
Decomposition methods for multi-horizon stochastic programming

Hongyu Zhanga,∗, Èric Mor Domènechb, Ignacio E. Grossmannc, Asgeir Tomasgarda

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and
Technology, Høgskoleringen 1, 7491, Trondheim, Norway

bDepartment of Computer Science, Universitat Politècnica de Catalunya, Carrer de Jordi Girona, 31, 08034
Barcelona, Spain

cDepartment of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Abstract

Multi-horizon stochastic programming includes short-term and long-term uncertainty in investment
planning problems more efficiently than traditional multi-stage stochastic programming. In this
paper, we exploit the special structure of multi-horizon stochastic linear programming, and establish
that it can be decomposed by Benders decomposition and Lagrangean decomposition. In addition,
we propose parallel Lagrangean decomposition with primal reduction that, (1) solves the scenario
subproblems in parallel, (2) reduces the primal problem by keeping one copy for each scenario
group at each stage, and (3) solves the reduced primal problem in parallel. We compare the parallel
Lagrangean decomposition with primal reduction with the standard Lagrangean decomposition
and standard Benders decomposition on a stochastic energy system investment planning problem.
The computational results show that: (a) the Lagrangean type decomposition algorithms have
better convergence at the first iterations to Benders decomposition, and (b) parallel Lagrangean
decomposition with primal reduction is up to 9.2 times faster than standard Benders decomposition
for a 1% convergence. Based on the computational results, the choice of algorithms for multi-horizon
stochastic programming is discussed.

Keywords: Stochastic programming, Multi-horizon stochastic programming, Lagrangean
decomposition, Benders decomposition

1. Introduction

Multi-horizon stochastic programming (MHSP) is a powerful modelling approach that can in-
clude long-term and short-term uncertainty for long-term investment planning problems with much
smaller model size than traditional multi-stage stochastic programming (Kaut et al., 2014). MHSP
was further formalised in (Escudero & Monge, 2018). In addition, the bounds and formulation of
MHSP have been studied (Maggioni et al., 2020). The literature on MHSP is much more sparse
compared with multi-stage stochastic programming. Existing literature mainly centre around the
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application of MHSP for long-term investment planning problems, especially in energy system plan-
ning (Zhang et al., 2022; Backe et al., 2022). The applications show that although MHSP reduces
the problem size, the monolithic model can still be hard to solve. Therefore, in this paper, we
extend the literature by proposing and comparing decomposition algorithms for MHSP.

Fewer decomposition methods for MHSP have been proposed. (Mazzi et al., 2020) proposed
adaptive Benders decomposition to solve large scale optimisation problems with column bounded
block-diagonal structure, where subproblems differ in right-hand side and cost coefficients. MHSP
belongs to this class of optimisation problems if it is formulated using a node formulation and the
operational scenarios are identical in all nodes. They apply the adaptive Benders decomposition
to solve a stochastic investment planning problem, and show that the computational time reduces
significantly. The limitation of (Mazzi et al., 2020) is that adaptive Benders cannot solve problems
where operational scenarios are different in each node. (Zhang et al., 2022) proposed stabilised
adaptive Benders decomposition to solve MHSP, and apply it to solve a large-scale power system
planning problem. Furthermore, (Zhang et al., 2023) proposed centre point stabilised adaptive
Benders decomposition for solving large scale problem with integer variables. The existing litera-
ture only has focused on developing Benders type decomposition utilising the node formulation of
MHSP. Decomposition algorithms that utilise the scenario formulation of MHSP are missing in the
literature.

In this paper, we propose parallel Lagrangean decomposition with Primal Reduction (PLPR)
to solve linear programming based MHSP with a scenario formulation. In addition, we show that
scenario based MHSP can be decomposed by Lagrangean decomposition. Compared with standard
Lagrangean decomposition, the PLPR solves the scenario subproblem in parallel, and reduces the
primal problem by keeping one copy in each scenario group at each stage, and solves the primal
problem in parallel. The choice of Lagrangean type decomposition and Benders type decomposition
is not clear for MHSP. Therefore, we compare Lagrangean decomposition, Benders decomposition
and PLPR to provide some computational insights.

The following assumptions are made in this paper: (1) each operational problem can be solved
using commercial linear programming solvers, (2) the operational problem in each strategic node has
several scenarios but not a multi-stage stochastic programming problem itself, and (3) the problem
has relatively complete recourse at every stage.

We apply the proposed algorithms to solve the REORIENT model (Zhang et al., 2023). The
REORIENT model is an MHSP proposed for integrated energy system planning considering invest-
ment, retrofit and abandonment. In this paper, we turn off the retrofit and abandonment options.
Therefore, the problem instances only have continuous variables.

The contributions of this paper are the following: (1) it is the first paper formalising and
proposing decomposition methods based on node formulation and scenario formulation of MHSP, (2)
PLPR is proposed to utilise the special structure of MHSP to potentially reduce computational time
significantly, and (3) the performance of PLPR Benders decomposition, Lagrangean decomposition
is compared and analysed.
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The outline of the paper is as follows: Section 2 first introduces a node formulation of MHSP
and formalises that it can be decomposed by Benders type algorithms. Section 3 provides a scenario
formulation of MHSP, and shows that MHSP can be decomposed by Lagrangean decomposition.
Section 4 proposes the PLPR algorithm. Section 5 presents the stochastic investment planning
model used in the case study. Section 6 reports the computational results and numerical analysis.
Section 7 discusses the implications of the method and results and summaries the limitations of the
research. Section 8 concludes the paper and suggests further research.

2. Benders decomposition

In this section, we first describe a general node formulation of MHSP, and show that it can
be decomposed using Benders decomposition. We then explain that due to the special structure
of MHSP, standard Benders can be directly applied for solving multi-stage stochastic program-
ming. Traditionally, multi-stage stochastic programming is usually solved using nested Benders
decomposition (Birge, 1985).

