
Multiscale Production Routing in Multicommodity
Supply Chains with Complex Production Facilities

Qi Zhanga, Arul Sundaramoorthyb, Ignacio E. Grossmanna,∗, Jose M. Pintoc

aCenter for Advanced Process Decision-making, Department of Chemical Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

bBusiness and Supply Chain Optimization R&D, Praxair, Inc., Tonawanda, NY 14150,
USA

cBusiness and Supply Chain Optimization R&D, Praxair, Inc., Danbury, CT 06810, USA

Abstract

In this work, we introduce the multiscale production routing problem (MPRP),
which considers the coordination of production, inventory, distribution, and
routing decisions in multicommodity supply chains with complex production
facilities. We propose an MILP model involving two different time grids. While
a detailed mode-based production scheduling model captures all critical oper-
ational constraints on the fine time grid, vehicle routing is considered in each
time period of the coarse time grid. In order to solve large instances of the
MPRP, we propose an iterative MILP-based heuristic approach that solves the
MILP model with a restricted set of candidate routes at each iteration and dy-
namically updates the set of candidate routes for the next iteration. The results
of an extensive computational study show that the proposed algorithm finds
high-quality solutions in reasonable computation times, and in large instances,
it significantly outperforms a standard two-phase heuristic approach and a solu-
tion strategy involving a one-time heuristic pre-generation of candidate routes.
Similar results are achieved in an industrial case study, which considers a real-
world industrial gas supply chain with 2 plants, approximately 240 customers,
20 vehicles, and a planning horizon of 4 weeks, resulting in 168 time periods on
the fine grid and 56 time periods on the coarse grid.
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1. Introduction

In today’s competitive market environment, it is becoming increasingly im-
portant for companies in the process industry to improve the performance of
their supply chains. One widely acknowledged approach for achieving a more
efficient and reliable supply chain is the integrated planning of multiple supply
chain operations such as production, inventory, and distribution (Thomas and
Griffin, 1996; Erengüç et al., 1999). Typically, these operations are optimized
in a sequential manner. For example, one may first forecast the demand for
each production plant and set up production plans that minimize production
and inventory costs at the plants. Then, using the production decisions as in-
puts, distribution planning is performed, which minimizes the distribution costs.
However, since the distribution planning is restricted by the production planning
decisions, the solution may be suboptimal due to the lack of coordination. In
contrast, with an integrated supply chain planning approach, several major plan-
ning decisions are optimized simultaneously, which can result in significant cost
savings, as shown in some recent successful industrial implementations (Brown
et al., 2001; Çetinkaya et al., 2009).

Among the integrated supply chain planning problems, the so-called pro-
duction routing problem (PRP), also sometimes referred to as the production
inventory distribution routing problem (PIDRP), is the most comprehensive one
as it considers production, inventory, distribution, and routing decisions simul-
taneously. The PRP in its classical form can be formulated as a mixed-integer
linear program (MILP) and integrates two well-known problems, namely the lot-
sizing problem (LSP) and the inventory routing problem (IRP), where the latter
is an extension of the vehicle routing problem (VRP). For details on these more
extensively studied subproblems of the PRP, we point the interested reader to
the following references: Karimi et al. (2003) and Pochet and Wolsey (2006) for
the LSP, Toth and Vigo (2002) and Laporte (2009) for the VRP, and Campbell
et al. (1998) and Coelho et al. (2013) for the IRP. It is important to note that
in the PRP, there is flexibility in the inventories not only at the production
plants but also at the customer locations; hence, customer inventory levels are
decision variables, and an IRP has to be solved as a subproblem. In many other
integrated production and routing problems, fixed orders are assumed, which
excludes the possibility of leveraging the customers’ storage capacities.

Although the PRP has received increased attention in recent years, the lit-
erature on this subject remains scarce. In one of the first works on production
routing, Chandra and Fisher (1994) consider a single plant producing multiple
products for several customers. Two approaches are compared to each other,
one in which the LSP and the IRP are solved sequentially, and another in which
an integrated PRP is solved. Although the PRP is solved heuristically, the
results show that cost reduction of 3–20 % can be achieved by applying the in-
tegrated approach. Fumero and Vercellis (1999) solve a similar problem using
Lagrangean relaxation and obtain cost savings of the same order of magnitude.

Due to its high combinatorial complexity, the PRP is notoriously hard to
solve. As a result, most existing solution approaches involve various heuristic
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procedures. Like several others, Lei et al. (2006) propose a two-phase approach
for solving the PRP. In Phase I, the integrated problem is solved, allowing
only direct shipments from plants to customers. The resulting inefficiencies are
handled in Phase II by minimizing the transportation cost for each plant and
each time period with the plant-to-customer allocation decisions from Phase
I. Bard and Nananukul (2009a, 2010) apply a branch-and-price algorithm in
which column generation is applied to solve the linear programming (LP) relax-
ation at each node of the branch-and-bound tree. Here, each generated column
corresponds a feasible routing schedule in a particular time period. Since the
pricing subproblems are extensions of the VRP, they are very difficult to solve
exactly; hence, a heuristic two-step algorithm is applied, which determines de-
livery quantities for each customer in each time period in the first step and then
finds actual routes using a VRP tabu search code in the second step. Archetti
et al. (2011) first solve an IRP heuristically while assuming infinite production
at the plant. Then an LSP is solved with the production quantities obtained
from solving the IRP. Finally, the solution is improved iteratively by removing
and inserting two customers at a time. Absi et al. (2013) propose an iterative
two-phase approach. The first phase involves solving a PRP in which the rout-
ing part is simplified by direct assignment of vehicles to customers and time
periods with fixed visiting costs. Routes are then constructed in the second
phase, and based on the routing solution, the visiting costs are updated for the
next iteration.

Besides the general heuristics reviewed above, metaheuristics have also been
applied to the PRP. Boudia et al. (2007) propose a greedy randomized adap-
tive search procedure (GRASP) consisting of two main phases: construction
and local search. In the construction phase, an initial solution is generated by
developing a production and distribution plan sequentially for each time period
without creating inventory at the plant. Then in the local search phase, the
routing plan is improved by simple local moves in the same time period as well
as across multiple time periods. Boudia and Prins (2009) introduce a memetic
algorithm, which can be seen as a modified genetic algorithm that applies an im-
provement procedure to each generated solution. Bard and Nananukul (2009b)
first solve an LSP with direct shipments and then apply tabu search to make
routing decisions based on the solution of the LSP. Armentano et al. (2011) pro-
pose a similar tabu search algorithm and further incorporate a path relinking
procedure, in which new solutions are generated by connecting high-quality so-
lutions or solutions that exhibit contrasting features. Adulyasak et al. (2014b)
apply an adaptive large neighborhood search (ALNS) algorithm, where at each
iteration, a selection operator is applied to create a list of customer-time period
combinations, and then a transformation operator is applied to remove or rein-
sert some of these customer-time period combinations to the current solution.

Only a handful of exact solution methods have been proposed for the PRP.
Bard and Nananukul (2009a, 2010) propose a rigorous branch-and-price algo-
rithm; however, it can only solve instances with up to 10 customers, 5 vehicles,
and 2 time periods. Different branch-and-cut algorithms have been developed
by Ruokokoski et al. (2010), Archetti et al. (2011), and Adulyasak et al. (2014a).
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In all proposed branch-and-cut procedures, subtour elimination constraints are
added as cuts when solving the LP relaxations at the nodes of the branch-and-
bound tree. In addition, Ruokokoski et al. (2010) formulate so-called generalized
comb and 2-matching inequalities that can be used as cuts in the algorithm.
Adulyasak et al. (2014a) apply branch-and-cut to two different formulations
of the PRP, one with and one without a vehicle index. Computational tests
show that the vehicle index formulation is superior in finding optimal solutions,
whereas the nonvehicle index formulation generally provides better bounds on
larger instances that cannot be solved to optimality. Adulyasak et al. (2015a)
further apply the proposed branch-and-cut algorithm combined with Benders
decomposition to solve the two-stage and multistage stochastic PRP with de-
mand uncertainty.

For more details on formulations and solution algorithms for the classical
PRP, we refer to the excellent review of Adulyasak et al. (2015b), from which
the following insights, among other ones, can be drawn: (1) The vast majority
of existing works only consider problems with one plant and one product. (2)
The state-of-the-art heuristic algorithms for the PRP can solve instances with
up to 200 customers and 20 time periods. (3) The best existing exact algorithms
can handle single-vehicle instances with up to 80 customers and 8 time periods.

Our work is concerned with an extension of the classical PRP and is moti-
vated by the challenge of managing production and distribution operations in
industrial gas supply chains. In the so-called merchant liquid business, indus-
trial gas companies distribute liquid products (liquid oxygen, nitrogen, argon,
hydrogen, etc.) in bulk to the customers using tractor-trailers. The products
can be stored in tanks at the customer sites. Here, the concept of vendor-
managed inventory (VMI) is applied such that the industrial gas companies
have control over their customers’ inventories. These are highly integrated sup-
ply chains with multiple products, multiple production plants, and typically
hundreds of customers. Moreover, cryogenic air separation plants, which are
used to produce high-quality industrial gases, are tightly integrated and highly
power-intensive processes. Hence, when optimizing the operation of such plants,
detailed scheduling models have to be applied that can capture all critical pro-
cess features including time-sensitive prices, interdependent production rates,
and constraints on transitions between operating points. This level of accuracy
on the production side cannot be achieved by a lot-sizing model as used in the
classical PRP formulation.

For the industrial gas supply chain case, Glankwamdee et al. (2008) for-
mulate a simplified production-distribution LP model that does not consider
routing decisions; instead, the distribution part is approximated by resource con-
straints on truck and driver hours required for the planned deliveries. Marchetti
et al. (2014) propose a production routing framework in which a heuristic is ap-
plied to generate a number of routes a priori, where a route is defined as a set
of customers that can be visited in one trip. These routes are then included
in the integrated model such that the assignment of routes to available trucks
can be optimized. A large-scale industrial test case with 2 products, 4 plants,
4 depots, 168 customers, and 14 time periods has been considered, for which

4



CPLEX finds a good feasible solution with an optimality gap of 3.6 % within
5 h. However, it should be mentioned that in this particular case, the delivery
quantities are given, i.e. there is no inventory management at the customer
sites involved. In their proposed frameworks, Glankwamdee et al. (2008) and
Marchetti et al. (2014) apply rather simplistic models of the production pro-
cesses, which can be a serious drawback as process dynamics are not accurately
represented, and hence, solutions may be suboptimal or even infeasible when
implemented in practice. Zamarripa et al. (2016) apply a rolling horizon heuris-
tic to large-scale instances of the model proposed by Marchetti et al. (2014),
obtaining near-optimal solutions in shorter computation times.

