benders decomposition which cannot solve the largest instance.530

In the future, the REORIENT model can be used for more energy systems analysis, such as531

investigating the integrated planning for other regions, such as the continental shelf of the United532

States, or focusing on some specific platforms in a smaller region. In addition, other solution533

methods, such as Lagrangean type algorithms and progressive hedging algorithms, can be further534

developed for solving large-scale MHSP more efficiently. Furthermore, extending MHSP to manage535

endogenous uncertainty may be valuable in the future.536
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Appendix A. Nomenclature715

Investment planning model indices and sets716
p ∈ P set of technologies717
p ∈ PR set of candidate retrofit technologies718
p ∈ PR

p set of candidate technologies that an existing technology p can be retrofitted to (p ∈ PR) which719

including abandonment and prolong720
p ∈ PRT set of candidate technologies be retrofitted to721
i ∈ IOpe set of operational nodes722
i ∈ IInv set of investment nodes723
j ∈ IInv

i set of investment nodes j (j ∈ IInv) succeed to investment node i (i ∈ IInv)724
j ∈ IOpe

i set of operational nodes j (j ∈ IOpe) succeed to investment node i (i ∈ IInv)725
(x, θ, λ) ∈ Fi(k−1) set of the Benders cut built up to iteration k − 1, where x is the vector of sampled points, theta726

and λ are the actually cost of subproblem at the sampled points, and the vector of subgradients727

at the sampled points, respectively.728
Investment planning model parameters729
CInvV

pi unitary investment cost of technology p in investment node i (p ∈ P, i ∈ IInv) [€/MW, €/MWh,730

€/kg]731
CInvF

pi fixed capacity independent investment cost of technology p in investment node i (p ∈ P, i ∈ IInv)732

[€]733
CF ix

pi unitary fix operational and maintenance cost of technology p in operational node i (p ∈ P, i ∈ IOpe)734

[€/MW, €/MWh, €/kg]735
CReT V

pi unitary investment cost of retrofitted technology p in investment node i (p ∈ PRT , i ∈ IInv)736

[€/MW, €/MWh, €/kg]737
CReT F

pi fixed capacity independent investment cost of retrofitted to technology p in investment node i738

(p ∈ PRT , i ∈ IInv) [€]739
CReT F ixO fix operational cost of the technology that is retrofitted to p in investment node i (p ∈ PRT , i ∈740

IInv) [€]741
CReF F ixO

pi fix operational cost of retrofitted technology p in investment node i (p ∈ PRT , i ∈ IInv) [€]742
X

MaxInv/MinInv
pi maximum/minimum built capacity of technology p in investment node i (p ∈ P, i ∈ IInv) [MW,743

MWh, kg]744
XMaxAcc

p maximum installed capacity of technology over the planning horizon p (p ∈ P) [MW, MWh, kg]745
κ scaling effect depending on time step between successive investment nodes746
Hp lifetime of technology p (p ∈ P)747
XHistReF

pi historical capacity of existing technology that can be retrofitted [MW, MWh, kg]748
XHist

pi historical capacity of technology p in operational node i (p ∈ P, i ∈ IOpe) [MW, MWh, kg]749
X

MaxReT/MinReT
pi maximum/minimum built capacity of technology p in investment node i (p ∈ PRT , i ∈ IInv) [MW,750

MWh, kg]751
XMaxAccReT

pi maximum installed capacity of technology p (p ∈ PRT ) [MW, MWh, kg]752
xi right hand side of the operational problem753
ci cost coefficients of the operational problem754
π

Inv/Ope
i discount factor multiplied probability of investment/operational node i, (i ∈ IInv/i ∈ IOpe)755

µE
i CO2 budget at operational node i (i ∈ IOpe)756

µDP
i scaling factor on power demand at operational node i (i ∈ IOpe)757

µP
i scaling factor on oil and gas production at operational node i (i ∈ IOpe)758

µDHy
i scaling factor on hydrogen demand at operational node i (i ∈ IOpe)759

CCO2
i CO2 emission price at operational node i (i ∈ IOpe)760

SOpe
i strategic stage of operational node i (i ∈ IOpe)761

SInv
i strategic stage of investment node i (i ∈ IInv)762

Investment planning model variables763
xAcc

pi accumulated capacity of device p in operational node i (p ∈ P, i ∈ IOpe) [MW, MWh, kg]764
xInv

pi newly invested capacity of device p in investment node i0 (p ∈ P, i ∈ IInv) [MW, MWh, kg]765
yInv

pi 1 if technology p is newly invested in investment node i, 0 otherwise (p ∈ P, i ∈ IInv)766
yReT

pi 1 if technology p is retrofitted to in investment node i, 0 otherwise (p ∈ PRT , i ∈ IInv)767
xAccReT

pi accumulated capacity of technology p that is retrofitted to in operational node i (p ∈ PRT , i ∈ IOpe)768
yReF

pi 1 if technology p is retrofitted from in investment node i, 0 otherwise (p ∈ PR, i ∈ IInv)769
xAccReF

pi accumulated capacity of retrofitted from technology in operational node i (p ∈ PR, i ∈ IOpe)770
xReT

pi in operational node i (p ∈ PR, i ∈ IOpe)771
cINV total investment and fixed operating and maintenance costs [€]772
cOP E

i approximated operational cost in operational node i in Benders decomposition (i ∈ IOpe) [€]773
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Operational model indices and sets774
n ∈ N set of time slices775
t ∈ T set of hours in all time slices776
t ∈ Tn set of hours in time slice n (n ∈ N )777
l ∈ L set of transmission lines778
l ∈ LHy set of hydrogen pipelines779
l ∈ LOut/In