Figure 1: Illustration of node formulation for MHSP (blue circles: strategic nodes, red squares: operational periods)
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When formulating MHSP using a node formulation, the non-anticipativity constraints are not
expressed explicitly. We denote the strategic decision nodes by i ∈ I, and the set of strategic
decision nodes j that are ancestors to a decision node i by Ii. The Si denotes the set of operational
scenarios that are embedded in strategic node i. The set of operational stages is represented by Ti.
The superscripts indicate the type of nodes that vectors and matrices belong to. The subscripts are
the indices. The xi are the strategic decision variables, and yits are the operational variables. The
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deterministic equivalent of the linear programming MHSP is defined as a full master problem given
by Equations (1).

min
xi,yits

∑
i∈I

πi

c⊤
i xi +

∑
s∈Si

ωis

∑
t∈Ti

q⊤
itsQitsyits

 (1a)

s.t. T I
j xj + W I

i xi ≤ hI
i , i ∈ I \ {1}, j ∈ Ii, (1b)

T 0xi ≤ h0, i = 1, (1c)

T O
itsxi + W O

itsyits ≤ hO
its, i ∈ I, t = 1, s ∈ Si, (1d)

T O
itsyi(t−1)s + W O

itsyits ≤ hO
its, i ∈ I, t ∈ Ti \ {1}, s ∈ Si, (1e)

x ≥ 0, y ≥ 0, (1f)

where x and y include all variables xi and yits, and where πi is the probability of strategic node
i, sum of πi in each strategic stage is equal to 1, ci ∈ Rni , hI

i ∈ Rmi , W I
i ∈ Rmi×ni , are vectors

and matrices at strategic node i ∈ I, and T I
j ∈ Rmi×nj is the matrix for its ancestor nodes j ∈ Ii.

We assume that if i = 1, T I
j = T 0, W I

i = 0, and hI
i = h0. The probability of operational scenario

s that is embedded in strategic node i is denoted by ωis, and ∑
s∈Si

ωis = 1. Operational vectors
and matrices at operational node i, in operational scenario s, operational stage t are given by
T O

its ∈ Rmit×nit , W O
its ∈ Rmit×nit , qits ∈ Rnit , hO

its ∈ Rnit . For operational stage t = 1, we have
T O

i1s ∈ Rmi1×ni . Equations (1) provide a general mathematical formulation for MHSP.
By fixing the complicating variable xi, we can decompose the full size problem using Benders

decomposition. The Benders reduced master problem is as follows,

min
xi

∑
i∈I

πi(c⊤
i xi + βi) (2a)

s.t. T I
j xj + W I

i xi ≤ hI
i , i ∈ I \ {1}, j ∈ Ii, (2b)

T 0xi ≤ h0, i = 1, (2c)

βi ≥ θ + λ⊤(xi − x), (x, θ, λ) ∈ Fi(j−1), i ∈ I, (2d)

x ≥ 0, (2e)

where Constraint (2e) are the projected cuts added to the Benders reduced master problem until
iteration j−1, βi is a variable for the approximated cost of the operational problem that is embedded
in strategic node i. The set of cutting planes associated with subproblem i built up to iteration
j − 1 is denoted by Fi(j−1). The θ collects the optimal objective value of each subproblem i until
iteration j −1. The subgradient w.r.t. xij until iteration j −1 is collected by λ. The sampled points
until iteration j − 1 are denoted by x.

For a given node i, the Benders subproblem is formulated as

min
yits

πi

∑
s∈Si

ωisq⊤
itsQitsyits (3a)
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s.t. T O
itsxi + W O

itsyits ≤ hO
its, i ∈ I, t = 1, s ∈ Si, (3b)

T O
itsyi(t−1)s + W O

itsyits ≤ hO
its, i ∈ I, t ∈ Ti \ {1}, s ∈ Si, (3c)

y ≥ 0, (3d)

and the Benders subproblems can be solved in parallel.
Traditionally, a stochastic linear program with multiple stages is formulated as a multi-stage

stochastic program (Birge & Louveaux, 2011), and then such a problem can be decomposed and
solved using nested Benders decomposition. Here we show that by exploiting the special structure
of MHSP, we can decompose the problem using classic Benders decomposition (Benders, 1962) to
solve multi-stage stochastic programs. In the Benders reduced master problem, we solve for all
strategic nodes, and the operational problems are the Benders subproblems. In addition, if W O

ist is
the same in all nodes, and the operational problem has certain properties, one can improve Benders
decomposition by avoiding solving all operational problems at each iteration, such as the adaptive
Benders decomposition (Mazzi et al., 2020; Zhang et al., 2022). These approaches also utilise the
property of MHSP that Benders subproblems are independent.

The standard Benders decomposition is presented in Algorithm 1.

Algorithm 1 Benders decomposition
1: choose ϵ (convergence tolerance), U∗

0 := +∞ (initial upper bound), j := 0, Fi0 := {(βi0, 0, 0)}
for each i ∈ I;

2: repeat
3: j := j + 1;
4: solve the Benders reduced master problem and obtain βij and xRMP

ij ; L∗
j :=∑

i∈I πi

(
c⊤

i xRMP
ij + βij

)
;

5: for i ∈ I do
6: solve Benders subproblem i at

(
xRMP

ij , ci

)
and obtain θij and λij ;

7: end for
8: U∗

j := min
(
U∗

j−1,
∑

i∈I πi

(
c⊤

i xRMP
ij + θij

))
;

9: for i ∈ I do
10: Fij := Fi(j−1) ∪ {

(
xRMP

ij , θij , λij

)
};

11: end for
12: until U∗

j − L∗
j ≤ ϵ.

Remark 1. The special structure of MHSP enables to the application of standard two-stage Benders
to solve a multi-stage stochastic programming problem.