The goal of this work is to develop a production routing framework that
can consider large-scale multicommodity multiplant supply chains with com-
plex production facilities, such as industrial gas supply chains. The desired
outputs are twofold: a production schedule that can be readily implemented,
and plant-to-customer allocation decisions that can be used as input for a sub-
sequent detailed inventory routing tool, such as the one developed by Dong
et al. (2014). We propose a multiscale PRP (MPRP) model involving two time
grids, a fine one for production scheduling and a coarse one for distribution
planning. A detailed production scheduling model is applied to capture all crit-
ical operational constraints, and in order to obtain accurate distribution costs
and guarantee feasible distribution decisions, routing is considered in each time
period of the coarse time grid. Note that the MPRP is more involved than
the classical PRP because of the added complexity on the production side. For
solving large instances of the MPRP, we propose an MILP-based heuristic ap-
proach that relies on applying the integrated MILP model and a dynamic route
generation procedure in an iterative fashion. The effectiveness of the proposed
solution method is demonstrated in an extensive computational study as well
as in a real-world industrial test case.

The remainder of this paper is organized as follows. After stating the prob-
lem in Section 2, we present the MPRP formulation in Section 3. Section 4
provides a description of the proposed solution method. In Section 5, the pro-
posed approach is applied to various MPRP instances, including an illustrative
example to show the main features of the model, an extensive computational
study to demonstrate the effectiveness of the solution method, and a real-world
industrial-scale test case with data provided by Praxair. Finally, in Section 6,
we close with a summary of the results and concluding remarks.

2. Problem statement

We consider a multicommodity supply chain that is characterized by a set of
products i ∈ I, a set of production plants p ∈ P , of which each can produce all or
a subset of the products, and a number of product-specific customers, of which
each customer c ∈ Ci has a given demand and storage capacity for product i.

We assume that each production plant can operate in a set of discrete oper-
ating modes m ∈Mp, where each mode is defined by its production capacity and
cost function. The complexity in the production process arises from the fact
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that generally, the products cannot be produced independently from each other;
hence, correlations in production rates have to be considered. Furthermore, the
dynamic behavior of the plant is constrained by restrictions on the rate of change
and transitions between operating modes. The plants have inventory capacities
for storable products.

Product-specific vehicles, e.g. tanker trucks, are used to transport products
from the plants to the customers. Each vehicle is assigned to one particular
plant and is defined by its capacity, speed, and cost, which may include fuel
and labor costs. For every trip, a vehicle leaves the plant, visits one or multiple
customers, and returns to the plant at the end of the trip. The length of a trip
is limited.

The goal of the MPRP is to optimize production and distribution opera-
tions at different levels of decision-making for a given planning horizon. On
the production side, the solution should provide a detailed production schedule
involving the following decisions for every time period: the operating mode,
the production rate for each product, and the amounts of products stored. On
the distribution side, we want to make tactical decisions regarding plant-to-
customer allocation; hence, we determine the amounts of products distributed
from each plant to each customer and the assignment of vehicles to trips. Since
feasibility has to be guaranteed, more detailed routing decisions may be ob-
tained as a byproduct of the solution method; however, these decisions are not
required since detailed routing will be subject to reoptimization in a separate
subsequent step in which plant-to-customer allocation is fixed.

3. Model formulation

We propose an MILP model for the MPRP, for which the mathematical
formulation is presented in the following. Note that all continuous variables in
this model are constrained to be nonnegative. A list of indices, sets, parameters,
and variables is given in the Nomenclature section.

3.1. Multiscale time representation

In the proposed model, a discrete time representation is applied. While
short-term operational decisions are made on the production side, mid-term
tactical decisions are made on the distribution side; hence, two different time
scales have to be considered. We create two time grids, one with a fine and the
other with a coarse time discretization, where the time horizon is divided into
time periods of the lengths ∆tf and ∆tc, respectively, with ∆tc chosen to be a
multiple of ∆tf . For the sake of clarity, we refer to a time period in the fine time
grid as a level-1 time period and to a time period in the coarse time grid as a
level-2 time period whenever this distinction is necessary. Also, the notation is
such that time period t starts at time point t − 1 and ends at time point t.

In the fine time grid, the planning horizon is defined by the set of time periods

T
f
= {1,2, . . . , t̂f}, a subset of T f = {−θmax + 1,−θmax + 2, . . . ,0,1, . . . , t̂f}, which

also includes time periods in the past that are used in some constraints involving
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mode transition variables. The coarse time discretization creates the following
two sets of time periods: T

c
= {1,2, . . . , t̂c} and T c = {0,1, . . . , t̂c}. Furthermore,

we define a set T̃ = {1,∆tc/∆tf + 1,2∆tc/∆tf + 1, . . . , (t̂c − 1)∆tc/∆tf + 1}, which
is the set of level-1 time periods that begin at the same time points as the
corresponding level-2 time periods.

We illustrate the notation with the example shown in Figure 1. Here, we
have a planning horizon of 12 h, ∆tf = 1 h, ∆tc = 4 h; consequently, t̂f = 12,

t̂c = 3, and T̃ = {1,5,9}. Also, we have θmax = 4. Note that T
f

and T
c

only refer
to the planning horizon starting with time period 1.

Figure 1: Fine and coarse time grids for a planning horizon of 12 h with
∆tf = 1 h and ∆tc = 4 h.

3.2. Production scheduling

The following production scheduling model is based on a mode-based for-
mulation developed in previous works (Mitra et al., 2012; Zhang et al., 2016);
hence, we only provide brief descriptions of the constraints.

3.2.1. Plant model

In this model, we assume that each plant can operate in different operating
modes, which represent operating states such as “off”, “on”, and “startup”.
To capture the complexity in the production process, the feasible region for
each mode is defined by a union of convex subregions in the product space,
and a linear cost function with respect to the production rates is given for
each subregion. The key feature here is that every subregion has the form of a
polytope. Such a model is generally referred to as a Convex Region Surrogate
(CRS) model. For complex processes, CRS models can be constructed by either
using a model-based (Sung and Maravelias, 2009) or a data-driven approach
(Zhang et al., 2015).

At any point in time, a plant can only operate in one operating mode. For
a given mode, the operating point has to lie in either one of the corresponding
convex subregions. Any point in a subregion can be represented as a convex
combination of the vertices of the polytope. These relationships can be described
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by the following constraints:

PDpit = ∑
m∈Mp

∑
r∈Rpm

PDpmrit ∀p, i, t ∈ T
f

(1a)

PDpmrit = ∑
j∈Jpmr

λpmrjt vpmrji ∀p, m ∈Mp, r ∈ Rpm, i, t ∈ T
f

(1b)

∑
j∈Jpmr

λpmrjt = ypmrt ∀p, m ∈Mp, r ∈ Rpm, t ∈ T
f

(1c)

ypmt = ∑
r∈Rpm

ypmrt ∀p, m ∈Mp, t ∈ T
f

(1d)

∑
m∈Mp

ypmt = 1 ∀p, t ∈ T
f

(1e)

where Mp is the set of operating modes in which plant p can operate, Rpm
is the set of subregions in mode m ∈ Mp, and Jpmr is the set of vertices of
subregion r ∈ Rpm. The binary variable ypmt equals 1 if mode m ∈ Mp is
selected in time period t, whereas the binary variable ȳpmrt equals 1 if subregion
r ∈ Rpm is selected in time period t. The amount of product i produced at
plant p in time period t is denoted by PDpit. Associated with PDpit is the
disaggregated variable PDpmrit for subregion r ∈ Rpm, which is expressed as a
convex combination of the corresponding vertices, vpmrji. Notice that Eqs. (1)

are written for all t ∈ T
f
, which refers to the fine time discretization.

3.2.2. Transition constraints

A transition occurs when the system changes from one operating point to
another. For changes between operating points in the same operating mode, a
bound on the rate of change, ∆̄max

pmi , can be set as follows:

−∆̄max
pmi ≤ ∑

r∈Rpm

(P pmrit − P pmri,t−1) ≤ ∆̄max
pmi ∀p, m ∈Mp, i, t ∈ T

f
. (2)

Additional constraints have to be imposed on transitions between different
operating modes, which is achieved by enforcing constraints (3)–(5). The binary
variable zpmm′t equals 1 if and only if plant p switches from mode m ∈ Mp to
mode m′ ∈Mp at time t, which is stated in the following constraint:

∑

m′∈TRpm

zpm′m,t−1 − ∑
m′∈T̂Rpm

zpmm′,t−1 = ypmt − ypm,t−1 ∀p, m ∈Mp, t ∈ T
f

(3)

where TRpm = {m′ ∶ (m′,m) ∈ TRp} and T̂Rpm = {m′ ∶ (m,m′) ∈ TRp} with
TRp being the set of all possible mode-to-mode transitions at plant p.

The restriction that a plant has to remain in a certain mode for a minimum
amount of time after a transition is stated as follows:

ypm′t ≥
θpmm′

∑
k=1

zpmm′,t−k ∀p, (m,m′
) ∈ TRp, t ∈ T

f
(4)
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with θpmm′ being the minimum stay time in mode m′ ∈Mp after switching to it
from mode m ∈Mp.

For predefined sequences, each defined as a fixed chain of transitions from
mode m to mode m′ to mode m′′, we can specify a fixed stay time in mode m′

by imposing the following constraint:

zpmm′,t−θ̄pmm′m′′
= zpm′m′′t ∀p, (m,m′,m′′

) ∈ SQp, t ∈ T
f

(5)

where SQp is the set of predefined sequences for plant p and θ̄pmm′m′′ is the
fixed stay time in mode m′ in the corresponding sequence.

The following equations fix the initial mode of each plant according to the
parameters yini

pm and include the required information on the mode switching

history in the form of the parameters zini
pmm′t:

ypm,0 = y
ini
pm ∀p, m ∈Mp (6a)

zpmm′t = z
ini
pmm′t ∀p, (m,m′

) ∈ TRp, t ∈ T
f
, −θ̃max

p + 1 ≤ t ≤ −1 (6b)

with θ̃max
p = max( max

(m,m′)∈TRp

{θpmm′}, max
(m,m′,m′′)∈SQp

{θ̄pmm′m′′}), which defines

for how far back in the past the mode switching information has to be provided.
Note that the fine time discretization can then be established by using θmax =

max
p
{θ̃max
p }.

