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Abstract

We assess the potential synergies of integrating renewables-based fuels and power pro-
duction processes in one process network. In order to account for operational con-
straints as well as time-varying availability of renewable resources, such as wind and
solar energy, we propose a multiscale mixed-integer linear programming model that
combines the features of superstructure-based network synthesis and integrated pro-
duction planning and scheduling. The model is applied to a case study for a particular
region in Spain, where we analyze the feasibility of a renewables-based process net-
work in terms of meeting given demands for gasoline, diesel, and electricity. The op-
timal and sometimes counterintuitive designs highlight the complex interactions and
help identify bottlenecks in such process networks. Moreover, we solve each case us-
ing the multiscale model as well as a commonly used aggregate model; the two models
obtain remarkably different solutions. A systematic comparison of the design decisions
reveals the clear advantage of the multiscale model, which obtains high-quality solu-
tions that stand the test of re-evaluation using a detailed model, whereas the aggregate
model proposes network configurations that could in reality only satisfy small portions
of the given diesel and electricity demands.

Keywords: Renewable energy, power production, biofuels production, integrated
design and operation, process network

1. Introduction

In the light of increasing energy demand and climate change, many countries have
intensified their efforts in shifting from fossil to renewable energy sources, of which the
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most commonly used ones are hydropower, wind, solar, and biomass. While the rel-
atively high cost of existing biomass-to-energy conversion technologies has prohibited
their widespread deployment at industrial scale, the main challenges for wind and solar
power are their location- and time-dependent availability and the difficulty of storing
electricity.

In the chemical industry, synergies between various processes are exploited
by constructing and operating large integrated chemical complexes (Marechal and
Kalitventzeff, 2003; Wassick, 2009; Varbanov and Klemeš, 2011). Similar approaches
have been proposed to design sustainable energy systems. Yuan and Chen (2012) re-
view optimal process synthesis approaches for biorenewable conversion, polygener-
ation, and carbon capture, and propose the integration of various energy conversion
processes. Martı́n and Grossmann (2013) present an overview of systematic synthesis
methods for sustainable biorefineries, while Yue et al. (2014) extend the scope to the de-
sign of bioenergy supply chains. In the area of power systems engineering, the design
of wind- and solar-based power systems has been a major topic in recent years (Heide
et al., 2010; Halamay et al., 2011; Sharifzadeh et al., 2017). Due to the intermittent nature
of these renewable energy sources, their integration into the power grid significantly
increases the complexity of classical optimal power flow (Dommel and Tinney, 1968)
and unit commitment (Padhy, 2004) problems.

When it comes to the design of purely renewables-based energy systems, most ex-
isting works focus either on the production of fuels or on the generation of power. Re-
cently, however, Martı́n and coworkers have systematically optimized various ways
of integrating renewables-based power generation with the production of chemicals
(Davis and Martı́n, 2014; Martı́n and Davis, 2016; Martı́n, 2016b,a; Martı́n and Gross-
mann, 2017a). In their latest work, Martı́n and Grossmann (2017b) consider the synthe-
sis of process networks consisting of renewables-based energy conversion processes for
both fuels and power production. The proposed multiperiod problem, in which each
period represents one month of the year, is solved to determine the optimal selection of
technologies in different regions of Spain. The results show that considerable synergies
can be achieved, e.g. by storing electric energy in the form of chemicals that can be used
to produce fuels.

Although the model proposed by Martı́n and Grossmann (2017b) helps identifying
opportunities in such integrated process networks, it cannot consider effects at the op-
erational level, which may have a significant impact on the design of the processes. For
instance, intraday changes in wind velocity, solar incidence, and power demand are
not captured; also, limitations with regard to process dynamics are not taken into ac-
count. The insufficient consideration of process operations can lead to designs that are
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inadequately sized, resulting in infeasible or suboptimal operation.
As highlighted in a recent comprehensive review by Zhang and Grossmann (2016),

considering process dynamics is particularly important in industrial demand side man-
agement, where power-intensive processes adapt their operation to changes in electric-
ity price and take advantage of new demand response opportunities. Here, operational
constraints have to be considered at the same level of granularity as the changes in the
electricity market, which usually results in scheduling problems accounting for opera-
tional decisions at the hourly level. However, for design and long-term strategic prob-
lems, simply applying a detailed scheduling model to the entire time horizon (usually
at least one year long) will inevitably lead to computational intractability; hence, multi-
scale models have been proposed in order to maintain the tractability of such problems.

Mitra et al. (2014) solve a capacity planning problem considering hourly changes in
electricity price. In the proposed multiscale time representation, each year is divided
into four seasons, and each season is represented by one week, which is repeated cycli-
cally and characterized by a typical electricity price profile that reflects the price’s sea-
sonal behavior. With the proposed model, constraints on operational transitions can be
formulated; however, the strictly cyclic schedules do not allow inventory to be carried
over from one season to the next. Greater flexibility in inventory handling is achieved
in the model proposed by Samsatli and Samsatli (2015), who focus on the modeling
of transportation and storage operations in a supply chain setting, but do not model
process dynamics as accurately as Mitra et al. (2014). Lara et al. (2017) solve a multi-
scale power network design problem by integrating a unit commitment formulation;
however, the unit commitment problem does not take into account the times required
for startup and shutdown, which are often significant in chemical plants. Zhang et al.
(2017) apply two different time grids for modeling production and distribution opera-
tions in supply chains with power-intensive production facilities. Dowling et al. (2017)
present a multiscale optimization framework for evaluating revenue opportunities pro-
vided by different layers of deregulated electricity markets for individual participants,
and focus in particular on the real-time market. The model that comes closest to what
we require in this work is the one proposed by Zhang et al. (2018), which considers pro-
cess networks, allows restrictions on transitions between operating points, and accounts
for inventory carried over across seasons. By applying the proposed mixed-integer lin-
ear programming (MILP) formulation, Zhang et al. (2018) solve a multistage long-term
electricity procurement problem under demand uncertainty.