z set of transmission lines go out of/into region z780
l ∈ LHyOut/HyIn

z set of hydrogen pipelines go out of/into region z781
g ∈ G set of thermal generation782
r ∈ GR set of renewable generation783
g ∈ GH set of hydropower generation including run of the river GHRor and seasonal GHSea784
s ∈ SE set of electricity storage785
s ∈ SHy set of hydrogen storage786
b ∈ BE set of electric boilers787
r ∈ R set of SMRCCS788
e ∈ E set of electrolysers789
f ∈ F set of fuel cells790
z ∈ ZP set of all platform clusters791
z ∈ Z set of all locations792
p ∈ P∗ set of all thermal generators, electric boilers, electrolysers, electricity storage, fuel cells and seasonal793

hydropower generation (P∗ = G ∪ BE ∪ E ∪ SE ∪ F ∪ GHSea)794
v ∈ V∗ set of hydrogen storage and SMRCCS plants (V∗ = SHy ∪ R)795
Operational model parameters796
µE CO2 emission limit (tonne)797
µDP/DH/DHy scaling effect on power demand/heat demand/hydrogen demand798
Ht number of hour(s) in one operational period t799
πt weighted length of one operational period t800
RGR

rt capacity factor of renewable unit r in period t (r ∈ R, t ∈ T )801
η∗ efficiency of electric boilers, fuel cells, thermal generators, electric storage and transmission lines802

∗ = {BE, SE, L, HrG} indexed by related sets803
EG

g CO2 emission factor of thermal generation g (g ∈ G) [t/MWh]804
CG

g total operational cost of generating 1 MW power from thermal generation g (g ∈ G) [€/MW]805
CShed,l load shed penalty cost of power (l = P ), heat (l = H) and hydrogen l = Hy [€/MW, €/kg]806
σRes

z spinning reserve factor in region z (z ∈ Z)807
αG

g maximum ramp rate of generators (g ∈ G) [MW/MW]808
ρE conversion factor of electrolyser to hydrogen [MWh/kg]809
P

DP/DH
zt power demand/heat demand in location z period t (z ∈ Z, t ∈ T ) [MW]810

ρF hydrogen consumption factor of fuel cell [kg/MW]811
P AccG

g accumulated capacity of thermal generator g (g ∈ G) [MW]812
P AccHRor

g accumulated capacity of run of the river hydropower generation g (g ∈ GHRor) [MW]813
P Acc

g accumulated capacity of technology p (p ∈ P∗) [MW]814
QAccSE

s accumulated storage capacity of electricity store s (s ∈ SE) [MWh]815
P AccL

l accumulated capacity of line l (l ∈ L) [MW]816
CR operational cost of producing 1 kg hydrogen from SMRCCS [€/kg]817
P

HSea/HRor
gt production profile of seasonal hydropower/run of the river hydropower in location z period t818

(z ∈ Z, t ∈ T ) [MW]819
V DHy

zt hydrogen demand in region z period t (z ∈ Z, t ∈ T ) [MW]820
ER emission factor of SMRCCS821
V Acc storage level, injection and withdrawal capacities of hydrogen storage and capacity of SMRCCS822

[kg]823
Operational model variables824
pG

gt power generation of thermal generator g in period t (g ∈ G, t ∈ T ) [MW]825
pResG

gt power reserved of thermal generator g for spinning reserve requirement in period t (g ∈ G, t ∈ T )826

[MW]827
pSE+

st /pSE−
st charge/discharge power of electricity store s in period t (s ∈ SE , t ∈ T ) [MW]828

pResSE
st power reserved in electricity store s for spinning reserve requirement in period t (s ∈ SE , t ∈ T )829

[MW]830
qSE

st energy level of electricity store s at the start of period t (s ∈ SE , t ∈ T ) [MWh]831
pGShed,l

zt generation shed for power (l = P ) and heat (l = H) in location z in period t (z ∈ Z, t ∈ T ) [MW]832
pShed,l

zt load shed for power (l = P ) and heat (l = H) in location z in period t (z ∈ Z, t ∈ T ) [MW]833
vGShedHy

zt hydrogen production shed in location z in period t (z ∈ Z, t ∈ T ) [kg]834
vShedHy

zt hydrogen load shed in location z in period t (z ∈ Z, t ∈ T ) [kg]835
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pL
lt power flow in line l in period t (l ∈ L, t ∈ T ) [MW]836

pBE
bt power consumption of electric boiler b in period t (b ∈ BE , t ∈ T ) [MW]837

pF
ft power generation of fuel cell f in period t (f ∈ F , t ∈ T ) [MW]838

pE
et power consumption of electrolyser e in period t (e ∈ E , t ∈ T ) [MW]839

vSHy+
st /vSHy−

st injection/withdraw of hydrogen to (from) hydrogen storage s in period t (s ∈ SHy, t ∈ T ) [kg]840
vSHy

st storage level of hydrogen storage s in period t (s ∈ SHy, t ∈ T ) [kg]841
vR

rt hydrogen production of SMRCCS r in period t (r ∈ R, t ∈ T ) [kg]842
vLHy

lt hydrogen flow in pipeline l period t (l ∈ LHy, t ∈ T )843
vvt hydrogen injection, withdraw, storage level of hydrogen storage, and hydrogen production of SM-844

RCCS in period t (v ∈ SHy ∪ R) [kg]845
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