3.2.3. Inventory constraints

First, we distinguish between storable and nonstorable products by creating
the two disjoint product sets Ī and Î, respectively. While in general, storable
products have to be transported to the customer locations, demands for non-
storable products are assumed to occur at the production plants. Therefore, for
nonstorable products, it suffices to simply constrain the production to be higher
than the demand:

PDpit ≥ D̂pit ∀p, i ∈ Î , t ∈ T
f

(7)

where D̂pit denotes the demand for product i at plant p in time period t.
Formulating the inventory constraints for the storable and therefore trans-

portable products requires the following assumption: The products distributed
to the customers in each level-2 time period are loaded into the vehicles within
the first ∆tf of the same level-2 time period. This restriction is necessary due to
the multiple time scales and it ensures that we always have sufficient inventory
such that vehicles can leave the plants close to the beginning of the time pe-
riod; otherwise, the vehicles may not be able to complete their trips within the
same time period. With this assumption, we arrive at the following inventory
constraints:

IVpit = IVpi,t−1 + PDpit −LDipt′ ∀p, i ∈ Ī , t ∈ T̃ , t′ = πt (8a)
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IVpit = IVpi,t−1 + PDpit ∀p, i ∈ Ī , t ∈ T
f
∖ T̃ (8b)

IV min
pit ≤ IVpit ≤ IV

max
pit ∀p, i ∈ Ī , t ∈ T

f
(8c)

IVpi,0 = IV
ini
pi ∀p, i ∈ Ī (8d)

where IVpit is the inventory level of product i at plant p at level-1 time point t,
and LDipt′ is the amount of product i loaded into vehicles at plant p in level-2
time period t′. Since IVpit and LDipt′ refer to time periods in different time
grids, they need to be matched, which is achieved by introducing the parameter
πt, which denotes the level-2 time period that begins at the same time point
as level-1 time period t. Eq. (8a) states that the inventory level at time point
t is the inventory level at the previous time point plus the amount of product
produced in time period t minus the amount loaded into vehicles in the same
time period. Eq. (8b) tracks the inventory in time periods in which no product is
drawn from the storage to be loaded into vehicles. Eq. (8c) sets lower and upper
bounds on the inventory levels, denoted by IV min

pit and IV max
pit , respectively. Eq.

(8d) fixes the initial inventory level to the value of the parameter IV ini
pi .

3.3. Distribution planning

For the modeling of the distribution planning part of the problem, we make
the following assumptions:

� Vehicles that transport the same product have the same capacity, speed,
and route-specific costs.

� At the end of every trip, a vehicle returns to its assigned production plant.

� Every trip is completed within a level-2 time period.

� A vehicle cannot make more than one trip in each level-2 time period.

� In each level-2 time period, a particular route can only be used by one
vehicle.

� A customer can be visited by multiple vehicles in the same level-2 time
period.

With these assumptions, we essentially have to solve in each level-2 time period
a distance-constrained capacitated VRP (DCVRP) where each customer can be
visited by multiple vehicles from multiple plants. However, we also manage the
customers’ inventories. As a result, we do not have fixed orders; instead, the
amounts of products distributed to the customers are variables and therefore
subject to optimization. Therefore, the level-2 time periods are coupled by the
customer inventories, leading to an IRP over the entire planning horizon. Note
that all following distribution planning constraints are formulated with respect
to the coarse level-2 time discretization.
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3.3.1. Flow conservation constraints

For each product i and time period t, flow conservation has to be satisfied at
every node in the network representation of the distribution model, as depicted
in Figure 2.

Figure 2: Network representation of the distribution model. Each node corre-
sponds to a plant p, route s, or customer c. The notation of the flow variables
is shown on the top arcs.

We apply a set-partitioning formulation (Balinski and Quandt, 1964) in
which a set of feasible transportation routes is used where each route is de-
fined as the set of customers that can be visited on the route. The resulting
flow conservation constraints are as follows:

LDipt = ∑

s∈Sipt

DLipts ∀ i ∈ Ī , p, t ∈ T
c

(9a)

DLipts = ∑

c∈Cips

D̂Liptsc ∀ i ∈ Ī , p, t ∈ T
c
, s ∈ Sipt (9b)

DLict =∑
p
∑

s∈Sipt

D̂Liptsc ∀ i ∈ Ī , c ∈ Ci, t ∈ T
c

(9c)

where for time period t, DLipts denotes the amount of product i delivered on

route s by a vehicle from plant p, D̂Liptsc is the amount delivered to customer
c on route s, and DLict is the total amount of product i delivered to customer
c. While Sip denotes the set of routes that can be used by vehicles assigned to
plant p, Sipt is the subset of Sip that can be used in time period t. The set of
customers that can be visited on route s ∈ Sip is denoted by Cips.
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3.3.2. Capacity constraints

The distribution resource constraints in terms of the vehicle capacity and
the available number of vehicles are stated as follows:

DLipts ≤ Vi xipts ∀ i ∈ Ī , p, t ∈ T
c
, s ∈ Sipt (10a)

D̂Liptsc ≤ D̂L
max

ict xipts ∀ i ∈ Ī , p, t ∈ T
c
, s ∈ Sipt, c ∈ Cips (10b)

∑

s∈Sipt

xipts ≤ Lipt ∀ i ∈ Ī , p, t ∈ T
c

(10c)

where Vi is the capacity of a vehicle transporting product i, and D̂L
max

ict can

be set to min{Vi, IV
max

ict − IV
low

ic,t−1 +Dict, ∑
t̂c

t′=tDict′ + IV
min

ic,t̂c − IV
low

ic,t−1} with

IV
low

ic,t−1 = max{IV
min

ic,t−1, IV ic,0 −∑
t−1
t′=1Dict′}, which is the lowest possible in-

ventory level at time t − 1. The binary variable xipts equals 1 if a vehicle from
plant p transporting product i takes route s in time period t. Eqs. (10a)–(10b)
set upper bounds on the distribution variables and force them to zero if the
corresponding routes are not selected. In Eq. (10c), Lipt denotes the number of
vehicles that transport product i and are available at plant p in time period t.

3.3.3. Inventory constraints

The constraints on the inventories at the customer sites are formulated as
follows:

IV ict = IV ic,t−1 +DLict + PCict −Dict ∀ i ∈ Ī , c ∈ Ci, t ∈ T
c

(11a)

IV
min

ict ≤ IV ict ≤ IV
max

ict ∀ i ∈ Ī , c ∈ Ci, t ∈ T
c

(11b)

IV ic,0 = IV
ini

ic ∀ i ∈ Ī , c ∈ Ci (11c)

where IV ict denotes the inventory level for product i at customer c at time point
t, and PCict is the amount of product purchased externally in case the demand,
denoted by Dict, cannot be satisfied by drawing from the own inventory. Lower

and upper bounds on IV ict are denoted by IV
min

ict and IV
max

ict , respectively, and

IV
ini

ic is the initial inventory.

3.4. Objective function

The objective is to minimize the total operating cost, TC, consisting of pro-
duction costs, purchasing costs, distribution costs, and inventory costs; hence,
the objective function is:

TC =∑
p
∑

m∈Mp

∑
r∈Rpm

∑

t∈T f

(δpmrt ȳpmrt +∑
i

γpmrit PDpmrit)

+∑
i∈Ī
∑
c∈Ci

∑

t∈T c

αict PCict +∑
i∈Ī
∑
p
∑

t∈T c

∑

s∈Sipt

βips xipts

+∑
p
∑
i∈Ī
∑

t∈T f

ρpitIVpit +∑
i∈Ī
∑
c∈Ci

∑

t∈T c

ρ̄ictIV ict

(12)
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where δpmrt and γpmrit are the fixed and unit production costs, respectively,
in operating subregion r ∈ Rpm in level-1 time period t. The unit cost for
purchasing product i to satisfy demand at customer c in level-2 time period t
is αict. The fixed distribution cost for using route s ∈ Sip is βips. The unit
inventory costs for storing product i in time period t at plant p and customer
c are denoted by ρict and ρ̄ict, respectively. With this objective function, the
MILP for the MPRP then becomes:

min TC

s.t. Eqs. (1)–(12).
(MPRP)

4. Solution method

The difficulty in solving (MPRP) is mainly due to the integration of two
very complex problems: a detailed MILP production scheduling problem and
an IRP with high combinatorial complexity. Especially in such multiplant mul-
ticommodity supply chains, the interdependencies are very strong and have to
be taken into account in order to obtain good solutions. In the following, we
propose an MILP-based heuristic solution method involving dynamic route gen-
eration, which is designed to solve MPRPs of industrially relevant sizes.

In the distribution part of the proposed MPRP model, a set-partitioning
formulation is applied where routing decisions are made by selecting a set of
feasible routes. Note that a route is considered feasible if the trip time does not
exceed τ̄max, which is typically set to ∆tc. This kind of formulation is known
to exhibit a relatively tight LP relaxation, but it can require an exponential
number of routes to fully describe the problem. However, at a feasible solution,
only a very small fraction of all possible routes are selected. Hence, instead of
working with the full route set, we propose to only consider a small subset of
routes when solving (MPRP) and dynamically update the route set such that
only good candidate routes are included. An outline of the proposed algorithm
is as follows:

Step 1 For each product i and plant p, create an initial set of routes, Sip. Each
route s ∈ Sip is defined by the set of customers that can be reached on
this route, Cips, and the fixed distribution cost, βips. Furthermore, for
each level-2 time period t, create Sipt, which is the subset of Sip that is
considered in time period t.

Step 2 Solve (MPRP) with the current set of possible routes.

Step 3 Based on the solution of (MPRP), add new routes to or remove existing
routes from the current route set, i.e. update all Sip, Cips, βips, and Sipt.

Step 4 If a stopping criterion is satisfied, stop; otherwise, go to Step 2.

Since only a subset of all possible routes is considered when solving (MPRP)
in Step 2, the computational complexity is reduced, but we are likely to only
obtain a suboptimal solution. Inefficiencies on the distribution side are treated
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in Step 3 by updating the route set such that it includes candidate routes that
can potentially improve the solution. The selection of new candidate routes is
based on a local analysis of the current solution, i.e. it does not consider all
relationships that exist in the integrated problem. Therefore, instead of directly
applying a new route to improve the current solution, we decide whether the
proposed route should be selected by solving (MPRP) in the next iteration.

The proposed solution algorithm is inspired by the concept of column gen-
eration, with the main difference being that here, new columns are generated
by using a heuristic rather than by solving a rigorous pricing problem. In the
following subsections, the major steps of the algorithm are described in more
detail. As we will show, the solution is guaranteed to improve or at least remain
the same at each iteration if (MPRP) is always solved to optimality. However,
convergence to the optimal solution cannot be guaranteed, which is the main
limitation of the proposed algorithm.

4.1. Initialization

For the initial set of routes, we may consider all single-stop routes, i.e. only
one customer can be visited in each trip; however, in large-scale instances, even
this route set can be prohibitively large. We realize that in most practical appli-
cations, the vast majority of the customers are only visited in a few time periods
over the planning horizon. Hence, in order to reduce the number of single-stop
routes considered in the initial iteration, we determine for each customer c ∈ Ci
the time periods in which it will likely be receiving delivery, and denote this set
of time periods by T del

ic . We then only consider feasible single-stop routes to
customer c in these time periods as well as in the ω previous and ω following
time periods, i.e. in time periods t such that t′−ω ≤ t ≤ t′+ω where t′ ∈ T del

ic . By
changing the parameter ω, we can adjust the number of routes included in the
initial route set. We propose to determine T del

ic as follows: Apply an inventory

policy in which a customer’s inventory is refilled to its maximum level, IV
max

ict ,

in time period t if otherwise the inventory level falls below IV
min

ict at the end of
time period t. Choose T del

ic to be the set of replenishment points.