The objective of this work is to optimize the design of process networks for fuels
and power production that solely make use of renewable (or quasi-renewable) energy
sources. In order to appropriately do so, we combine a superstructure-based network
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synthesis model and an integrated planning and scheduling model in a multiscale
framework, which considers a planning horizon of one year and incorporates opera-
tional decisions at the hourly level.

The remainder of this paper is organized as follows. In Section 2, we present the
problem statement including a detailed description of the superstructure network con-
sidered in this work. The integrated multiscale model is developed in Section 3. By
applying the proposed model, we design a fuels and power production network for
Almerı́a, a province situated in the southeast of Spain. The results of this case study
are presented and discussed in Section 5. Finally, in Section 6, we close with a brief
summary and concluding remarks.

2. Problem statement

We consider the superstructure network proposed by Martı́n and Grossmann
(2017b), as shown in Figure 1. The given network consists of two types of nodes: process
nodes and resource nodes. Each process converts a specific set of input resources into
its output resources. Process and resource nodes are connected by arcs, which depict
the directions of the material or energy flows. The superstructure represents a superset
of the set of feasible process networks, which can be generated by selecting different
combinations of process and resource nodes.

Table 1 lists the processes and their corresponding input and output resources. As
input resources for the whole energy system (indicated by hatched resource nodes),
we only consider renewable energy sources, such as wind, solar, hydro, biomass, and
waste. Lignocellulosic biomass can be biochemically (P21) or thermally (P1) processed
to bioethanol or syngas, respectively. Syngas can be further processed into hydrogen
and CO2 through a water-gas shift reaction (P3) or directly used to produce power (P2),
hydrogen (P19), ethanol (P19), methanol (P20), Fischer-Tropsch liquids (P22), or simply
thermal energy (P16). Wind is used for power generation (P4), and solar energy can be
captured using photovoltaic (PV) panels (P7) or mirrors using concentrated solar power
(CSP) technologies (P8a). Hydropower offers a way to store power by elevating water
and maintaining its potential energy (P14), which is converted into kinetic energy (P13)
when power needs to be generated. Furthermore, waste can be used to produce bio-
gas, with which power can then be generated using a gas and a steam turbine (P15).
Through electrolysis (P5), power can be used to produce hydrogen, which in turn can
serve as input resource for methanol (P6) or methane (P17) production. While methane
can further be used in a gas turbine (P18), methanol is processed in the transesterifi-
cation of oil (P12). The oil can be extracted from algae (P11), which require sun light
and CO2 to grow. Finally, cooling processes are also included in the network in order
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Figure 1: Superstructure network for renewables-based fuels and power production.
The network representation consists of process nodes (rectangles) and resources nodes
(circles) connected by arcs, which depict the directions of the material and energy flows.

to remove the heat generated by some processes (P9, P10). Note that some resources,
such as the air feed for P9 and P10, are not included in the network because they are not
relevant for the optimization.

Consider a geographical region for which we have information on water and
biomass availability, wind velocity, and solar incidence. The objective is to design a
process network to be built at this location in order to satisfy given demands for power,
gasoline, and diesel, at minimum capital and operating costs. Operation over the course
of one year is considered as this time horizon is deemed to be sufficiently representa-
tive for a system exhibiting strong seasonal behaviors. The optimal sizing of the plants
should be ensured by accounting for detailed scheduling decisions; hence, for every
time period of the planning horizon, we determine:

• the mode of operation for each process,
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Table 1: Overview of processes and the corresponding input and output resources.

Name Description Input Resources Output Resources

P1 Gasification Biomass Syngas

P2 Gas turbine Syngas Power

P3 Water-gas shift reaction Water, syngas Hydrogen, CO2

P4 Wind turbine Wind Power

P5 Electrolysis Water, power Hydrogen, oxygen

P6 Methanol production Hydrogen, CO2 Methanol

P7 Photovoltaics Solar radiation Power

P8a Concentrated solar power
(charging) Solar radiation Energy stored in molten salt

P8b Concentrated solar power
(discharging) Energy stored in molten salt Power, heat duty

P9 Cooling tower Water, heat duty

P10 Air cooling Power, heat duty

P11 Algae-based oil production Solar radiation, CO2 Oil

P12 Transesterification of oil Oil, water, methanol, thermal
energy Diesel substitute, glycerol

P13 Hydropower (discharging) Elevated water Power

P14 Hydropower (charging) Power Elevated water

P15 Enzymatic digestion, power
generation Waste Power, heat duty

P16 Furnace Syngas Thermal energy

P17 Methane production Hydrogen, CO2 Methane

P18 Gas turbine Methane Power

P19 Thermochemical bioethanol
production Syngas, water Hydrogen, gasoline substitute,

thermal energy

P20 Biomethanol production Syngas, water Methanol, thermal energy

P21 Biochemical bioethanol
production Biomass, water Gasoline substitute, thermal

energy

P22 Fischer-Tropsch process Syngas, water Gasoline substitute, diesel
substitute, thermal energy

• the processing rate in each process,

• the material and energy flows in the process network,
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• the amount of input resources required,

• the amount of intermediate and final products stored.

3. Model formulation

In the following, we present the proposed MILP model for this integrated design,
planning, and scheduling problem. The underlying scheduling formulation is based on
the mode-based discrete-time model proposed by Zhang et al. (2016); for further details,
we refer the reader to that reference. Note that unless specified otherwise, continuous
variables in this model are constrained to be nonnegative. A list of indices, sets, param-
eters, and variables is given in the Nomenclature section.