3. Lagrangean decomposition

MHSP can also be formulated in a scenario based formulation. It can then be decomposed by
Lagrangean decomposition. When the problem is large, Benders decomposition may have a larger
and more ill-conditioned master problem and be hard to converge. In such a case, Lagrangean
decomposition may be preferred.
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3.1. Scenario formulation for MHSP

Figure 2: Illustration of scenario formulation for MHSP (blue circles: strategic nodes, red squares: operational
periods). The blue dashed lines represent the NAC.

scenario 1

scenario 2

scenario 3

scenario 4

Here, we present a scenario formulation for MHSP. We denote the set of strategic stages by
h ∈ H, and the set of strategic scenarios by i ∈ SI . The set of operational scenarios is de-
noted by s ∈ SO

hi, and the set of operational stages is denoted by t ∈ T O
hi . We define set

J := {(h, i, i′) : h ∈ H, i, i′ ∈ SI , i and i′ are indistinguishable in strategic stage h} for formu-
lating the Non-Anticipativity Constraint (NAC). Variables xhi and yhits are the investment and
operational variables respectively. The mathematical formulation of the full size problem is given
as follows,

min
xhi,yhits

∑
i∈I

πi

 ∑
h∈H

c⊤
hixhi +

∑
s∈SO

hi

ωhis

∑
t∈T O

hi

q⊤
hitsQhitsyhits


 (4a)

s.t. T I
(h−1)ix(h−1)i + W I

hixhi ≤ hI
hi, h ∈ H \ {1}, i ∈ SI , (4b)

T 0xhi ≤ h0, h = 1, i ∈ SI , (4c)

T O
hitsxi + W O

hitsyhits ≤ hO
hits, h ∈ H, i ∈ SI , t = 1, s ∈ SO

hi, (4d)

T O
hitsyhi(t−1)s + W O

hitsyhits ≤ hO
hits, h ∈ H, i ∈ SI , t ∈ T O

hi \ {1}, s ∈ SO
hi, (4e)

xhi = xhi′ , (h, i, i′) ∈ J , (4f)

x ≥ 0, y ≥ 0, (4g)

where x and y include all variables xhi and yhits, and where πi is the probability of strategic scenario
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i, sum of πi is equal to 1, chi ∈ Rnhi , hI
hi ∈ Rmhi , W I

i ∈ Rmhi×nhi , are vectors and matrices for
strategic stage h ∈ H, scenario i ∈ SI , and T I

(h−1)i ∈ Rmhi×nhj is the matrix for its previous stage.
We assume that if h = 1, T I

hi = T 0, W I
hi = 0, and hI

hi = h0. The probability of operational scenario
s is denoted by ωhis, and ∑

s∈SO
hi

ωhis = 1. Operational vectors and matrices at operational node
i, in operational scenario s, operational stage t are given by T O

hits ∈ Rmit×nit , W O
hits ∈ Rmhits×nit ,

qhits ∈ Rnit , hO
hits ∈ Rnit . For operational stage t = 1, we have T O

hi1s ∈ Rmi1×ni . Equations
(4) correspond to a general scenario based mathematical formulation for MHSP. Equation (4f) is
the NAC. Note that due to the properties of the MHSP, operational decisions are independent
of future strategic scenarios, and the operational decision variables are embedded in the strategic
node. Therefore, NAC is not needed for operational decisions. We denote the full size scenario
based formulation, Equations (4), by Lagrangean master problem. The NACs, Equation (4f), are
the complicating constraints that link the scenarios.

By relaxing Equation (4f), one can obtain the Lagrangean dual. The problem, given by the
Equations (4), is then decomposed by scenarios. The Lagrangean dual is as follows,

min
xhi,yhits

∑
i∈I

πi

 ∑
h∈H

c⊤
hixhi +

∑
s∈SO

hi

ωhis

∑
t∈T O

hi

q⊤
hitsQhitsyhits)


 −

∑
(h,i,i′)∈J

λ⊤
hii′(xhi − xhi′) (5a)

s.t. T I
(h−1)ix(h−1)i + W I

hixhi ≤ hI
hi, h ∈ H \ {1}, i ∈ SI , (5b)

T 0xhi ≤ h0, h = 1, i ∈ SI , (5c)

T O
hitsxi + W O

hitsyhits ≤ hO
hits, h ∈ H, i ∈ SI , t = 1, s ∈ SO

hi, (5d)

T O
histyhi(t−1)s + W O

hitsyhits ≤ hO
hits, h ∈ H, i ∈ SI , t ∈ T O

hi \ {1}, s ∈ SO
hi, (5e)

x ≥ 0, y ≥ 0, (5f)

where λhii′ is the Lagrangean multiplier. The Lagrangean dual can be solved per scenario i ∈ SI

in parallel. We use the subgradient method to update the Lagrangean multiplier. The Lagrangean
decomposition algorithm is presented in Algorithm 2. For simplifying the notation, we denote the
objective value of each Lagrangean subproblem i at iteration j as θij .

4. PLPR

This section proposes PLPR, where the subproblems are solved in parallel, and describes the
steps that are different from standard Lagrangean decomposition.

First, we use parallel computing when the Lagrangean subproblems are solved. Scenario sub-
problems are equally distributed to the available processes. If the number of scenarios cannot be
divided by the number of processes, some processes will have more scenario subproblems.

Second, we propose a primal reduction step, which is to reduce the size of Equations (4) and
parallelise the solution process. In Lagrangean decomposition, to obtain an upper bound, one needs
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Algorithm 2 Standard Lagrangean decomposition
choose ϵ (convergence tolerance), δ0 ∈ (0, 2] (initial correction term), γ ∈ (0, 1), γ0 ∈ (γ, 1),
γ ∈ (1, +∞), U∗

0 := +∞ (initial upper bound), L∗
0 := −∞ (initial lower bound), j := 0,

λhii′0=0;
repeat

j := j + 1;
for i ∈ SI do

solve the Lagrangean subproblem i, and obtain θij and xhij ;
end for
Lj := ∑

i∈SI θij and L∗
j := max

(
L∗

j−1, Lj

)
;

use bottleneck strategy to construct a feasible x∗
hij ;

xhij := xhij , solve the Lagrangean master problem and obtain Uj ;
U∗

j := min(U∗
j−1, Uj);

if Lj ≤ L∗
j−1 then δj := γθj−1

else if xhij · xhi(j−1) < 0 then δj := γ0θj−1
else δj := γθj−1
end if
for (h, i, i′) ∈ J do

λhii′(j+1) := λhii′j + δj
(U∗

j −L∗
j )

∥xhij−xhi′j∥2
(
xhij − xhi′j

)
;

end for
until U∗

j − L∗
j ≤ ϵ.

to construct a feasible solution from the relaxed solution and solve the original problem, Equations
(4) with that fixed investment solution xhi. When the original problem is large, the full size problem
may still be hard to solve after fixing some variables.