4.2. Updating set of candidate routes

Algorithm 1 shows the general scheme for generating routes based on the
current solution of (MPRP), which may not be optimal or near-optimal (es-
pecially in the first iteration), but provides a good estimate of the amount of
product that needs to be delivered to each customer in each time period. Using
this information, the algorithm identifies inefficiencies in the current selection
of routes and proposes new candidate routes that may improve the solution.

At each iteration, the algorithm is applied to every product i ∈ Ī, plant p,
and time period t ∈ T

c
. First, the procedure RemoveRoutes(i, p, t,Ω) removes

routes that have not been selected for Ω consecutive iterations from the set Sipt.
Next, the distribution inefficiency due to underutilized vehicles is considered.
We examine every selected route s for which the delivery quantity is less than
the vehicle capacity, i.e. DLipts < Vi. The procedure CreateRoutesA(i, p, t, s)
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Algorithm 1 General scheme for route generation based on current solution.

1: for all i ∈ Ī , p, t ∈ T
c
do

2: RemoveRoutes(i, p, t,Ω)
3: for all s for which xipts = 1 and DLipts < Vi do
4: CreateRoutesA(i, p, t, s)
5: end for
6: for all c ∈ Ĉip for which PCict > 0 do
7: CreateRoutesB(i, p, t, c)
8: end for
9: end for

generates new routes, if possible, by inserting additional customers into the cur-
rent route s. A selection of these new routes are added to the route set Sipt based
on a ranking of the potential savings. Besides underutilized vehicles, another
indicator for distribution inefficiency is the purchase of products at high costs,
which usually occurs due to the lack of efficient multistop routes. Hence, in the
next step, we consider customers whose demands are met by purchasing addi-
tional products, i.e. all c ∈ Ĉip for which PCict > 0, where Ĉip is a subset of Ci
and denotes the the set of customers that can be reached from plant p. Similar
to CreateRoutesA(i, p, t, s), the procedure CreateRoutesB(i, p, t, c) gener-
ates multistop routes involving customer c and adds them to Sipt based on a
ranking of the potential savings.

In Algorithm 2, we describe the procedure CreateRoutesA(i, p, t, s) in
more detail. As stated in lines 1–2, we first choose Cdel, which is the set of
customers to which delivery on a new route is considered. A customer is included
in Cdel if it can be reached from plant p, is not already part of route s, and is
expected to receive delivery in time period t or any of the ξ subsequent time
periods. We consider the latter condition to be satisfied if PCict′ > 0 or DLict′ >
0 for any t′ between t and t + ξ. The parameter ξ can be adjusted to control
the number of customers considered. The size of Cdel increases with increasing
ξ, and hence the computational effort increases; however, it has the benefit of
making the search for better routes less localized. In lines 4–6, Spot and Scheck

are initialized with the current route s. While Spot is the set of potential new
routes, Scheck is the subset of Spot that need to be further examined because
more customers may be included in these routes. In general, the procedure
AddRoute(C̃, β̃, S̃, ñ) adds the route characterized by customer set C̃ and
distribution cost β̃ to the route set S̃, where the new route is indexed by ñ.

For each s′ ∈ Scheck, c ∈ Cdel, we check whether by inserting customer c
into route s′ results in a new feasible route. By executing the procedure Com-
puteTSP(i, p, C̃), the traveling salesman problem (TSP) is solved, which pro-
vides the minimum travel time, τ travel, for a vehicle to transport product i from
plant p to all customers in C̃ and returning to the same plant at the end of
the trip. In addition to the travel time, the time spent on a trip also includes
the time that the vehicle stays at each location for the purpose of loading and
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Algorithm 2 Create new routes based on route selected in the current solution.

1: procedure CreateRoutesA(i, p, t, s)

2: Cdel ← {c ∶ ∑
t+ξ
t′=t PCict′ > 0, c ∈ Ĉip, c ∉ Cips}

3: Cdel ← Cdel ∪ {c ∶ ∑
t+ξ
t′=tDLict′ > 0, c ∈ Ĉip, c ∉ Cips}

4: Spot ← ∅, npot ← 1
5: AddRoute(Cips, βips, S

pot, npot)
6: Scheck ← {npot}

7: for all s′ ∈ Scheck, c ∈ Cdel do
8: C̃ ← Cpot

s′ ∪ {c}

9: τ travel ← ComputeTSP(i, p, C̃)
10: if τ travel + τ stay

i (∣C̃ ∣ + 1) ≤ τ̄max then
11: npot ← npot + 1
12: β̃ ← βtravel

i τ travel + βstay
i (∣Cips∣ + 2)

13: AddRoute(C̃, β̃, Spot, npot)

14: DL
pot

npot ← ComputeLoad(npot, s′)
15: SAV pot

npot ← ComputeSavings(npot, s′)

16: if DL
pot

npot < Vi and ∣Cpot
npot ∣ < N

cmax then

17: Scheck ← Scheck ∪ {npot}

18: end if
19: end if
20: end for
21: RankAndAdd(Spot, Sipt,N

smax)
22: end procedure

unloading; hence, the total trip time is τ̄ = τ travel + τ stay
i (∣C̃ ∣ + 1), where τ stay

i is
the average time that a vehicle transporting product i spends at each location.
A route is feasible if τ̄ ≤ τ̄max.

If the potential new route is feasible, the distribution cost is computed, and
the route is added to the route set Spot (see lines 11–13). Here, βtravel

i and
βstay
i denote the unit travel cost and the fixed cost for loading and unloading,

respectively. Then we apply the procedure ComputeLoad(npot, s′) to compute

DL
pot

npot , which is an estimate of the vehicle load if route npot is used. This
estimate is obtained by filling the vehicle used on route s′ in a greedy fashion;

for instance, if ∑
t+ξ
t′=t PCict′ > 0, then DL

pot

npot = min{Vi,DL
pot

s′ +∑
t+ξ
t′=t PCict′}.

Under this vehicle load assumption, the savings of taking route npot instead of s′,
SAV pot

npot , can be computed by using the procedure ComputeSavings(npot, s′).

If there is still remaining capacity in the vehicle, i.e. DL
pot

npot < Vi, and the
number of customers on route npot has not reached the set maximum, N cmax,
npot is added to Scheck such that it can be further examined and extended to
another new route if possible. Finally, after the set of potential new routes,
Spot, is generated, CreateRoutesA(i, p, t, s) is completed by the procedure
RankAndAdd(Spot, Sipt,N

smax), which ranks all routes in Spot according to
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their potential savings and adds the top N smax routes to Sipt.
The route generation algorithm in CreateRoutesB(i, p, t, c) is very similar

to the one in CreateRoutesA(i, p, t, s). The main difference is that CreateR-
outesB(i, p, t, c) considers the single-top route from p to c as the initial route
in Spot, while CreateRoutesA(i, p, t, s) initializes Spot with route s.

4.3. Stopping criteria

Let TCk be the total cost value obtained by solving (MPRP) in iteration
k. If (MPRP) is solved to optimality in every iteration, then TCk ≥ TCk+1,
i.e. the objective function value is guaranteed to improve or remain the same
at each iteration. This statement holds since the routes selected in iteration k
remain in the route set considered in iteration k + 1, i.e. the optimal solution of
(MPRP) in iteration k is a feasible solution of (MPRP) in iteration k + 1.

In the form as it is presented here, the proposed algorithm does not guar-
antee convergence to the optimal solution. It can be modified such that at
some point, all possible routes are included in the model. In that case, the
algorithm would converge to the optimal solution; however, such an implemen-
tation has little practical value since industrial-scale instances of (MPRP) with
all possible routes cannot be solved in a reasonable time. Our goal is to obtain
good solutions in short computation times; hence, besides setting a time limit,
we propose to terminate the algorithm when one of the following two stopping
criteria applies:

1. The relative improvement in the objective function from one iteration
to the next, defined as (TCk − TCk+1)/TCk, has been less than ε for Φ
consecutive iterations.

2. Less than Ψ new routes have been generated in the current iteration.

4.4. Algorithmic parameters

In our computational experiments, the proposed algorithm has proven to be
very robust with regard to the algorithmic parameters. In the following, we list
all required parameters and provide guidelines for their settings:

� ω - number of time periods preceding and following time periods in T del
ic

that are considered in the alternative initial single-stop route generation
procedure; we recommend setting ω to an integer between 0 and 3.

� Ω - number of consecutive iterations in which a route has not been used
before it is deleted from the route set, typically set to 1 for the first
iteration and 2 for all remaining iterations.

� N cmax - maximum number of customers considered on a new route; we
recommend setting N cmax such that it increases with each iteration until
it reaches the maximum number of customers at which efficient routes can
still be expected, such a gradual increase in N cmax prevents the algorithm
from getting trapped in a local solution too quickly.
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� N smax - maximum number of new routes added to the route set after one
run of CreateRoutesA(i, p, t, s) or CreateRoutesB(i, p, t, c), should
be as large as the computational budget allows.

� ξ - number of subsequent time periods from which customers with deliver-
ies or product purchases can be considered in a new route for the current
time period, typically set to 1 or 2.

� ε - relative change between the costs from two consecutive iterations below
which the improvement is considered insignificant; we recommend setting
ε to a number between 0.001 and 0.01.

� Φ - number of consecutive iterations with no significant improvement after
which the algorithm terminates, typically set to 2.

� Ψ - number of new routes below which the algorithm terminates, can be
conservatively set to 5 or 10 in most applications.

5. Numerical results

In the following, we use an illustrative example to demonstrate the main
features of the proposed framework, test the algorithm’s performance in an
extensive computational study, and apply it to a real-world industrial gas supply
chain. Except for the industrial test case, the data for all problem instances
are provided in the supplementary material. All models were implemented in
GAMS 24.4.6 (GAMS Development Corporation, 2015), and the commercial
solver CPLEX 12.6.2 (IBM ILOG, 2015) was applied to solve the MILPs on an
Intel® CoreTM i7-4770 machine at 3.40 GHz with 8 processors and 16 GB RAM
running Windows 7 Enterprise.

In all instances, we set Ω = min{k,2} with k being the iteration counter,
ε = 0.001, Φ = 2, Ψ = 5 when applying the proposed algorithm. The choice of
the other algorithmic parameters varies slightly across the different instances.