3.1. Multiscale time representation

In this problem, we have to consider a variety of time-dependent effects, which
do not necessarily follow the same diurnal and seasonal behavior. For instance, the
availability of water for hydropower mainly depends on the weather, whereas fuels de-
mand tends to peak during national holiday seasons. Wind velocity and solar incidence
change significantly over the course of a day. The same is true for power demand; in ad-
dition, power demand profiles exhibit different behaviors for different days of the week.
In order to capture the response of the processes to these time-varying conditions, we
have to adequately account for constraints on process dynamics and inventory, while
maintaining a manageable model size.

In the proposed multiscale time representation, which is illustrated in Figure 2, the
planning horizon (in this case a year) is divided into seasons, denoted by index h. Note
that the seasons can, but do not have to correspond to the four seasons of a year (spring,
summer, autumn, and winter). The set of seasons, H , is specified according to the re-
occurring patterns that characterize the different time-varying parameters; hence, the
seasons can also have different lengths. Each season h consists of a representative set of
time periods, Th, which starts at time point 0. Time periods considered before time 0
are used to track past mode transitions. All time periods are of equal length, ∆t (e.g. an
hour).

In each season h, a cyclic schedule over the given set of time periods is applied nh

times. Note that although the time periods before time 0 for one season overlap with
the last time periods of the previous season, only the discrete mode transition decisions
are identical in these time periods. More importantly, despite the cyclic schedule, the
inventory level at the end of a season is allowed to be different from the inventory level
at the beginning of the season; the accumulated inventory is carried over to the next
season.
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Season 1 Season 2 Season |𝑯| 

… 

… 

𝑇 1  0 1 

… 

𝑇 2  0 1 

… 

𝑇 |𝐻|  0 1 

Figure 2: Multiscale time representation, which divides the planning horizon into sea-
sons, with each season represented by a specific set of time periods.

3.2. Network design constraints

Derived from the superstructure shown in Figure 1, the network design is given
by the selected nodes, which represent production processes and storage facilities, and
their capacities. We define the binary variable xi that equals 1 if process i is selected.
Similarly, the binary variable x̄j equals 1 if a storage facility is built for resource j. The
following constraints limit the capacities that can be realized:

Ci ≤ Cmax
i xi ∀ i (1a)

Cj ≤ C
max

j x̄j ∀ j (1b)

xi ∈ {0,1} ∀ i (1c)

x̄j ∈ {0,1} ∀ j (1d)

where Ci is the production capacity for process i, and Cj is the storage capacity for
resource j. The maximum allowed capacities are denoted by Cmax

i and C
max

j . Note that
C

max

j = 0 for nonstorable resources such as power.

3.3. Mode-based operation

In this model, we assume that each process can operate in different operating modes,
which represent operating states such as off, on, startup, and shutdown. Each operating
mode is characterized by a given production range. We introduce the binary variable
yimht, which equals 1 if process i operates in mode m in time period t of season h. The
mode-based operation is captured by the following constraints:

∑
m∈Mi

yimht = xi ∀ i, h, t ∈ Th (2a)

Piht = ∑
m∈Mi

P imht ∀ i, h, t ∈ Th (2b)

C̃min
im yimht ≤ P imht ≤ C̃max

im yimht ∀ i, m ∈Mi, h, t ∈ Th (2c)
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yimht ∈ {0,1} ∀ i, m ∈Mi, h, t ∈ Th (2d)

where Mi is the set of operating modes for process i. Eq. (2a) states that if process i is
selected, it has to operate in one mode in every time period. In Eq. (2b), the amount
of reference resource produced or consumed in mode m is denoted by P imht, which is
zero if mode m is not selected. The production range for each mode is specified in Eq.
(2c).

The main advantage of the mode-based formulation is that it allows us to formulate
constraints on transitions, which occur when the system changes from one operating
point to another. For changes between operating points in the same operating mode, a
bound on the rate of change, ∆̄max

im , can be set as follows:

− ∆̄max
im −M(2 − yimht − yimh,t−1) ≤ P imht − P imh,t−1

≤ ∆̄max
im +M(2 − yimht − yimh,t−1) ∀ i, m ∈Mi, h, t ∈ Th

(3)

where M is a big-M parameter of appropriate size.
Additional constraints have to be imposed on transitions between different oper-

ating modes, which is achieved by enforcing constraints (4)–(6). The binary variable
zimm′ht equals 1 if and only if process i switches from mode m to mode m′ at time t,
which is stated in the following equations:

∑
m′∈TRim

zim′mh,t−1 − ∑
m′∈T̂Rim

zimm′h,t−1 = yimht − yimh,t−1 ∀ i, m ∈Mi, h, t ∈ Th

(4a)

zimm′ht ∈ {0,1} ∀ i, (m,m′) ∈ TRi, h, t ∈ Th (4b)

with TRi being the set of all possible mode-to-mode transitions in process i, TRim =
{m′ ∶ (m′,m) ∈ TRi}, and T̂Rim = {m′ ∶ (m,m′) ∈ TRi}.

The restriction that a plant has to remain in a certain mode for a minimum amount
of time after a transition is stated as follows:

yim′ht ≥
θimm′

∑
k=1

zimm′h,t−k ∀ i, (m,m′) ∈ TRi, h, t ∈ Th (5)

with θimm′ being the minimum stay time in mode m′ after switching to it from mode m.
For predefined sequences, each defined as a fixed chain of transitions from mode m

to mode m′ to mode m′′, we can specify a fixed stay time in mode m′ by imposing the
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following constraint:

zimm′h,t−θ̄imm′m′′
= zim′m′′ht ∀ i, (m,m′,m′′) ∈ SQi, h, t ∈ Th (6)

where SQi is the set of predefined sequences for process i and θ̄imm′m′′ is the fixed stay
time in mode m′ in the corresponding sequence.