Once the variable xhi is fixed, the investment-related costs can be directly calculated. Fur-
thermore, the operational problems become parallelisable once xhi is fixed. In addition, not all
operational problems need to be solved because once the NAC is restored, some operational prob-
lems become exactly equivalent to each other. Therefore, the number of operational problems that
need to be solved is theoretically reduced to |I|, where I is the set of nodes in the node formulation.

Assuming a feasible strategic solution xhij is given as parameters, the primal problem becomes
a group of independent operational problems. Each problem is indexed by strategic stage h ∈ H
and strategic scenario i ∈ SRI , where SRI is the reduced set of scenarios. For a given problem
h ∈ H, i ∈ SRI , we define the corresponding subproblem as a node subproblem. The formulation of
the node subproblem is given as follows,

min
yhits∈Y

πi

c⊤
hixhi +

∑
s∈SO

hi

ωhis

∑
t∈T O

hi

q⊤
hitsQhitsyhits

 (6a)

s.t. T O
hitsxi + W O

hitsyhits ≤ hO
hits, h ∈ H, i ∈ SI , t = 1, s ∈ SO

hi, (6b)

T O
hitsyhi(t−1)s + W O

hitsyhits ≤ hO
hits, h ∈ H, i ∈ SI , t ∈ T O

hi \ {1}, s ∈ SO
hi, (6c)

y ≥ 0. (6d)

8



A Lagrangean upper bound can be obtained after solving all the node subproblems. Here,
c⊤

hixhi becomes a constant in the objective function. This reduction can produce an exact upper
bound because the structure of MHSP makes the operational problem only depend on its investment
decisions. The computational time can be significantly reduced by reducing the size of the primal
problem and parallelising the solving process. The PLPR is presented in Algorithm 3.

Algorithm 3 PLPR
1: choose ϵ (convergence tolerance), δ0 ∈ (0, 2] (initial correction term), γ ∈ (0, 1), γ0 ∈ (γ, 1),

γ ∈ (1, +∞), U∗
0 := +∞ (initial upper bound), L∗

0 := −∞ (initial lower bound), j := 0,
λhii′0=0;

2: repeat
3: j := j + 1;
4: for i ∈ SI do
5: assign Lagrangean subproblem i to a computer node, solve it, and obtain θij and xhij ;
6: end for
7: use bottleneck strategy to construct a feasible x∗

hij ;
8: Lj := ∑

i∈SI θij and L∗
j := max

(
L∗

j−1, Lj

)
;

9: for h ∈ H, i ∈ SRI do
10: xhij := x∗

hij , assign the node subproblem hi to a computer node and solve it;
11: end for
12: obtain Uj := ∑

i∈I πi
∑

h∈H c⊤
hixhi + ∑

h∈H,i∈SI θSSP
hij ;

13: set U∗
j := min(U∗

j−1, Uj);
14: if Lj ≤ L∗

j−1 then δj := γθj−1
15: else if xhij · xhi(j−1) < 0 then δj := γ0θj−1
16: else δj := γθj−1
17: end if
18: for (h, i, i′) ∈ J do
19: λhii′(j+1) := λhii′j + δj

(U∗
j −L∗

j )
∥xhij−xhi′j∥2

(
xhij − xhi′j

)
;

20: end for
21: until U∗

j − L∗
j ≤ ϵ.

Remark 2. There is no dedicated NAC constraint for operational decision variables in MHSP
because the operational decision variables are embedded in the investment node. This leads to fewer
Lagrangean multipliers and a simpler search for a feasible solution.

5. Mathematical model

This section presents an MHSP model for a power system investment and operational planning
problem adapted from (Zhang et al., 2023, 2022). Here, we focus on how the proposed algorithms
fit the mathematical model. We use the conventions that calligraphic capitalised Roman letters
denote sets, upper case Roman and lower case Greek letters denote parameters, and lower case
Roman letters denote variables. The indices are subscripts, and name extensions are superscripts.
The names of variables, parameters, sets and indices are single symbols.
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5.1. Nomenclature

Investment planning model sets
P set of technologies, p

I set of operational nodes, i

I0 set of investment nodes, i0

Ii set of investment nodes i0 (i0 ∈ I0) ancestor to operational node i (i ∈ I)
H set of investment stages, h

Hh set of all earlier investment stages of stage h (h ∈ H), h

SI set of investment scenarios, i

Operational model sets
N set of time slices, n

T set of hours in all time slices, t

Tn set of hours in time slice n

G set of thermal generators, g

S set of electricity storage, s

R set of renewable generations, r

Investment planning model parameters
CInv

pi/phi unitary investment cost of device p in investment node i/ in stage h scenario i (p ∈
P, i ∈ I0, h ∈ H, i ∈ SI) [€/MW]

CF ix
pi/phi unitary fix operational and maintenance cost of device p in node i/ in stage h scenario

i (p ∈ P, i ∈ I, h ∈ H, i ∈ SI) [€/MW]
XHist

pi/ph historical capacity of device p in investment node i/ in stage h (p ∈ P, i ∈ I, h ∈ H)
[MW]

XMax
p maximum installed capacity of device p (p ∈ P) [MW]

κ scaling effect depending on the number of operation years between investment nodes/
investment stages