5.1. Illustrative example

In the illustrative example, we consider a supply chain with two products, I1
and I2, two production plants, P1 and P1, and 50 customers, among which 20
require Product I1 and 30 require Product I2. The corresponding supply chain
network is shown in Figure 3. Plant P1 has a fleet with 3 vehicles for Product
I1 and 3 vehicles for Product I2; Plant P2 has 3 vehicles for Product I1 and 4
vehicles for Product I2.

The feasible regions of the given production modes are shown in Figure 4.
Plant P1 can only operate in one mode, P1-M1, whereas Plant P2 can operate
in three different modes, P2-M1, P2-M2, and P2-M3. Plant P2 cannot directly
switch from Mode P2-M1 to Mode P2-M2; instead, it has to transition through
the intermediate mode P2-M3. Note that Mode P2-M3 is described by a single
operating point.
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Figure 3: Supply chain network for the illustrative example, with two plants
and 50 customers.

Figure 4: Feasible operating regions of the production modes given for the two
plants in the illustrative example.

A scheduling horizon of 36 h is considered. We set ∆tf = 1 and ∆tc = 12,
resulting in 36 level-1 and 3 level-2 time periods. The resulting MPRP has
9192 continuous variables, 2486 binary variables, and 11,197 constraints, and is
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solved to optimality in about 10 min. Figures 5 and 6 show the product flows
and inventory profiles for both products at Plants P1 and P2, respectively. Note
that in the figures, the y-axes for the inventory levels and the product flows are
shown on the left and right hand sides, respectively. Positive columns (produc-
tion) indicate accumulation of products in the inventory, while negative columns
(shipments) indicate depletion of products. In overall, Plant P1 produces more
than Plant P2 because of its lower unit production cost.

Figure 5: Production quantities, shipments, and inventory levels of products
I1 and I2 at Plant P1 in the illustrative example.

The optimal routing decisions are shown in Figure 7, where each subfigure
refers to one of the 3 level-2 time periods and shows the selected routes includ-
ing the corresponding delivery quantities. The load capacity of each vehicle is
500 kg. As one can see, the solution suggests loading the vehicles as close to full
capacity as possible. Also, not all vehicles are used in every time period. The
total number of selected routes is 22.

We now apply the proposed heuristic solution algorithm to this illustrative
example. The algorithmic parameters are set as follows: ξ = 1, N cmax = min{k+
1,4} where k is the iteration counter, and N smax = 4. Furthermore, all possible
single-stop routes are considered in the first iteration.

To illustrate the evolution of the solution from one iteration to the next, we
show the routing decisions from the first three iterations in Figure 8. At Iteration
1 (Figure 8a), only single-stop routes are considered, resulting in the dispatch of
a large number of vehicles, most of which only carry a fraction of the maximum
possible load. A total number of 35 routes are selected in this initial solution. At
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Figure 6: Production quantities, shipments, and inventory levels of products
I1 and I2 at Plant P2 in the illustrative example.

Figure 7: Optimal routing solution for the illustrative example.

Iteration 2 (Figure 8b), new candidate routes are considered, which also include
routes with two customers. The solution obtained at Iteration 2 is significantly
more efficient in terms of distribution, as indicated by larger amounts of products
delivered with fewer vehicles. The change in the routing decisions is smaller from
Iteration 2 to Iteration 3 than from Iteration 1 to Iteration 2. However, one
can see that the distribution plan has been further improved by considering
also routes with three customers. In the solution obtained at Iteration 3, a
total number of 23 routes are selected; recall that 22 routes are selected in the
optimal solution.

In this case, the algorithm terminates after five iterations; however, the same
solution is obtained at Iterations 3 to 5, although different candidate routes are
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(a) Solution from Iteration 1, considering only single-stop routes.

(b) Solution from Iteration 2, considering routes with up to two customers.

(c) Solution from Iteration 3, considering routes with up to three customers.

Figure 8: Evolution of the routing solution obtained from applying the pro-
posed heuristic algorithm to the illustrative example.

considered. Note that no routes with four customers are selected although such
routes are considered at Iterations 4 and 5. Table 1 compares the optimal
solution with the solutions obtained at each iteration of the heuristic algorithm.
The table shows the breakdown of the total costs (TC) into production costs
(CPD), purchasing costs (CPC), distribution costs (CDI), inventory costs at
the plants (CIP ), and inventory costs at the customer sites (CIC). From the
results of the heuristic algorithm, one can clearly see that CPD increases while
CPC and CDI decrease from one iteration to the next, which indicates that
improved routing decisions are made at each iteration such that more products
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can be delivered from the plants and less has to be purchased from external
sources. The algorithm terminates after no improvement is seen at Iterations 4
and 5. The final heuristic solution exhibits a total cost of $57,345, which is 1 %
higher than the total cost at the optimal solution ($56,760).

Table 1: Comparison of costs and number of candidate routes in the full MPRP
formulation and the restricted MPRPs solved in the heuristic algorithm.

Optimal
Heuristic

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

TC [$] 56,760 67,475 58,543 57,345 57,345 57,345
CPD [$] 27,975 25,282 27,767 27,940 27,940 27,940
CPC [$] 1703 13,140 2586 1882 1882 1882
CDI [$] 24,050 25,928 25,130 24,456 24,456 24,456
CIP [$] 615 518 445 498 498 498
CIC [$] 2418 2606 2616 2569 2569 2569

NR 2076 198 352 459 249 229

Table 1 further shows the number of candidate routes, NR, considered in
each problem. This number is obtained by counting the routes for all products,
plants, and time periods, i.e. NR = ∑i∈Ī ∑p∑t∈T c ∣Sipt∣. One can see that in
each iteration of the heuristic algorithm, a route set of significantly smaller
size is considered compared with the full MPRP formulation. Because of this
reduction in problem size through the dynamic route generation procedure, the
near-optimal heuristic solution was found in less than 20 s, which is a significant
reduction in computation time compared to the 10 min required to solve the full
MPRP model.

5.2. Computational study

In the following, we test the computational performance of the proposed
algorithm on a set of MPRP instances of different sizes.

5.2.1. Data generation

For the computational study, we generate five sets of MPRP instances, Sets
A to E, each containing ten instances of the same size. Table 2 lists for the
instances in each data set the number of products, ∣Ī ∣ (only storable products
are considered), number of plants, ∣P ∣, number of customers for each product
i, ∣Ci∣, number of vehicles across all plants for each product i, ∑pLip (with Lip
being the number of vehicles that can transport product i from plant p), number

of level-1 time periods, ∣T
f
∣, and number of level-2 time periods, ∣T

c
∣. Note that

the ratio between ∣T
f
∣ and ∣T

c
∣ is 12 in all instances.

The instances in each set differ in the customer locations, which are randomly
generated on a 600 × 500 Euclidean grid, inventory capacities, initial inventory
levels, and demands. While the customer demands are constant in the first five
instances of each set, demands in the latter five instances vary over time.
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Table 2: Overview of generated MPRP instances, grouped into five data sets.

Set ∣Ī ∣ ∣P ∣
∣Ci∣ ∑pLip

∣T
f
∣ ∣T

c
∣

I1 I2 I3 I1 I2 I3

A 2 2 20 30 - 4 5 - 36 3
B 2 2 20 30 - 4 5 - 120 10
C 3 2 50 60 40 9 13 7 120 10
D 3 2 50 60 40 9 13 7 360 30
E 3 3 100 100 100 14 18 12 360 30

5.2.2. Solution methods

In the computational study, we compare the following four solution methods:

Exact method Solve (MPRP) considering all possible routes. Due to the com-
putational limitations, the exact method is only applied to the instances
in Sets A and B.

Heuristic H1 This is a typical two-phase heuristic. In Phase 1, we solve the
MPRP with a simplified distribution model only considering direct ship-
ments. Here, we only consider all feasible single-stop routes, relax the
integrality constraints on the variables xipts, and solve (MPRP) where we
replace Eq. (10c) by

∑

s∈Sipt

xipts ≤ η Lipt ∀ i ∈ Ī , p, t ∈ T
c

(13)

and add

∑

s∈Sipt

τips xipts ≤ η̄ Lipt τ̄
max

∀ i ∈ Ī , p, t ∈ T
c
. (14)

Eqs. (13) and (14) are resource constraints on the total delivery quan-
tity and travel time, respectively. Parameter η is typically set to a value
between 0.8 and 1.2, while η̄ can be set to a value between 1 and 1.5. Set-
ting η̄ > 0 accounts for the overestimation of the travel time in the model
caused by only considering single-stop routes. For the instances consid-
ered in this computational study, setting both η and η̄ to 1 has proven to
be a good choice.

The delivery quantities obtained from solving the simplified MPRP in
Phase 1 are used as fixed orders in Phase 2, where routing decisions are
made. Since the orders are fixed, the routing problem decomposes into
independent subproblems, one for each product i, plant p, and time period
t ∈ T

c
. Each subproblem is a DCVRP with the additional option of pur-

chasing products if the orders cannot be met by delivering from the plant.
We solve the DCVRPs with the MILP formulation shown in Appendix A.
After solving the routing problem, the total cost is updated by replacing
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the distribution cost from Phase 1 with the routing cost obtained in Phase
2, adding the purchasing cost from Phase 2, and discounting the produc-
tion cost associated with products that should be delivered according to
Phase 1 but could not in Phase 2.

Although the vast majority of the DCVRPs considered in Phase 2 are very
small in size (only a few customers) and can be solved within seconds, we
set a time limit of 60 s to avoid stalling of the algorithm.

Heuristic H2 Create a set of routes a priori and solve (MPRP) considering
these candidate routes. The effectiveness of this solution strategy strongly
depends on the number and quality of the generated routes. Here, we
use the heuristic route generation procedure proposed by Marchetti et al.
(2014), who have successfully applied this approach to industrial gas sup-
ply chain cases.

Marchetti et al. (2014) introduce four parameters: cmax, smax, vmin,
and vmax. The route generation procedure first generates all feasible
routes with up to cmax customers, and computes for each route a so-
called logistics ratio, which is the ratio between the distribution cost and
the maximum quantity that can be delivered on this route. The routes
with the lowest logistics ratios are selected to be considered in (MPRP)
such that, if possible, each customer can be visited on at least vmin and
not more than vmax routes, and the number of routes for each product
and plant is not larger than smax. The resulting route set for each product
and plant, Sip, is considered in every time period, i.e. Sipt = Sip ∀ t ∈ T

c
.

Table 3 shows the parameter settings chosen in this computational study.
For Sets A–D, two runs of Heuristic H2, denoted by H2a and H2b, are
performed, where H2b considers more routes.