3.4. Mass balance constraints

We assume that all processes are operated continuously. For some processes, e.g.
algae-based oil production and biochemical bioethanol production, this assumption
does not necessarily hold true; however, these plants usually have a large number of
units (e.g. ponds and fermenters) such that they can be operated in an almost continu-
ous fashion. The mass balance constraints can be stated as follows:

Qjht = (1 − εjh)Qjh,t−1 +∑
i

∑
m∈Mi

ρimjh P imht +Bjht − Sjht ∀ j, h, t ∈ Th (7a)

Piht ≤ ηihtCi ∀ i, h, t ∈ Th (7b)

Qjht ≤ Cj ∀ j, h, t ∈ Th (7c)

Bjht ≤ Bmax
jht ∀ j, h, t ∈ Th (7d)

Sjht ≥Djht ∀ j ∈ J̄ , h, t ∈ Th (7e)

Sjht = 0 ∀ j ∈ Ĵ , h, t ∈ Th (7f)

where Qjht is the inventory level for resource j at time period t of season h, Piht is the
amount of reference resource produced or consumed in process i, Bjht is the amount
of resource j consumed by the process network, and Sjht is the amount of resource j
discharged from the network. Eq. (7a) is the inventory balance. The parameter εjh
accounts for loss from storage. The conversion factor ρimjh is given with respect to the
reference resource; depending on the sign of ρimjh, resource j is either produced or
consumed by process i in mode m.

Eq. (7b) limits Piht by the built capacity Ci. The parameter ηiht accounts for time-
varying production capacities, such as those of power generation facilities that make
use of wind and solar energy. Eq. (7c) limits Qjht by the built storage capacity Cj .
As stated in Eq. (7d), the amount of resource j consumed by the process network is
bounded by Bmax

jht . In this case, Bmax
jht is only nonzero for the resources indicated by

hatched resource nodes in Figure 1. The set of resources, for which demand is given, is
denoted by J̄ (indicated by filled resource nodes in Figure 1). According to Eq. (7e), the
demand Djht is satisfied by the discharged amount. Eq. (7f) sets Sjht to zero for j ∈ Ĵ ,
the set of resources that must not be discharged, e.g. heat duty.
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3.5. Continuity equations

Continuity equations are required at the boundaries of each season in order to main-
tain mass balance and feasible transitions. The cyclic schedules are enforced by apply-
ing the following constraints:

yimh,0 = yimh,∣Th∣ ∀ i, m ∈Mi, h (8a)

zimm′ht = zimm′h,t+∣Th∣ ∀ i, (m,m′) ∈ TRi, h, −θmax
i + 1 ≤ t ≤ −1 (8b)

which state that the system at the end of each representative time horizon has to be in
the same mode as at the beginning of the same time horizon, while having a cyclic mode
transition schedule.

Similarly, the state in which the system is at the end of one season has to match the
beginning of the next season:

yimh,∣Th∣ = yim,h+1,0 ∀ i, m ∈Mi, h ∈H ∖ {∣H ∣} (9a)

zimm′h,t+∣Th∣ = zimm′,h+1,t ∀ i, (m,m′) ∈ TRi, h ∈H ∖ {∣H ∣}, −θmax
i + 1 ≤ t ≤ −1.

(9b)

Despite the cyclic schedule, we allow inventory to be accumulated over the course
of a season and carried over to the next by applying the following constraints:

Qjh = Qjh,∣Th∣ −Qjh,0 ∀ j, h (10a)

Qjh,0 + nhQjh = Qj,h+1,0 ∀ j, h ∈H ∖ {∣H ∣} (10b)

Qj,∣H ∣,0 + n∣H ∣Qj,∣H ∣ ≥ Qj,1,0 ∀ j (10c)

where Qjh denotes the excess inventory, which according to Eq. (10a) is defined as the
difference between the inventory levels at the end and at the beginning of a represen-
tative time horizon. As indicated in Eq. (10b), since the cyclic schedule in season h is
repeated nh times, nhQjh is accumulated over the course of the season and carried over
to the next. Eq. (10c) is a terminal constraint, stating that the final inventory level should
not be below the initial inventory level. Note that Qjh is the only continuous variable in
this model that can also take negative values.

3.6. Objective function

The annualized capital costs for the various processes, denoted by Vi, are approx-
imated by piecewise-linear functions of the plant capacities, which are formulated as
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follows:

Ci = ∑
l∈Li

[λil(Ĉi,l−1 − Ĉil) + Ĉilwil] ∀ i (11a)

Vi = ∑
l∈Li

[λil(V̂i,l−1 − V̂il) + V̂ilwil] ∀ i (11b)

λil ≤ wil ∀ i, l ∈ Li (11c)

∑
l∈Li

wil = xi ∀ i (11d)

wil ∈ {0,1} ∀ i, l ∈ Li (11e)

with Li being the set of pieces for the piecewise-linear approximation for process i. Each
line segment l is defined by its two end points, each given by a capacity-cost pair, i.e.
(Ĉi,l−1, V̂i,l−1) and (Ĉil, V̂il). The binary variable wil equals 1 if the chosen capacity Ci is
in the range of line segment l. The exact position on the line is then given by λil, which
takes a value between 0 and 1.