δI0
i /δI

i /δH
h discount factor of investment node i (i0 ∈ I0)/ operational node i (i ∈ I)/ stage

(h ∈ H)
πI0

i /πI
i /πSI

i probability of investment node i (i0 ∈ I0)/ operational node i (i ∈ I)/ scenario i

(i ∈ SI)
HP

p life time of technology p (p ∈ P)
xi right hand side coefficients of the Benders operational subproblem
ci cost coefficients of the Benders operational subproblem
µE

i/hi CO2 budget at operational node i/ in stage h scenario i (i ∈ I, h ∈ H, i ∈ SI)
µDP

i/hi scaling factor on power demand at operational node i/ in stage h scenario i (i ∈ I, h ∈
H, i ∈ SI)

IL
i planning stage of a node i (i ∈ I ∪ I0)

CCO2
i/hi CO2 emission price at operational node i/ in stage h scenario i (i ∈ I, h ∈ H, i ∈ SI)

Operational model parameters
Wt probability multiplied weight of operation period t (t ∈ T )
Ht number of hour(s) in one operational period t (t ∈ T )
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αG
g maximum ramp rate of gas turbines (g ∈ G) [MW/MW]

RR
rt capacity factor of renewable unit r in period t (r ∈ R, t ∈ T )

ηSE
s efficiency of electricity store s (s ∈ S)

EG
g emission factor of gas turbine g (g ∈ G) [tonne/MWh]

CG
g /CSE

s total operational cost of a generator g/ a storage facility s (g ∈ G/ s ∈ S) [€/MW]
CShedP load shed penalty cost [€/MWh]
P DP

t power demand in period t (z ∈ Z, t ∈ T ) [MW]
Investment planning model variables
cOP E

i estimated operational cost in operational node i (i ∈ I) (€)
xAcc

pi/phi accumulated capacity of device p in operational node i/ in stage h scenario i (p ∈ P, i ∈
I, h ∈ H, i ∈ SI) [MW]

xInst
pi/phi newly invested capacity of device p in investment node i0/ in stage h scenario i (p ∈

P, i ∈ I0, h ∈ H, i ∈ SI) [MW]
cINV total expected investment cost (€)
Operational model variables
pAccG

gi accumulated capacity of gas turbine g in operational node i (g ∈ G, i ∈ I) [MW]
pAccR

ri accumulated capacity of renewable unit r in operational node i (r ∈ R, i ∈ I) [MW]
pAccSE

si accumulated charging/discharging capacity of electricity store s in operational node i

(s ∈ S, i ∈ I) [MW]
pG

git/ghit power generation of gas turbine g in operational node i in period t/ in stage h scenario
i period t (g ∈ G, i ∈ I, h ∈ H, i ∈ SI , t ∈ T ) [MW]

pSE+
sit/shit charge power of electricity store s in operational node i/ in stage h scenario i period t

(s ∈ S, i ∈ I, h ∈ H, i ∈ SI , t ∈ T ) [MW]
pSE−

sit/shit discharge power of electricity store s in operational node i/ stage h scenario i in period
t(s ∈ S, i ∈ I, h ∈ H, i ∈ SI , t ∈ T ) [MW]

pGShedP
it/hit generation shed in operational node i/ in stage h scenario i period t (i ∈ I, h ∈ H, i ∈

SI , t ∈ T ) [MW]
qSE

sit/shit energy level of electricity store s in operational node i/ in stage h scenario i at the
start of period t (s ∈ S, i ∈ I, h ∈ H, i ∈ SI , t ∈ T ) [MWh]

pShedP
it/hit load shed in operational node i/ in stage h scenario i in period t (i ∈ I, h ∈ H, i ∈

SI , t ∈ T ) [MW]

5.2. Investment planning model (Benders master problem)

min cINV + κ
∑
i∈I

πI
i cOP E

i (7a)

s.t. cINV =
∑
i∈I0

δI0
i πI0

i

∑
p∈P

CInv
pi xInst

pi + κ
∑
i∈I

δI
i πI

i

∑
p∈P

CF ix
pi xAcc

pi (7b)

xAcc
pi = XHist

pi +
∑

i0∈Ii|κ(IL
i −IL

i0
)≤HP

p

xInst
pi , p ∈ P, i ∈ I, (7c)
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xAcc
pi ≤ XMax

p , p ∈ P, i ∈ I, (7d)

cOP E
i ≥ θ + λ⊤(xi − x) (x, θ, λ) ∈ Fi(j−1), i ∈ I, (7e)

xInst
pi , xAcc

pi ∈ R+
0 . (7f)

The total cost for investment planning, Equation (7a), consists of actual discounted invest-
ment costs and discounted fixed operating and maintenance costs cINV , as well as the expected
operational cost of the system over the time horizon κ

∑
i∈I πI

i cOP E . Here, κ is a scaling factor
that depends on the time step between two successive investment nodes. Constraint (7c) states
that the accumulated capacity of a technology xAcc

pi in an operational node equals the sum of
the historical capacity XHist

p and newly invested capacities xInst
pi in its ancestor investment nodes

Ii. The parameter XMax
p denotes the maximum accumulated capacity of technologies. We define

xi =
(
{xAcc

pi , p ∈ P}, µDP
i , µE

i

)
, i ∈ I that collects all right hand side coefficients, and will be fixed

in the Benders subproblem (8) through vector xi. Also, ci =
(
CCO2

i

)
, i ∈ I collects all the cost

coefficients into vector ci. The investment planning model Equations (7) corresponds to the Benders
reduced master problem Equations (2).