Heuristic H3 Apply the MILP-based heuristic algorithm with dynamic route
generation proposed in Section 4. The parameter settings for the different
sets of instances are shown in Table 4. For solving the instances in Sets
A–D, the algorithm is initialized with all possible single-stop routes, while
for Set E, we create a smaller number of single-stop routes using the
alternative procedure described in Section 4.1. For Sets B–E, we solve
(MPRP) to 0.5 % optimality gap if possible, and further specify a time
limit of 600 s for each MILP.

It should be mentioned that Heuristics H1 and H2 are solution approaches
that are commonly used in practice for solving large-scale integrated supply
chain problems like the MPRP; hence, we choose to compare the proposed
algorithm, Heuristic H3, with these two solution strategies.

5.2.3. Results and discussion

In the following, we present and discuss the results from the computational
study, which are are shown in Tables 5–9. For all instances and solution meth-
ods, we set a limit of 3600 s on the solution time. Note that the solution time
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Table 3: Parameter settings for Heuristic H2.

Set
Heuristic H2a/H2 Heuristic H2b

cmax smax vmin vmax cmax smax vmin vmax

A–D 4 200 2 5 4 200 5 10
E 3 200 2 5

Table 4: Parameter settings for Heuristic H3, with k being the iteration
counter.

Set ξ Ncmax N smax ω

A–D 1 min{k + 2,4} 4 -
E 1 min{k + 1,3} 3 2

does not include the time required for pre-generating the candidate routes in the
exact method and in Heuristic H2 because route generation in these two meth-
ods is considered to be an offline step that only is performed once. It should be
mentioned that for the larger instances, this route generation procedure takes
several hours. In contrast, dynamic route generation is performed online in
Heuristic H3; hence, the required time is included in the reported solution time.

The tables list the following statistics:

� TC - total cost in $.

� ST - solution time in s; ST is not reported if the limit of 3600 s is reached.

� OG - optimality gap in %, which is reported for the exact method and for
Heuristic H2 if the MILP cannot be solved to zero optimality gap within
the time limit; note that OG is the optimality gap output by the MILP
solver, it is not the gap to the true optimal solution.

� NR - number of routes considered, reported for the exact method and
Heuristic H2; recall that NR = ∑i∈Ī ∑p∑t∈T c ∣Sipt∣.

� NR∗ - maximum number of routes considered in an iteration of Heuristic
H3.

� NI - number of iterations used in Heuristic H3.

� RD - relative difference to optimal (or near-optimal) solution in %, i.e.
RD = (TC −TC)/TC with TC being the total cost obtained from solving
the MPRP exactly.

� RI - relative improvement to Heuristic H1 in %, i.e. RI = (TC −TC)/TC
with TC being the total cost obtained from Heuristic H1.
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Table 5: Comparison of solutions for all instances in Set A.

Exact Heuristic H1 Heuristic H2a Heuristic H2b Heuristic H3

TC ST NR TC RD ST TC RD ST NR TC RD ST NR TC RD ST NI NR∗

A1 51,960 31 1797 61,781 18.9 3 53,318 2.6 1 585 52,026 0.1 1 852 52,292 0.6 13 6 369
A2 52,923 16 1227 64,026 21.0 3 54,288 2.6 2 531 52,923 0.0 2 777 55,179 4.3 13 5 387
A3 49,534 25 2157 60,033 21.2 3 51,424 3.8 7 540 50,446 1.8 16 840 51,042 3.0 18 5 452
A4 48,156 12 2139 57,412 19.2 3 49,307 2.4 1 570 48,442 0.6 1 918 48,906 1.6 17 5 423
A5 50,405 9 2892 61,078 21.2 3 51,864 2.9 1 582 51,427 0.2 3 921 52,634 4.4 17 5 405
A6 53,045 5 1983 63,555 19.8 3 55,253 4.2 1 537 53,483 0.8 1 834 54,712 3.1 13 4 366
A7 53,126 65 1386 67,586 27.2 3 53,978 1.6 1 570 53,126 0.0 11 858 54,731 1.1 14 4 392
A8 49,862 32 1863 59,722 19.8 3 51,176 2.6 1 585 50,053 0.4 6 975 50,418 1.1 14 5 456
A9 52,000 51 1470 64,014 23.1 3 52,648 1.2 1 510 52,367 0.7 2 777 53,005 1.9 11 5 363
A10 50,341 30 1575 59,468 18.1 3 50,995 1.3 1 585 50,373 0.1 1 909 50,993 1.3 12 5 432

Avg. 51,135 28 1849 61,868 21.0 3 52,425 2.5 2 560 51,467 0.7 4 866 52,391 2.4 14 5 405

Table 6: Comparison of solutions for all instances in Set B.

Exact Heuristic H1 Heuristic H2a Heuristic H2b Heuristic H3

TC OG NR TC RD ST TC RD OG NR TC RD OG NR TC RD ST NI NR∗

B1 151,685 0.8 5990 170,619 12.5 10 152,252 0.4 0.9 1950 151,640 0.0 0.7 2840 153,548 1.2 424 6 600
B2 155,942 1.5 4090 180,944 16.0 11 157,082 0.7 1.5 1770 156,012 0.0 1.5 2590 159,846 2.5 740 4 580
B3 149,268 1.5 7190 174,001 16.6 11 149,739 0.3 1.5 1800 149,208 0.0 1.3 2800 152,801 2.4 62 5 738
B4 143,719 1.7 7130 163,509 13.8 11 143,818 0.1 1.3 1900 143,854 0.1 1.6 3060 147,309 2.5 531 6 709
B5 149,232 1.1 9640 173,951 16.6 11 149,762 0.4 0.8 1940 149,249 0.0 0.8 3070 152,315 2.1 624 5 630
B6 157,077 0.7 6610 183,503 16.8 12 157,888 0.5 0.3 1790 157,010 0.0 0.6 2780 160,328 2.1 52 5 601
B7 153,999 1.6 4620 179,971 16.9 11 154,190 0.1 1.6 1900 153,900 -0.1 1.5 2860 157,276 2.1 948 5 620
B8 143,700 0.9 6210 165,127 14.9 12 144,678 0.7 0.6 1950 143,648 0.0 0.8 3250 147,808 2.9 565 5 721
B9 151,021 1.2 4900 172,087 13.9 13 150,836 -0.1 1.0 1700 150,820 -0.1 1.0 2590 152,591 1.0 649 5 575
B10 146,996 1.4 5250 171,743 16.8 11 146,668 -0.2 1.0 1950 146,984 0.0 1.3 3030 149,617 1.8 508 5 697

Avg. 150,264 1.3 6163 173,546 15.5 11 150,691 0.3 1.0 1865 150,233 0.0 1.1 2887 153,344 2.1 510 5 647

Table 7: Comparison of solutions for all instances in Set C.

Heuristic H1 Heuristic H2a Heuristic H2b Heuristic H3

TC ST TC RI OG NR TC RI OG NR TC RI ST NI NR∗

C1 265,473 26 228,752 13.8 0.9 5800 227,257 14.4 1.0 9470 233,491 12.0 85 5 1940
C2 255,050 28 232,683 8.8 1.0 5650 230,355 9.7 1.0 9430 226,333 11.3 86 5 2010
C3 259,630 17 233,913 9.9 1.0 5430 230,447 11.2 1.2 9040 229,088 11.8 91 7 1980
C4 273,655 20 249,064 9.0 0.7 5190 246,713 9.8 0.5 8720 245,731 10.2 187 6 1980
C5 253,007 22 230,963 8.7 0.9 5210 228,874 9.5 1.0 8380 222,141 12.2 147 6 2050
C6 257,728 18 231,888 10.0 0.7 5860 229,373 11.0 1.0 9510 227,032 11.9 91 6 2050
C7 260,528 56 228,780 12.2 0.7 5990 225,787 13.3 1.1 10,030 228,270 12.4 119 5 1900
C8 268,916 23 233,155 13.3 0.9 5900 231,582 13.9 1.2 10,010 235,908 12.3 109 11 1920
C9 257,249 19 239,763 6.8 0.7 5240 237,943 7.5 0.8 9170 232,596 9.6 85 7 2020
C10 249,358 78 234,768 5.9 0.5 5480 233,398 6.4 0.8 9220 220,856 11.4 94 6 2020

Avg. 260,059 31 234,373 9.8 0.8 5575 232,173 10.7 1.0 9298 230,145 11.5 109 6 1987

Moreover, for every instance, the lowest total cost obtained from a heuristic
method is shown in bold.

All instances in Set A (see Table 5) are solved to optimality, most of them
within one minute due to the moderate number of feasible routes (on average
1849). On average, the total cost obtained with Heuristic H1 is 21 % higher
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Table 8: Comparison of solutions for all instances in Set D.

Heuristic H1 Heuristic H2a Heuristic H2b Heuristic H3

TC ST TC RI OG NR TC RI OG NR TC RI NI NR∗

D1 1,257,807 788 970,109 22.9 2.9 17,400 972,943 22.6 3.6 28410 952,830 24.2 5 9058
D2 1,300,298 1421 1,035,147 20.4 3.9 16,950 1,041,365 19.9 5.0 28,290 991,955 23.7 4 9505
D3 1,308,509 1285 1,030,173 21.3 3.9 16,290 1,037,219 20.7 5.7 27,120 993,238 24.1 4 9295
D4 1,321,906 1512 1,070,040 19.1 2.8 15,570 1,070,243 19.0 3.0 26,160 1,027,871 22.2 4 8194
D5 1,256,515 838 1,001,010 20.3 3.4 15,630 1,004,142 20.1 4.0 25,140 949,683 24.4 4 9596
D6 1,211,123 497 995,681 17.8 2.7 17,580 991,704 18.1 2.9 28,530 976,056 19.4 5 9415
D7 1,210,258 683 1,004,152 17.0 3.5 17,970 982,698 18.8 3.5 30,090 963,653 20.4 5 8459
D8 1,275,422 379 1,042,101 18.3 2.6 17,700 1,042,662 18.2 3.3 30,030 1,031,971 19.1 5 8194
D9 1,240,704 578 1,035,173 16.6 3.3 15,720 1,026,566 17.3 3.4 27,510 983,521 20.7 5 8730
D10 1,149,234 427 989,109 13.9 3.0 16,440 985,583 14.2 3.5 27,660 924,796 19.5 4 8993

Avg. 1,253,177 841 1,017,269 18.8 3.2 16725 1,015,513 18.9 3.8 27,894 979,557 21.8 5 8944

Table 9: Comparison of solutions for all instances in Set E. The average values
for Heuristic H2 are computed over the available numbers.