Assuming linear capital costs for storage facilities, the total annualized capital cost,
CC, is given by

CC =∑
i

Vi +∑
j

(αj x̄j + βj Cj) . (12)

The total operating cost, OC, is given by

OC =∑
h

∑
t∈Th

nh
⎡⎢⎢⎢⎣
∑
i

∑
m∈Mi

(δimh yimht + γimh P imht) +∑
j

φjhBjht +∑
j

ψjh Sjht
⎤⎥⎥⎥⎦

(13)

where we assume mode-dependent linear operating cost functions. The last two terms
constitute the costs for purchasing and discharging resources; in our particular case, we
assume that only biomass needs to be purchased, and only discharging CO2 incurs a
cost in form of a carbon tax. Note that the cost coefficients can vary across seasons.

The objective is to minimize the total cost, TC, which consists of the capital and
operating costs:

TC = CC +OC. (14)

This finally results in the following optimization problem, which we will refer to as the
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multiscale problem (MP):

min TC

s.t. Eqs. (1)–(14).
(MP)

4. Detailed and aggregate models

In order to properly assess the design decisions obtained from (MP), we have to
apply them to the detailed problem that does not make the simplifying assumption
of cyclic schedules based on representative data for each season, but treats each time
period of the year individually. The model for this detailed problem, which we denote
by (DP), can be obtained from adapting (MP) by performing the following steps:

1. Replace season-dependent time set Th by T̂h = {1,2, . . . , nh∣Th∣}.

2. Replace ηiht, Bmax
jht , and Djht by η̂iht, B̂max

jht , and D̂jht, respectively, as the latter
are the actual data from which the season-representative parameters in (MP) are
generated.

3. Remove Eqs. (8).

4. Replace Eqs. (10) by Qj,∣H ∣,∣T̂h∣ ≥ Qj,1,0 ∀ j.
5. Replace nh in Eq. (13) by 1.

The main purpose of this work is the assessment of the potential benefit of apply-
ing a multiscale model to this network design problem instead of an aggregate model
that does not take constraints at the operational level into account. We derive the ag-
gregate model by removing the operational constraints from (DP) and aggregating the
remaining constraints and corresponding variables for each season h over the time set
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T̂h, which results in the following formulation:

min CC + ÔC
s.t. Eqs. (1), (11), (12)

Q̂jh = Q̂j,h−1 +∑
i

ρ̂ijh P̂ih + B̂jh − Ŝjh ∀ j, h

P̂ih ≤ η̃ihCi ∀ i, h
Q̂jh ≤ Cj ∀ j, h
B̂jh ≤ B̃max

jh ∀ j, h
Ŝjh ≥ D̃jh ∀ j ∈ J̄ , h
Ŝjh = 0 ∀ j ∈ Ĵ , h
Q̂j,∣H ∣ ≥ Q̂j,0 ∀ j

ÔC =∑
h

⎡⎢⎢⎢⎣
∑
i

(∣T̂h∣ δ̂ih xi + γ̂ih P̂ih) +∑
j

(φjh B̂jh + ψjh Ŝjh)
⎤⎥⎥⎥⎦

(AP)

where Q̂jh = Qjh,∣T̂h∣, the aggregated variables are P̂ih ∶= ∑t∈T̂h
Piht, B̂jh ∶= ∑t∈T̂h

Bjht,
and Ŝjh ∶= ∑t∈T̂h

Sjht, and the aggregated parameters are η̃ih = ∑t∈T̂h
η̂iht, B̃max

jh =
∑t∈T̂h

B̂max
jht , and D̃jh = ∑t∈T̂h

D̂jht. The coefficients ρ̂ijh, δ̂ih, and γ̂ij are chosen by as-
suming that process i is constantly operating in a specific mode. There is no loss term
in the mass balance equation since εjh is assumed to be zero. Note that the aggregate
model (AP) is very similar to the model applied by Martı́n and Grossmann (2017b) and
is therefore well-suited for comparison purposes in our case study.

5. Results and discussion

We apply the proposed model to design a renewables-based process network for
Almerı́a, a province in the southeast of Spain. The goal is to demonstrate the advantage
of the multiscale model over the aggregate model and to evaluate the amount of fuels
and power demand that can be satisfied with a purely renewables-based system at this
particular location. The planning horizon of one year is divided into four 13-week long
seasons, each represented by one representative week with hourly time discretization.

5.1. Case study data

All process-related capacity, conversion, and cost data are adapted from Martı́n and
Grossmann (2017b) and can be found in that reference. The minimum stay times related
to mode transitions are based on computational experiments and practical considera-
tions and can be found in the supplementary material.
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This case study is based on resource availability and fuels and power demand data
from 2016. Almerı́a is considered one of the driest regions in Europe; hence, the avail-
able amounts of biomass and water are relatively small. However, there is abundant
solar radiation and also, the average wind speed is fairly high as Almerı́a has a coast-
line on the Mediterranean Sea. In 2016, the estimated total amounts of biomass (av-
eraged from miscanthus, straw, and forest residues), waste (manure from cattle, pigs,
and sheep), and water are 105 kt (Bioenarea, 2016; Edwards et al., 2006), 1310 kt (MA-
PAMA, 2016), and 16,071 kt (SAIH Hidrosur, 2017), respectively. The average wind
speed at 80 m height is 4.7 m/s (CENER, 2017), and the average annual solar irradiance
is 1804 kWh/m2 (Datosclima.es, 2017). We assume that the availability of biomass and
waste is evenly distributed over the course of the year. Amounts of available water,
wind, and solar are given on an hourly basis and can be found in the supplementary
material. We assume that 1 % of the amount of available water is readily available ele-
vated water for hydropower.

The annual demands for gasoline, diesel, and electricity are, respectively, 49 kt,
427 kt (CORES, 2016), and 2863 GWh (Red Electrica de Espana, 2017). In this case study,
the gasoline and diesel demands are given at the seasonal level, i.e. assuming constant
demand over the course of each season, while the electricity demand is given at the
hourly level. These data are as well provided in the supplementary material.