5.3. Operational model (Benders subproblem)
We now compute the operational cost cOP E(xi, ci) at one operational node i ∈ I by solving

Benders subproblem (8) given the decisions xi and ci determined in the master problem (7).

min
∑
t∈T

WtHt

∑
g∈G

CG
g pG

git +
∑
s∈S

CSE
s pSE+

sit + CShedP pShedP
it

 (8a)

s.t. pG
git ≤ pAccG

gi , g ∈ G, t ∈ T , (8b)

pSE+
sit ≤ pAccSE

si , s ∈ S, t ∈ T , (8c)

pSE−
sit ≤ pAccSE

si , s ∈ S, t ∈ T , (8d)

qSE
sit ≤ γSE

s pAccSE
si , s ∈ S, t ∈ T , (8e)

− αG
g pAccG

gi ≤ pG
git − pG

gi(t−1) ≤ αG
g pAccG

gi , g ∈ G, n ∈ N , t ∈ Tn, (8f)∑
g∈G

pG
git +

∑
s∈S

pSE−
sit +

∑
r∈R

RR
ritp

Acc
r + pShedP

it =

µDP
i P DP

t +
∑

s∈Sz

pSE+
sit + pGShedP

zit , t ∈ T , (8g)

qSE
si(t+1) = qSE

sit + Ht(ηSE
s pSE+

sit − pSE−
sit ), s ∈ S, n ∈ N , t ∈ Tn, (8h)∑

t∈T

∑
g∈G

WtHtE
G
g pG

git ≤ µE
i , (8i)

pG
git, pAccG

gi , pShedP
it , pSE+

sit , pSE−
sit , pAccSE

si , qSE
sit , pAccR

ri , pGShedP
it ∈ R+

0 . (8j)

The operational subproblem corresponds to Benders subproblem Equations (3). The operational
cost includes total operating costs of all generators and storage facilities CG

g pG
gt + CS

s pSE+
sit and load

shedding costs CShedP pShedP
it . The parameters CG

g and CSE
s include the variable operational cost
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of generators and storage. For thermal generators, CG
g also includes the fuel cost and the CO2

tax charged for the emissions of generators. Constraint (8f) captures how fast thermal generators
can ramp up or down their power output, respectively. The parameter αG

g is the maximum ramp
rate of thermal generators. The power balance, Constraint (8g), ensures that in one operational
period t, the sum of total power generation of thermal generators pG

git, power discharged from all
the electricity storage pSE−

sit , renewable generation RR
t pAccR

ri , and load shed pShedP
it equals the sum of

power demand µDP
i P DP

t , and power generation shed pGShedP
it . The parameter RR

rt is the capacity
factor of a renewable unit that is a fraction of the nameplate capacity pAccR

i . Constraint (8h)
states that the state of charge qSE

sit in period t + 1 depends on the previous state of charge qSE
sit ,

the charged power pSE+
sit and discharged power pSE−

sit . The parameter ηSE
s represent the charging

efficiency. Constraint (8i) limits the total emission. The parameter Ht is the length of the period t.
The symbol EG

g is the emission factor per unit of power generated. The capacities pAccG
gi , pAccSE

si ,
scaling factor of demand µDP

i and CO2 budget µE
i are passed from the master problem (7) via

vector xi and CO2 tax that is included in cost coefficient CG
g is passed from master problem (7) via

vector ci.

5.4. Lagrangean subproblem
In Lagrangean decomposition, the subproblem corresponds to each scenario without the NAC

constraint. Unlike Benders decomposition, which projects the operational decision onto the in-
vestment space, the Lagrangean subproblem keeps a copy of a part of the original problem. The
Lagrangean subproblem for scenario i ∈ SI is as follows:

min
∑
h∈H

δH
h πSI

i

∑
p∈P

(
CInv

phi xInst
pi + κCF ix

phi xAcc
phi

)
+

κ
∑
t∈T

WtHt

∑
g∈G

CG
g pG

ghit +
∑
s∈S

CSE
s pSE+

shit + CShedP pShedP
hit

 +
∑
p∈P

∑
h∈H

λphix
Inst
phi (9a)

s.t. xAcc
phi = XHist

phi +
∑

h0∈Hh|κ(h−h0)≤HP
p

xInst
phi , p ∈ P, h ∈ H, i ∈ SI , (9b)

xAcc
phi ≤ XMax

p , p ∈ P, h ∈ H, (9c)

pG
ghit ≤ xAcc

ghi , g ∈ G, h ∈ H, t ∈ T , (9d)

pSE+
shit ≤ xAcc

shi , s ∈ S, h ∈ H, t ∈ T , (9e)

pSE−
shit ≤ xAc

shi, s ∈ S, h ∈ H, t ∈ T , (9f)

qSE
shit ≤ γSE

s xAcc
shi , s ∈ S, h ∈ H, t ∈ T , (9g)

− αG
g pAccG

ghi ≤ pG
ghit − pG

ghi(t−1) ≤ αG
g pAccG

ghi , g ∈ G, h ∈ H, n ∈ N , t ∈ Tn, (9h)∑
g∈G

pG
ghit +

∑
s∈S

pSE−
shit +

∑
r∈R

RR
rtp

Acc
rhi + pShedP

hit =

µDP
hi P DP

t +
∑
s∈S

pSE+
shit + pGShedP

hit , h ∈ H, t ∈ T , (9i)

qSE
shi(t+1) = qSE

shit + Ht(ηSE
s pSE+

shit − pSE−
shit ), s ∈ S, h ∈ H, n ∈ N , t ∈ Tn, (9j)
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∑
t∈T

∑
g∈G

WtHtE
G
g pG

ghit ≤ µE
hi, h ∈ H, (9k)

xInst
phti , xAcc

phi , pG
ghit, pShedP

hit , pSE+
shit , pSE−

shit , qSE
shit, pGShedP

hit ∈ R+
0 . (9l)

Equations (9) correspond to the Lagrangean dual Equations (5). The objective function of the
Lagrangean subproblem consists of the total investment and operational costs in all stages in scenario
i, and the penalty term ∑

p∈P
∑

h∈H λphix
Inst
phi for the deviation from the NAC constraint, where λphi

are the Lagrangean multipliers. The investment-related constraints Equations (9b)-(9c) are similar
to Equations (7c)-(7d) in the Benders reduced master problem. Also, the operational constraints
Equations (9d)-(9k) are similar to Equations (8b)-(8i) in the Benders subproblem. Therefore, we
omit to explain all the constraints here.