Heuristic H1 Heuristic H2 Heuristic H3

TC ST TC RI OG NR TC RI NI NR∗

E1 1,246,916 1006 1,004,541 19.4 12.5 56,070 938,875 24.7 5 11,425
E2 1,231,859 908 929,386 24.6 7.2 56,520 915,591 25.7 5 11,401
E3 1,287,454 1183 1,735,108 -34.8 49.4 58,260 942,903 26.8 5 10,983
E4 1,260,251 1231 971,264 22.9 11.0 59,130 933,140 26.0 4 13,036
E5 1,274,681 1045 n/a n/a n/a 61,380 934,511 26.7 5 12,608
E6 1,222,821 854 1,619,761 -32.5 46.2 57,210 932,725 23.7 5 11,525
E7 1,192,426 722 1,668,140 -39.9 48.6 60,660 918,307 23.0 4 12,378
E8 1,231,443 980 n/a n/a n/a 59,310 939,735 23.7 5 12,182
E9 1,198,309 986 n/a n/a n/a 58,200 922,481 23.0 4 12,260
E10 1,209,579 653 927,813 23.3 6.8 58,200 917,877 24.1 5 11,111

Avg. 1,235,574 957 1,265,145 -2.4 26.0 58,494 929,615 24.7 5 11,891

than the optimal total cost. Compared with Heuristic H1, Heuristics H2a, H2b,
and H3 achieve significantly improved solutions. Heuristics H2a and H3 provide
solutions of similar quality, on average within 2.5 % to optimality. As expected,
Heuristic H2b outperforms Heuristic H2a since it considers additional routes; in
fact, for all 10 instances, the best heuristic solutions are obtained with Heuristic
H2b.

Unlike in Set A, the instances in Set B are not solved to optimality within
the given time limit; however, near-optimal solutions are obtained, where the
optimality gap is on average 1.3 %. Also the MPRPs used in Heuristics H2a and
H2b are solved with nonzero optimality gaps; however, the obtained solutions
are close to optimal, some even better than the ones obtained with the exact
method (indicated by a negative RD). Here, one can observe that a solution
obtained with Heuristic H2b may not be as good than the one obtained with
Heuristic H2a because the MILPs are not solved to optimality. Heuristic H3
again achieves high-quality solutions, but does not perform as well as Heuristics
H2a and H2b.

Solving the MPRP exactly becomes computationally intractable for instances
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in Sets C–E; hence, we only show results from the heuristic algorithms in Tables
7–9. Note that here we compare the results with the solutions obtained with
Heuristic H1, and RI is defined such that the larger RI, the better the solution.
With increasing problem size, the MILPs considered in Heuristic H2 become
more difficult to solve, resulting in reduced solution quality. This effect is less
pronounced in Heuristic H3 because of its dynamic route generation procedure
that keeps the route set sufficiently small. As a result, in Set C, the best solu-
tions to 7 of the 10 instances are obtained with Heuristic H3. In Sets D and E,
Heuristic H3 consistently achieves the best solution.

From the results for Set E (see Table 9), one can see that the performance
of Heuristic H2 deteriorates in these large instances. Due to the large number
of candidate routes, solving the MILPs in Heuristic H2 becomes intractable. In
three instances, the optimality gaps obtained after one hour are still close to
50 %; in three other instances, where no numerical results are reported (n/a),
the solver was not able to find any feasible solutions within the time limit.
Heuristic H3, however, still achieves good feasible solutions with significantly
lower costs than the ones obtained by Heuristics H1 and H2.

In terms of solution quality, Heuristic H1 exhibits the worst performance
among all solutions methods due to the inaccurate representation of the dis-
tribution constraints, which results in inefficient routing decisions and large
additional product purchases in Phase 2. Heuristic H2 performs well in small
instances, where one can afford generating a sufficiently large number of routes
to obtain good solutions; however, the performance deteriorates in larger in-
stances. In contrast, the proposed solution method, Heuristic H3, consistently
obtains high-quality solutions in a few iterations and significantly outperforms
the other solution methods in the larger instances.

5.3. Industrial case study

We now apply the proposed MPRP framework to a real-world industrial
test case provided by Praxair. Here, we consider an industrial gas business
that produces and sells liquid oxygen (LO2), liquid nitrogen (LN2), gaseous
oxygen (GO2), and gaseous nitrogen (GN2). While LO2 and LN2 can be stored
and transported to customer sites using tractor-trailers, GO2 and GN2 are
nonstorable and have to be distributed via pipelines immediately after their
production; hence, routing decisions only involve liquid product customers. We
consider a supply chain consisting of 2 plants, P1 and P2, and approximately
240 customers. The two plants have a combined fleet of 10 LO2 and 10 LN2
tractor-trailers. While Plant P1 has to satisfy demand for both liquid and
gaseous products, Plant P2 only serves liquid product customers.

The production process, namely cryogenic air separation, is highly power-
intensive such that the vast majority of the variable production cost is the cost
of electricity. Electricity prices can vary significantly across different locations.
In this case, Plant P1 participates in the day-ahead market in which the price
varies over time, whereas Plant P2 purchases power at a constant unit price. A
forecast of the day-ahead prices is available for the given planning horizon.

29



The MPRP is solved for a planning horizon of 4 weeks, where we choose ∆tf

and ∆tc to be 4 h and 12 h, respectively, resulting in 168 level-1 and 56 level-2
time periods. We apply the proposed algorithm to this large-scale MPRP and
present the solution obtained after one hour runtime. Note that due to confiden-
tiality reasons, we cannot disclose detailed information about the supply chain
network, plant specifications, and actual product demands. Therefore, all re-
sults are given as dimensionless quantities, and numerical values are normalized
if necessary.

Figure 9 shows the electricity consumption and price profiles for both plants
over the entire planning horizon. One can see that the electricity price at Plant
P2 is significantly higher than the average electricity price at Plant P1. As a
result, in order to reduce energy cost, Plant P2 is shut down three times for
extensive periods of time and also at the end of the planning horizon. One can
further see that the solution suggests load shifting at Plant P1 in order to take
advantage of low-price hours.

Figure 9: Electricity consumption and electricity price profiles for each plant.

There is a trade-off between production and distribution costs that is not
apparent from Figure 9. Although the electricity price is almost always lower at
Plant P1, it does not utilize its full production capacity, i.e. more production
could be shifted from Plant P2 to Plant P1. However, the higher production
cost is offset by the reduction in distribution cost because more customers are
located closer to Plant P2 than to Plant P1.

Figures 10 and 11 show the product flows and inventory profiles for the liquid
products at Plants P1 and P2, respectively. In Figure 10, one can clearly see
the effect of load shifting at Plant P1. At Plant P2, inventory is accumulated
during hours of production such that products can be drawn from the inventory
and distributed to the customers when the plant is shut down, as depicted in
Figure 11.

Now we compare our solution with the ones obtained from two alternative
solution methods. The first method applies a similar approach as Heuristic H1,
however, with more sophisticated and tailored constraints on the distribution
resources. In the following, we refer to this approach as Heuristic PH1. The
second approach is an extension of Heuristic PH1, referred to as Heuristic PH2,
which further incorporates fixed costs for customer visits. The fixed distribution
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Figure 10: Production quantities, shipments, and inventory levels of LO2 and
LN2 at Plant P1.

Figure 11: Production quantities, shipments, and inventory levels of LO2 and
LN2 at Plant P2.

costs in Heuristic PH2 prevent the model from suggesting a large number of
deliveries with small quantities; however, they also introduce additional binary
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variables that considerably increase the computational complexity.
Heuristics PH1, PH2, and H3, with the latter being our proposed algorithm

with dynamic route generation, apply equivalent representations of the pro-
duction side; however, the distribution side is modeled with different levels of
accuracy. For this comparative study, we first apply Heuristics PH1, PH2, and
H3 to obtain the production plan and the plant-to-customer allocation decisions
for each of the three solution approaches. Then, the same routing tool is applied
to the three sets of plant-to-customer allocation decisions to determine optimal
(or near-optimal) routes and accurate routing costs.

Table 10 compares the solutions obtained from Heuristics PH1, PH2, and
H3. The table shows the breakdown of the total costs (TC) into the production
costs (CPD) and distribution costs (CDI) for each plant. In this test case,
no additional product purchase is required, and inventory costs are negligible;
hence, these costs are omitted. Furthermore, the table shows the computation
time for each solution method. In terms of total cost, Heuristic H3 outperforms
both Heuristics PH1 and PH2, with relative cost savings of 8.7 and 2.4 %, re-
spectively, which can be attributed to the more rigorous modeling of routing
decisions. One can see that compared to Heuristics PH1 and PH2, Heuristic H3
suggests producing less at Plant P1 and more at Plant P2. This production plan
results in higher total production cost, but in overall proves to be the better
choice since the routing cost can be significantly reduced by distributing more
from Plant P2.

Table 10: Comparison of costs and solution times for the industrial test case.

Heuristic PH1 Heuristic PH2 Heuristic H3

TC 100.00 93.46 91.26
CPDP1 32.67 32.66 31.88
CPDP2 13.05 13.12 15.01
CDIP1 42.53 36.61 32.40
CDIP2 11.75 11.07 11.97

ST [s] 218 900 3600

Figure 12 shows for each day of the planning horizon the number of cus-
tomers to visit as suggested by each of the three solutions. While Heuristic
PH1 proposes to visit on average 66 customers per day, the average numbers of
visited customers per day are 30 and 25 for Heuristics PH2 and H3, respectively.
Heuristic PH1 creates many deliveries with small quantities, which leads to in-
efficient routes. This effect is mitigated in Heuristic PH2 by introducing fixed
distribution costs, ultimately resulting in lower routing costs. However, the
improved solution quality comes at the cost of higher computational expense.
While Heuristic PH1 solves in 218 s, the solution from Heuristic PH2 is obtained
after 900 s. Among the three solution approaches, Heuristic H3 obtains the best
solution, but only after 3600 s.

Under normal circumstances, the plant-to-customer allocation is fixed, i.e.

32



Figure 12: Comparison of the numbers of customers to be visited on each day
of the planning horizon as suggested by Heuristics PH1, PH2, and H3.

each customer is assigned to a particular plant and only receives delivery from
this plant, which may limit the flexibility in the supply chain operations. To
compare the differences between the proposed solutions and the current practice,
we show in Figure 13 for each of the three solutions the changes in plant-to-
customer allocation compared to the current plant-to-customer allocation. Here,
an allocation change is defined as one customer that is to be visited in the
corresponding solution from a plant different from the one to which it is currently
assigned. The number of allocation changes can be interpreted as a measure
for the amount of disruption in the default assignment required to obtain the
suggested solution. In practice, small changes are desired; a large number of
allocation changes may suggest that the current plant-to-customer allocation
or the current assignment of vehicles to plants is inadequate. In this case,
significantly fewer allocation changes, on average 7 per day, are required for
Heuristic H3 than for Heuristics PH1 and PH2, which require on average 24
and 11 allocation changes per day, respectively.

Figure 13: Comparison of the numbers of plant-to-customer allocation changes
from the current assignment required for Heuristics PH1, PH2, and H3.