5.2. Computational considerations

All models were implemented in Julia with the JuMP package (Lubin, M., Dunning,
2015) and solved using CPLEX 12.7 on an Intel® CoreTM i7-2600 machine at 3.40 GHz
with 8 processors and 8 GB RAM. Table 2 shows the model sizes and solution times
for (MP), (AP), and (DP). The multiscale model (MP) has more than 700,000 variables,
among which more than half a million are binary variables, and almost half a million
constraints. Yet the model is still relatively efficient; in all instances, it could be solved
in less than five hours to 1% optimality gap. The aggregate model (AP) is several orders
of magnitude smaller and therefore solves in less than a second. Because of its substan-
tially larger size, the full-space detailed model (DP) could not be solved as the machine
ran out of memory.

In order to compare the quality of the solutions obtained from (MP) and (DP), in each
case, the design decisions are fixed in (DP), which is then solved in a rolling-horizon
fashion. For this problem, we choose the prediction horizon to be four weeks and the
implementation horizon to be one week long, i.e. while moving forward in time, a
scheduling problem for the next four weeks is solved, but only the first week is imple-
mented. We introduce slack variables for unmet demand in (DP) in order to guarantee
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Table 2: Model sizes and solution times.

(MP) (AP) (DP)

# of bin. variables 530,033 109 4,239,360
# of cont. variables 201,816 484 1,797,120

# of constraints 486,392 547 5,957,216
Solution time < 5 h * < 1 s n/a

* solved to 1 % optimality gap

feasibility. After the full detailed problem is solved for a particular set of design deci-
sions, we record the total operating cost and the actual satisfied demand.

5.3. Optimization results

We determine the optimal process network for Almerı́a in three cases (Cases A, B,
and C) that differ in demand and CO2 and biomass availability. In each case, we set the
demand of gasoline, diesel, and electricity close to what is maximum feasible. We solve
all cases using (MP) and (AP) and compare the results by applying the obtained design
decisions to (DP) as described in the previous section.

5.3.1. Case A: base case

For Case A, we set the demands for gasoline, diesel, and electricity to respectively
10 %, 5 %, and 60 % of the total amounts required in Almerı́a. For ease of direct compari-
son, Figure 3 shows both the network design decisions obtained from (MP) and (AP). In
the figure, network nodes highlighted in yellow are selected in the solution from (MP)
whereas nodes highlighted in green are selected by (AP). Nodes selected by both (MP)
and (AP) have a double yellow-green coloring. The numbers (red for (MP) and green
for (AP)) indicate the production and storage capacities. Already at first glance, one can
see that the two solutions are very different. Here, we make the following observations:

• (MP) suggests using more power generation technologies and building signifi-
cantly more capacity for power generation than (AP). (AP) only generates solar
power using CSP (P8) whereas (MP) also uses photovoltaics (P7). This is mainly
due to the fact that unlike (AP), (MP) considers hourly changes in resource avail-
ability and hence suggests a design that can compensate for periods of low solar
radiation.

• Water is a scarce resource in Almerı́a, which is reflected in the solutions that sug-
gest using air coolers (P10) instead of cooling towers (P9) for cooling. For the same
reason, hydropower generation is not considered in the proposed designs.
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• Solar radiation is very high in Almerı́a while wind speed is relatively low, which
makes solar power more cost-effective. As a result, neither of the two solutions
selects power generation from wind.

• Power generation from waste (P15) is only used in the (MP) solution. The constant
supply of waste helps mitigate the variability in power generation using solar
energy. This need is not seen by (AP) as it assumes that solar radiation is available
at constant rate in each season.

• In addition to the Fischer-Tropsch process (P22), both (MP) and (AP) also suggest
using the algae-based oil production (P11) and the subsequent transesterification
of oil (P12) to produce diesel. However, (MP) installs considerable storage ca-
pacities for CO2, oil, and diesel in order to mitigate the impact of variable solar
radiation, whereas (AP) only considers relatively moderate storage capacity for
diesel since it assumes algae growth with constant average solar incidence.

• While (AP) suggests producing methanol from syngas and water (P20), (MP) syn-
thesizes methanol from CO2 and hydrogen (P6). The reason for this difference is
that unlike (AP), (MP) sees the need for building CO2 inventory during operation.
Therefore, (MP) uses the water-gas shift reaction (P3) to produce more CO2, and
hydrogen as well. At that point, it becomes more economical to produce methanol
through P6 than through P20.

• Power is not stored chemically in the form of methane due to the high cost of pro-
ducing synthetic methane (P17) and because it would require CO2 and hydrogen,
which are needed for the production of diesel.

Table 3 compares the solutions obtained from (MP) and (AP) in terms of the actual
satisfied demands, capital expenses, and operating expenses, evaluated by applying
the design decisions to the detailed model (DP). One can see that 100 % of the specified
gasoline demand is satisfied by both solutions. (MP) meets well above 90 % of the diesel
and electricity demands, which, given the fluctuations in electricity demand and solar
incidence, is acceptable for initial design purposes. (AP), however, only covers 81 %
and 60 % of the diesel and electricity demands, respectively, which is attributed to the
fact that (AP) disregards detailed operational decisions and hence cannot account for
demand and resource variability.

Naturally, due to the significantly smaller number of processes built and lower de-
mand satisfaction, the CAPEX and OPEX for the (AP) solution are considerably lower
than the numbers obtained from the (MP) solution. In the case of (MP), the annualized
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Figure 3: Process network designs proposed by (MP) and (AP) for Case A.

Table 3: Comparison between solutions obtained from (MP) and (DP) for Case A.