The Lagrangean master problem in standard Lagrangean decomposition is simply the original
full size problem Equations (4) with fixed investment decisions xhi.

5.5. Lagrangean node subproblem

min κ
∑
t∈T

WtHt

∑
g∈G

CG
g pG

ghit +
∑
s∈S

CSE
s pSE+

shit + CShedP pShedP
hit

 (10a)

s.t. pG
ghit ≤ pAcc

ghi , g ∈ G, h ∈ H, t ∈ T , (10b)

pSE+
shit ≤ pAcc

shi , s ∈ S, h ∈ H, t ∈ T , (10c)

pSE−
shit ≤ pAcc

shi , s ∈ S, h ∈ H, t ∈ T , (10d)

qSE
shit ≤ γSE

s pAcc
shi , s ∈ S, h ∈ H, t ∈ T , (10e)

− αG
g pAccG

ghi ≤ pG
ghit − pG

ghi(t−1) ≤ αG
g pAccG

ghi , g ∈ G, h ∈ H, n ∈ N , t ∈ Tn, (10f)∑
g∈G

pG
ghit +

∑
s∈S

pSE−
shit +

∑
r∈R

RR
rtp

Acc
rhi + pShedP

hit =

µDP
hi P DP

t +
∑

s∈Sz

pSE+
shit + pGShedP

hit , h ∈ H, t ∈ T , (10g)

qSE
shi(t+1) = qSE

shit + Ht(ηSE
s pSE+

shit − pSE−
shit ), s ∈ S, h ∈ H, n ∈ N , t ∈ Tn, (10h)∑

t∈T

∑
g∈G

WtHtE
G
g pG

ghit ≤ µE
hi, h ∈ H, (10i)

xInst
phti , xAcc

phi , pG
ghit, pShedP

zhit , pSE+
shit , pSE−

shit , qSE
shit, pGShedP

hit ∈ R+
0 . (10j)

The Lagrangean node subproblem corresponds to the node subproblem Equations (6) in the
general formulation of the PLPR. The Lagrangean node subproblem is similar to the Benders
subproblem. Once a feasible investment solution is obtained, the investment-related costs can be
directly calculated. Then a series of Lagrangean node subproblems are solved in parallel to obtain
the total operational costs. Eventually, an upper bound can be calculated.
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6. Results

In this section, we provide the case study and the computational results. We use the REORIENT
model (Zhang et al., 2023) to solve a single region investment planning problem, and apply standard
Benders, standard Lagrangean and PLPR to solve the problem instances. The performance of the
methods is compared.

6.1. Case study

In the case study, we use the model to solve a UK power system expansion problem. The data
can be found in (Zhang et al., 2023, 2022). We implemented the algorithms and model in Julia 1.8.2
using JuMP (Dunning et al., 2017), and solved with Gurobi (Gurobi Optimization, LLC, 2022).
We ran the code on a computer cluster (25 computer nodes) with a 2x 3.6GHz 8 core Intel Xeon
Gold 6244 CPU and 384 GB of RAM, running on CentOS Linux 7.9.2009. The cluster was shared
by other users and had no resource allocation and queuing systems. Therefore, solution times may
have been affected by interfering traffic during program executions.

6.1.1. Computational results
An overview of the case study tested in this paper is presented in Table 1. The different

cases vary in the number of investment stages, long-term uncertainty, operational scenarios, and
representative hours in the operational problem.

Table 1: Overview of the cases used in the computational study.

Operational periods Short-term Long-term Number of decision nodes Problem size (undecomposed)
per short-term scenario scenarios scenarios Present In 5 years In 10 years Total Variables Constraints

Case 1 168 4 9 1 3 9 13 1.7 × 105 5.0 × 105

Case 2 720 4 9 1 3 9 13 7.3 × 105 2.1 × 106

Case 3 720 8 9 1 3 9 13 1.5 × 106 4.3 × 106

Case 4 2190 4 9 1 3 9 13 2.2 × 106 6.5 × 106

Case 5 168 4 25 1 5 25 31 4.7 × 105 1.4 × 106

Case 6 720 4 25 1 5 25 31 1.6 × 106 4.8 × 106

Case 7 720 8 25 1 5 25 31 4.0 × 106 1.2 × 107

Case 8 2190 4 25 1 5 25 31 6.1 × 106 1.8 × 107

Table 2: Comparative results for standard Benders, standard Lagrangean, and PLPR.

Standard Benders Standard Lagrangean PLPR
Iters Time (s) Iters Time (s) Iters Time (s)

Case 1 8 10 9 81 8 6
Case 2 9 91 18 1408 8 75
Case 3 9 268 - - 3 80
Case 4 9 496 - - 2 54
Case 5 8 25 - - 16 11
Case 6 9 144 - - 5 107
Case 7 9 728 - - 6 149
Case 8 9 1484 - - 5 281
-: the algorithm cannot solve the test instance in a reasonable amount of time.
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The computational time is reported in Table 2. We can see that standard Lagrangean decompo-
sition is much worse than standard Benders decomposition and PLPR. This is because, in standard
Lagrangean, both the Lagrangean subproblems and the Lagrangean master problem are solved in
series. In addition, the original full size problem after fixing investment decisions is still large to
solve. A full size problem is solved at each iteration, which leads to poor performance. This suggests
that for MHSP, standard Lagrangean decomposition without parallel computing is not a suitable
approach. However, standard Benders performs well and in some cases outperforms the full space
problem with Gurobi. The proposed PLPR yields the best performance across all test instances.
This is because the Lagrangean subproblem is solved in parallel, so the computational time almost
does not increase with the number of scenarios given enough computer nodes. The value of PLPR
is more significant for larger instances. A drawback of Lagrangean decomposition and PLPR is
that their convergence is highly dependent on the adjustment of step sizes. Extensive tests have
been conducted to find suitable parameters for the adjustment. In contrast, Benders decomposition
requires no effort in choosing parameters, which makes it more robust.