Another advantage of Heuristic H3 is that it only considers feasible routes;
hence, the proposed deliveries are guaranteed to be feasible. In contrast, Heuris-
tics PH1 and PH2 may make plant-to-customer allocation decisions that are
infeasible in the subsequent routing step, in the sense that not all proposed
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deliveries can actually be made. In this particular test case, routing infeasibil-
ity does not occur because the customers are located relatively close to each
other such that the limit on the travel distance is not an issue. However, in
other supply chain networks with longer inter-customer distances, the situation
of routing infeasibility may very well arise when Heuristics PH1 and PH2 are
applied.

6. Conclusions

In this work, we have introduced the multiscale production routing prob-
lem, which considers the integrated optimization of production, inventory, dis-
tribution, and routing decisions in multicommodity supply chains with complex
production facilities. In the MPRP, the objective is to make decisions at two
different levels: operational scheduling decisions on the production side and
tactical plant-to-customer allocation decisions on the distribution side.

The proposed MILP model incorporates two different time scales. For pro-
duction scheduling, a mode-based formulation is applied to the fine time grid
such that all critical operational features, including interdependent production
rates, limitations on transitions between operating points, and time-sensitive
production costs, can be captured. In addition, for distribution planning, vehi-
cle routing is considered in each time period of the coarse time grid. An iterative
heuristic solution method has been developed in order to solve large instances
of the MPRP. At each iteration of the proposed algorithm, a restricted MPRP
considering a subset of all possible routes is solved, and the set of candidate
routes is updated based on the solutions obtained in previous iterations.

The proposed MPRP framework has been applied to an illustrative exam-
ple, in a computational study with 50 instances of various sizes, as well as
to an industrial test case with real-world data provided by Praxair. In the
computational study, where the largest instances consider supply chains with
3 products, 3 plants, and 300 customers, the proposed algorithm is compared
with a standard two-phase heuristic and a solution strategy involving a one-time
heuristic pre-generation of candidate routes. The results show that the proposed
algorithm finds high-quality solutions in reasonable computation times and sig-
nificantly outperforms the other two solution approaches in large instances. In
the industrial case study, which considers a real-world industrial gas supply
chain with 2 plants and approximately 240 customers and a planning horizon
of 4 weeks, the proposed algorithm outperforms available alternative solution
approaches in terms of solution quality, although longer computation times are
required.

Nomenclature for (MPRP)

Indices

c customers
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i products
j vertices
m,m′,m′′ operating modes
p production plants
r operating subregions
s routes
t time periods

Sets

Ci customers requiring product i

Cips customers that can be visited on route s ∈ Sip
I products
Ī storable products, Ī ⊆ I

Î nonstorable products, Î ⊆ I
Jpmr vertices of the polytope describing subregion r ∈ Rpm
Mp operating modes of plant p
P production plants
Rpm subregions of mode m ∈Mp

SQp predefined sequences of mode transitions at plant p
T c level-2 time periods, T c = {0,1, . . . , t̂c}
T f level-1 time periods, T f = {−θmax + 1,−θmax + 2, . . . ,0,1, . . . , t̂f}

T
c

level-2 time periods in the planning horizon, T
c
= {1,2, . . . , t̂c}

T
f

level-1 time periods in the planning horizon, T
f
= {1,2, . . . , t̂f}

T̃ level-1 time periods that begin at the same time points as the
corresponding level-2 time periods,

T̃ = {1,∆tc/∆tf + 1,2∆tc/∆tf + 1, . . . , (t̂c − 1)∆tc/∆tf + 1}
TRp possible mode transitions at plant p

TRpm modes from which mode m ∈Mp can be directly reached

T̂Rpm modes which can be directly reached from mode m ∈Mp

Parameters

D̂pit demand for nonstorable product i at plant p in time period t [kg]

Dict demand for storable product i at customer c in time period t [kg]

D̂L
max

ict maximum amount of product i that can be delivered to customer c
in time period t [kg]

IV ini
pi initial inventory of product i at plant p [kg]

IV min
pit minimum inventory of product i at plant p at time t [kg]

IV max
pit maximum inventory of product i at plant p at time t [kg]

IV
ini

ic initial inventory of product i at customer c [kg]

IV
low

ict lowest possible inventory of product i at customer c at time t [kg]

IV
min

ict minimum inventory of product i at customer c at time t [kg]
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IV
max

ict maximum inventory of product i at customer c at time t [kg]
Lipt number of vehicles that can transport product i from plant p in

time period t
t̂c final level-2 time period in the planning horizon
t̂f final level-1 time period in the planning horizon
vpmrji amount of product i produced in one time period at vertex j ∈ Jpmr [kg]
Vi load capacity of a vehicle transporting product i [kg]
yini
pm 1 if plant p was operating in mode m in the time period before the

start of the planning horizon
zini
pmm′t 1 if operation at plant p switched from mode m to mode m′ at time t

before the start of the planning horizon
αict unit cost for purchasing product i for customer c in time period t [$/kg]
βips fixed distribution cost for using route s ∈ Sip [$]
γpmrit unit cost for producing product i in subregion r ∈ Rpmr in time period t [$/kg]
δpmrt fixed cost for operating in subregion r ∈ Rpm in time period t [$]
∆̄max
pmi maximum rate of change in the amount of product i produced in mode m ∈Mp [kg]

∆tc length of each level-2 time period [h]
∆tf length of each level-1 time period [h]
θpmm′ minimum stay time in mode m′ after switching from mode m to m′ at plant p [∆tf ]
θ̄pmm′m′′ fixed stay time in mode m′ of the predefined sequence (m,m′,m′′) at plant p [∆tf ]
θmax maximum minimum or predefined stay time in a mode [∆tf ]

θ̃max
p maximum minimum or predefined stay time in a mode of plant p [∆tf ]
πt level-2 time period that begins at the same time point as level-1 time period t
ρpit unit inventory cost for storing product i at plant p in time period t [$/kg]
ρ̄ict unit inventory cost for storing product i at customer c in time period t [$/kg]

Continuous variables

DLipts amount of product i delivered on route s ∈ Sip in time period t [kg]

D̂Liptsc amount of product i delivered to customer c on route s ∈ Sip in time period t [kg]
DLict amount of product i delivered to customer c in time period t [kg]
IVpit inventory of product i at plant i at time t [kg]

IV ict inventory of product i at customer c at time t [kg]
LDipt amount of product i delivered from plant p in time period t [kg]
PCict amount of product i purchased for customer c in time period t [kg]
PDpit amount of product i produced at plant p in time period t [kg]

PDpmrit amount of product i produced in subregion r ∈ Rmp in time period t [kg]
TC total cost [$]
λpmrjt coefficient for vertex j in subregion r ∈ Rpm in time period t

Binary variables

xipts 1 if route s ∈ Sipt is used to deliver product i
ypmt 1 if plant p operates in mode m in time period t
ȳpmrt 1 if plant p operates in subregion r ∈ Rpm in time period t
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zpmm′t 1 if operation at plant p switched from mode m to mode m′ at time t
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Appendix A. DCVRP formulation

The routing problem in Phase 2 of Heuristic H1 can be solved for each
product i, plant p, and time period t ∈ T

c
independently. For each (i, p, t),

we consider plant p and the customers in Ci that receive deliveries from plant
p in time period t. We create a complete directed graph G = (N,A) where
N = {0,1, . . . , nC} represents the set of the plant (node 0) and the customers
and A = {(n,n′) ∶ n ∈ N, n′ ∈ N, n ≠ n′} is the set of arcs. We further define
the set of customers Ñ = N ∖ {0} and the set of arcs between customers Ã =

{(n,n′) ∶ n ∈ Ñ , n′ ∈ Ñ , n ≠ n′}. The fixed order from customer n, denoted by
On, is set to DLict (for the corresponding c in the customer set), which is
obtained in Phase 1. The time required for visiting node n′ from node n is
denoted by τ̂nn′ , which consists of the travel time from n to n′ and the average
stay time at one node. Similarly, the corresponding distribution cost, denoted
by β̂nn′ , includes the travel cost and the fixed cost for loading and unloading.

For each (i, p, t), we solve the following MILP model of the DCVRP with
product purchase:

min ∑
(n,n′)∈A

β̂nn′ wnn′ + ∑
n∈Ñ

ᾱn PCn (A.1a)

s.t. ∑
n′∈N,n′≠n

wnn′ = ∑
n′∈N,n′≠n

wn′n ∀n ∈ Ñ (A.1b)

∑
n∈Ñ

w0,n ≤ Lip (A.1c)

un − un′ + Viwnn′ + (Vi −On −On′)wn′n ≤ Vi −On′ ∀ (n,n′) ∈ Ã
(A.1d)

On + ∑
n′∈Ñ,n′≠n

On′ wn′n ≤ un ∀n ∈ Ñ (A.1e)

un ≤ Vi − ∑
n′∈Ñ,n′≠n

On′ wnn′ ∀n ∈ Ñ (A.1f)

ūn − ūn′ + τ̄
max xnn′ + (τ̄

max
− τ̂nn′ − τ̂n′n)wn′n ≤ τ̄

max
− τ̂nn′ ∀ (n,n′) ∈ Ã

(A.1g)

τ̂0,n + ∑
n′∈N,n′≠n

(τ̂0,n′ + τ̂n′n − τ̂0,n)wn′n ≤ ūn ∀n ∈ Ñ (A.1h)

ūn ≤ τ̄
max

− τ̂n,0 − ∑
n′∈N,n′≠n

(τ̂n′,0 + τ̂nn′ − τ̂n,0)wnn′ ∀n ∈ Ñ (A.1i)

37



On ∑
n′∈N,n′≠n

wnn′ + PCn = On ∀n ∈ Ñ (A.1j)

PCn ≥ 0 ∀n ∈ Ñ (A.1k)

wnn′ ∈ {0,1} ∀ (n,n′) ∈ A (A.1l)

where the binary variable wnn′ equals 1 if a vehicle travels from node n to node
n′, and PCn denotes the amount of product purchased for customer n. Eq.
(A.1a) states the objective function, which consists of the distribution cost and
the product purchase cost, with ᾱn denoting the unit cost for purchasing product
for customer n. Eq. (A.1b) represents the vehicle flow conservation constraints,
while constraint (A.1c) limits the number vehicles according to the availability
at plant p. We adopt the lifted formulation of the Miller-Tucker-Zemlin (MTZ)
subtour elimination constraints proposed by Desrochers and Laporte (1991),
which are stated in Eqs. (A.1d)–(A.1i). Eqs. (A.1d)–(A.1f) further restrict the
amount of product delivered on each trip to the vehicle capacity Vi, while Eqs.
(A.1g)–(A.1i) prohibit the selection of trips that take longer than τ̄max. Finally,
according to Eq. (A.1j), the order quantity for each customer is either fully met
by delivery or by purchase.
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