Actual satisfied demand (%) CAPEX
(eM/yr)

OPEX
(eM/yr)

Gasoline Diesel Electricity

(MP) 100 92 93 44.4 33.5

(AP) 100 81 60 14.1 15.1

CAPEX is e44.4 million, and the annual OPEX amounts to e33.5 million. The break-
down of the CAPEX into the selected processes is shown in Figure 4, which indicates
that more than 3/4 of the total CAPEX is spent on solar power capacities (PV and CSP).

To show the decisions made at the operational level by (MP), we present the power
generation schedule for the representative winter week in Figure 5. The plot shows
the amount of electricity generated or consumed by each process (only P10 consumes
electricity) as well as the inventory profile for molten salt. One can clearly see how the
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solution benefits from the combination of PV and CSP plants, namely by generating
electricity using PV panels during periods of high solar incidence while charging the
CSP storage, and generating electricity using the CSP plant during periods of low solar
incidence.
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Figure 5: Power generation schedule for the representative winter week proposed by
(MP) for Case A.

5.3.2. Case B: external CO2 input

In Case A, one major bottleneck for biodiesel production is the availability of CO2,
which is needed as the carbon source for algae growth in P11. In Case A, CO2 has
to be entirely produced within the process network with no additional external input;
however, in reality, there may be plenty of external CO2 sources, e.g. conventional CO2-
emitting power plants and concrete production. By using CO2 from such sources, we
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would not only be able to increase biodiesel production, but would also reduce CO2

emissions. Therefore, in Case B, we allow external CO2 input and analyze its impact on
the design decisions. Demands for gasoline, diesel, and electricity are set to respectively
10 %, 10 %, and 60 % of the total amounts required in Almerı́a.

Figure 6 shows the network design decisions obtained from (MP) and (DP), and
Table 4 shows the actual satisfied demands, capital expenses, and operating expenses.
We first discuss the differences in the (MP) solution compared to Case A:

• Due to the increased availability of CO2, sufficient amount of methanol can be
produced using P6. As a result, the Fischer-Tropsch process (P22) is not selected
anymore to meet diesel demand since it is significantly more expensive. The ther-
mal energy required for P12, which is mainly produced by P22 in Case A, is now
provided by the combustion of syngas (P16) and the thermochemical bioethanol
production process (P19), which have been added to the network in Case B. P19
also produces hydrogen, hence reducing the need for expensive hydrogen storage.

• Compared to Case A, the production capacities of P11 and P12 have been signifi-
cantly increased.

• The solution suggests installing large storage capacities for oil and methanol in
order to deal with the variability in solar incidence that affects the algae-based oil
production.

• Interestingly, both the CAPEX and the OPEX in Case B are lower than in Case A
although more diesel is produced. Besides the cost savings achieved by excluding
P22 from the process network, this result is mainly attributed to the substantial re-
duction in required PV capacity (from 105.8 to 62.7 MW). This is possible because
of the increased power generation by P2 during operation, which is used to offset
the reduced power generation from PV panels. This considerable increase in the
capacity of using syngas for power generation is in turn made possible by the fact
that diesel is now produced through P12 instead of P22 due to the higher avail-
ability of CO2; otherwise, like in Case A, P22 would consume a large portion of
the syngas.

Similar to Case A, there is also a stark difference between the network configurations
proposed by (MP) and (AP) in Case B. As shown in Figure 6, unlike (MP), (AP) suggests
using P20 and P21 to produce methanol and gasoline, respectively. However, like (MP),
(AP) also only relies on P12 to produce diesel. Here, the most remarkable observation is
that the actual diesel demand met by the (AP) solution is only 4 % (see Table 4). As the
(AP) predicts full demand satisfaction, this discrepancy seems to be overly excessive at
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Figure 6: Process network designs proposed by (MP) and (AP) for Case B.

first; however, the explanation for this phenomenon becomes clear when we take a close
look at the operational restrictions imposed by the proposed design. The major design
flaw lies in the lack of methanol storage capacity. Since the aggregate model (AP) does
not consider detailed operations, it assumes that the processes can operate at constant
rate, in which case the production capacities would be just sufficient to satisfy the given
demand. Yet in reality, due to the high variability in solar incidence, little amount of
oil is produced during hours of low solar radiation, resulting in P20 not being able to
utilize its full methanol production capacity without any methanol storage since P12
would not be able to process it without sufficient amount of oil. In addition, the (AP)
solution provides misleading inventory information (at the seasonal level); as a result,
when solving (DP) in a rolling-horizon fashion, oil inventory is not built to an extent
that would allow full utilization of P20 and P12.
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Table 4: Comparison between solutions obtained from (MP) and (DP) for Case B.

Actual satisfied demand (%) CAPEX
(eM/yr)

OPEX
(eM/yr)

Gasoline Diesel Electricity

(MP) 100 92 97 38.5 31.1

(AP) 100 4 59 20.8 6.1

5.3.3. Case C: increased biomass availability

The main limiting resource for such a renewables-based process network in Almerı́a
is biomass, which in turn is a result of the scarce water availability. Although it has
not been demonstrated, desertification of the south of Spain has been related to cli-
mate change. In Case C, in addition to allowing external CO2 input, we increase the
availability of biomass by 100 %. Also, demands for gasoline, diesel, and electricity are
increased to 20 %, 20 %, and 65 % of the total amounts required in Almerı́a, respectively.
The results are shown in Figure 7 and Table 5. In terms of the (MP) solution, the main
differences to Case B are the following:

• Compared to Case B, a number of processes, in particular P1, P6, P7, P11, and P12,
have increased significantly in size in Case C in order to meet the higher demands,
naturally resulting in considerably higher CAPEX and OPEX.

• As P12 alone does not suffice to meet the demand anymore; hence, both P12 and
P22 are used to produce diesel. The production of green gasoline and Fischer-
Tropsch diesel results in P19 not being selected for the production of bioethanol.
Furthermore, P3 and P16 are no longer used.