We note that Lagrangean decomposition has smaller gaps obtained in the initial iterations
than Benders decomposition. This is because Benders decomposition requires a sufficiently large
number of cutting planes to approximate accurately the objective function, whereas Lagrangean
decomposition only needs to find the optimal multipliers. This would suggest that Lagrangean
may be the preferred method if the underlying problem does not have to be solved to a very tight
tolerance. This may be the case when dealing with huge investment planning problems where a
very tight convergence tolerance is not meaningful.

An analysis of computational times is presented in Table 3. We can see that as the number
of scenarios increases, the time spent on solving scenario subproblems increases significantly in
standard Lagrangean decomposition compared with PLPR. In addition, due to the primal reduction
in PLPR and parallel computing, the time spent on solving the primal problem is much less in PLPR
than in standard Lagrangean decomposition.

Table 3: Comparative analysis of the computational time (in seconds) of standard Lagrangean and PLPR.

Dual problem | Primal problem | Multiplier update
SL PLPR SL PLPR SL PLPR

Case 1 59.1 4.2 21.8 4.5 0.1 0.2
Case 2 933.3 51.2 475.5 23.4 0.2 0.4
Case 3 - 47.7 - 31.8 - 0.4
Case 4 - 33.7 - 19.9 - 0.4
Case 5 - 5.3 - 5.4 - 0.3
Case 6 - 82.9 - 23.5 - 0.6
Case 7 - 88.1 - 60.5 - 0.5
Case 8 - 191.6 - 98.9 - 0.5
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6.1.2. Power system investment decisions
This section presents the optimal investment decisions in the first stage for Cases 1-8. We can see

from Table 4 that by including operational uncertainty, the investment decisions are considerably
different. The differences in long-term and short-term uncertainty in Cases 1-8 are presented in Table
1. Cases 1-4 only differ in operational uncertainty, we can see from Table 4 that the investments in
CoalCCS and OnWind are significantly different. It is the same case for Cases 5-8. Cases 1 and 5
differ only in long-term uncertainty, we can see that the investment in OnWind in Case 1 is 79.83
GW compared with 76.63 GW in Case 5. The difference can also be observed by comparing Cases
2 and 6, Cases 3 and 7, and Cases 4 and 8. From this, we can see that both long-term and short-
term uncertainty can affect investment decisions significantly. This shows the value of including
short-term and long-term uncertainty in a long-term stochastic investment planning problem.

Table 4: Investment decisions in the first stage in the cases.

New installed capacity (GW)
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Coal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CoalCCS 11.70 10.17 8.77 9.48 11.68 8.33 8.76 9.29
OCGT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CCGT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diesel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Nuclear 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
PHES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lithium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OnWind 79.83 69.50 77.97 93.97 76.63 72.68 77.02 92.37
OffWind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PvSolar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. Discussion

In this paper, we have proposed the PLPR (Parallel Lagrangean decomposition with primal
reduction) algorithm, and formalised Benders decomposition and Lagrangean decomposition for
MHSP. We tested the proposed methods on a UK power system expansion problem using the
REORIENT model.

Through computational tests, we found that PLPR is a very efficient decomposition method for
MHSP that utilises the scenario structure of the MHSP. The computational time does not scale
much as the problem instance grows due to the use of parallel computing. Despite parallel com-
puting and primal reduction, PLPR inherits the advantages and the disadvantages of Lagrangean
decomposition.

We found that Lagrangean decomposition can obtain a good convergence gap in the initial
iterations. However, one limitation of Lagrangean type decomposition is that it is sensitive to
parameter tuning. Although MHSP reduces the number of multipliers, finding good ones can still
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be hard. In addition, we notice that Lagrangean decomposition requires substantially more memory
than Benders decomposition. Lagrangean decomposition duplicates the variables, which leads to
a larger model size. However, Lagrangean decomposition can solve more classes of problems such
as the ones with integer operational variables, which were not addressed in this paper. Benders
decomposition can only solve linear programming or mixed-integer linear programming with integer
variables in the reduced master problem.

Benders decomposition is more robust than Lagrangean decomposition because its convergence
does not depend on parameter tuning. However, the drawback of Benders decomposition is that
once the scenario tree is large, the master problem may become harder to solve. This is because a
standard two-stage Benders solves a multi-stage stochastic program. Therefore, the reduced master
problem includes all investment nodes. Once there are a number of investment nodes, or there
are integer variables in the reduced master problem, the speed of Benders decomposition may be
affected significantly.

For very large problems, combining Lagrangean decomposition with Benders decomposition may
be beneficial. For example, use Benders decomposition to solve the Lagrangean subproblem. It is
also possible to utilise adaptive oracles (Mazzi et al., 2020) in Lagrangean decomposition.

8. Conclusions and future work

In this paper, we first proposed, formalised and compared decomposition algorithms for linear
programming MHSP. We formalised the node and scenario based formulations of MHSP. Decompo-
sition methods including standard Benders, standard Lagrangean and PLPR were proposed based
on the special structure of MHSP. Some properties based on the structure of MHSP were presented.
By comparing Benders decomposition and Lagrangean decomposition, we found that: (1) PLPR
outperforms the other algorithms across all test instances and is up to 9.2 times faster than Benders
decomposition for a 1% convergence tolerance; (2) standard Lagrangean is not an efficient method
for MHSP; (3) Benders decomposition is more robust in terms of parameter tuning. The choice of
algorithms for MHSP was discussed based on the computational tests.

This is the first paper that has systematically studied decomposition methods for MHSP. Future
work may include (1) developing algorithms that further exploit the special structure of MHSP, such
as Benders decomposition with cut sharing or combined Lagrangean decomposition and Benders
decomposition algorithm, and (2) extending the algorithm to solve mixed integer linear programming
MHSP.
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