• In order to increase methanol production using P6, electrolysis (P5) is selected to
produce more hydrogen and substantial storage capacities for hydrogen and CO2

are added.

• Power generation from wind (P4) is now selected, mainly to provide the addi-
tional electricity required by the electrolyzers.

With regard to the selection of processes, the (AP) solution for Case C does not differ
from the one for Case B; hence, it also exhibits similar shortcomings, including only ac-
tually meeting a tiny fraction of the diesel demand due to the lack of methanol storage.
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Figure 7: Process network designs proposed by (MP) and (AP) for Case C.

Table 5: Comparison between solutions obtained from (MP) and (DP) for Case C.

Actual satisfied demand (%) CAPEX
(eM/yr)

OPEX
(eM/yr)

Gasoline Diesel Electricity

(MP) 100 96 97 75.3 48.1

(AP) 100 0.3 57 29.3 7.0

6. Conclusions

In this work, we have developed a multiscale MILP model for the integrated optimal
design and operation of renewables-based fuels and power production networks. The
proposed model allows the selection of a feasible process network derived from a given
superstructure network, while simultaneously optimizing detailed operational sched-
ules for the selected processes. We have demonstrated the effectiveness of the proposed
model by applying it to a case study for Almerı́a, a province situated in the southeast of
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Spain.
In the case study, we have emphasized the comparison between the design decisions

obtained from the multiscale model and from a commonly used aggregate model. Each
set of design decisions is evaluated by applying it to a detailed scheduling model for the
entire one-year time horizon, which is solved in a rolling-horizon fashion. The results
highlight the main take-away from this paper: When designing systems involving time-
varying resources, e.g. wind and solar, proper design decisions can only be made if
operational considerations are taken into account at the same time. While this was
achieved by the proposed multiscale model, the aggregate model, which disregards
operational constraints, obtained inadequate network designs that could only satisfy
small portions of the given diesel and electricity demands.

In the particular case of Almerı́a, the results show that about 10 % of gasoline,
5 % of diesel, and 60 % of electricity demand for the region can be met by an entirely
renewables-based process network, which generates the vast majority of the electricity
using solar power while making ample use of the storage capability of the CSP plant.
The diesel demand that can be met increases to about 10 % if external CO2 input is al-
lowed, which significantly increases the network’s capacity for algae-based diesel pro-
duction. The main limiting factor for the process network turns out to be the availability
of biomass.

Although the proposed model is general, the results are very specific to the geo-
graphical region to which is was applied. Future work will involve exploiting further
synergies by simultaneously optimizing such process networks for multiple regions,
and the development of solution algorithms for solving these large-scale problems more
efficiently.

Nomenclature

Indices / sets

h ∈H seasons
i ∈ I processes
j ∈ J resources
l ∈ L segments in piecewise-linear approximations
m ∈M operating modes
t ∈ T time periods, T = {−θmax + 1,−θmax + 2, . . . ,0,1, . . . , ∣T ∣}

Subsets
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J̄ resources with demand
Ĵ resources that must not be discharged
Li segments in piecewise-linear approximation for process i
Mi operating modes in process i
SQi predefined sequences of mode transitions in process i
Th time periods in season h, Th = {1,2, . . . , ∣Th∣}
TRi possible mode transitions in process i
TRim modes from which mode m can be directly reached in process i
T̂Rim modes which can be directly reached from mode m in process i

Parameters

Bmax
jht maximum amount of resource j that can be consumed by the process

network in time period t of season h
Cmax
i maximum production capacity for process i

C
max

j maximum storage capacity for resource j
Ĉil production capacity for process i at right end point of segment l
C̃max
im maximum production amount in mode m of process i

C̃min
im minimum production amount in mode m of process i

Djht demand for resource j in time period t of season h
M big-M parameter in rate-of-change constraint
nh number of times the representative scheduling horizon of season h is repeated
V̂il capital cost for process i at right end point of segment l
αj fixed capital cost for storing resource j
βj unit capital cost for storing resource j
δimh fixed cost for operating in mode m of process i in season h
∆t length of one time period
∆̄max
im maximum rate of change

γimh unit cost for operating in mode m of process i in season h
εjh fractional loss from storing resource j in season h
ηiht fractional availability of production capacity in process i in time period t of season h

mode m of process i in season h
θimm′ minimum stay time in mode m′ of process i after switching from mode m to m′

θ̄imm′m′′ fixed stay time in mode m′ of the predefined sequence (m,m′,m′′) in process i
θmax maximum minimum or predefined stay time in a mode
ρimjh conversion factor for resource j with respect to the reference resource in
φjh unit cost for purchasing resource j in season h
ψjh unit cost for discharging resource j in season h
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Unrestricted continuous variables

Qjh excess inventory for resource j in season h

Nonnegative continuous variables

Bjht amount of resource j consumed by the process network in time period t of season h
Ci production capacity for process i
Cj storage capacity for resource j
CC annualized capital cost
OC annual operating cost
Piht amount of reference resource produced by process i in time period t of season h
P imht amount of reference resource produced in mode m of process i in time period t

of season h
Qjht inventory level for resource j at time period t of season h
Sjht amount of resource j discharged from the network in time period t of season h
TC total annualized cost
Vi capital cost for process i
λil coefficient for segment l in piecewise-linear approximation for process i

Binary variables

wil equals 1 if the chosen capacity for process i is in the range of line segment l
xi equals 1 if process i is selected
x̄j equals 1 if a storage facility is built for resource j
yimht equals 1 if process i operates in mode m in time period t of season h
zimm′ht equals 1 if operation of process i switched from mode m to mode m′ at time t

of season h
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