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Abstract

Design space definition is one of the key parts in pharmaceutical research and development. In 

this article, we propose a novel solution strategy to explicitly describe the design space without 

recourse decisions. First, to smooth the boundary, the Kreisselmeier-Steinhauser (KS) function 

is applied to aggregate all inequality constraints. Next, for creating a surrogate polynomial 

model of the KS function, we focus on finding sampling points on the boundary of KS space. 

After performing Latin hypercube sampling (LHS), two methods are presented to efficiently 

expand the boundary points, i.e., line projection to the boundary through any two feasible LHS 

points and perturbation around the adaptive sampling points. Finally, a symbolic computation 

method, cylindrical algebraic decomposition, is applied to transform the surrogate model into 

a series of explicit and triangular subsystems, which can be converted to describe the KS space. 

Two case studies show the efficiency of the proposed algorithm.

Keywords: process design; design space; adaptive sampling; symbolic computation; cylindrical 

algebraic decomposition
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1. Introduction

In the pharmaceutical industry, process parameters1 correspond to degrees of freedom or 

variables that can be manipulated in the operation of a manufacturing process, and which can 

be measured and set within the controller tolerance for a desired value. Design space is defined 

as “multidimensional combination and interaction of input variables and process parameters 

that have been demonstrated to provide assurance of quality”2. In other words, Product quality 

is maintained as long as the process parameters are controlled within the design space.

Early approaches to identify the design space were solely based on experiments and empirical 

functions3. By performing extensive experiments, the relationships of process parameters and 

critical quality attributes (CQAs) can be built through regression and the process parameters 

that have medium/high impacts on the CQAs can be determined. The design space is visualized 

by response surface modeling and further verified by additional experiments4. This method 

requires extensive experiments, and it is very time-consuming and expensive. To lower the 

cost of developing design spaces, mechanistic models that contain relationships of process 

parameters and CQAs can be formulated in advance and parametrized with less data. Goyal 

and Ierapetritou5 proposed an approach based on outer-approximation to identify the operating 

envelopes where process operation is feasible, safe, and profitable. In addition, in order to 

address the computationally expensive models, the surrogate-based methods are then proposed. 

Rogers and Ierapetritou6,7 applied Kriging as the surrogate models to approximate the original 

functions and identify the design spaces with limited samplings. Compared with the kriging 

surrogate models, Wang and Ierapetritou8 used RBF surrogate models. Metta et al.9 proposed 

to use an artificial neural network to create the surrogate models for addressing problems that 

are computationally expensive or do not have constraints in closed form.

Moreover, optimization approaches based on mechanistic models have been extensively 

studied to describe the design space10,11. Characterizing a design space for a process design 
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model is analogous to the flexibility index problem in the chemical industry12,13,14. The 

flexibility index is used to describe an operational range, which represents a maximum scaled 

departure of all process parameters from the given nominal conditions. It is worth stating that 

“design space” and “feasible space” are interchangeably used in the pharmaceutical industry. 

Generally, it is not easy to accurately describe the boundary of the real design space because 

of the high nonlinearity. The flexibility index can approximate the design space by a largest 

inscribed subspace with a specific shape, which may be a rectangle, ellipse, or other shapes. 

Because we are only concerned with this subspace, for simplicity, this subspace is denoted as 

“design space” in this paper. When approximating it as a rectangle, the vertex direction search 

method13 can be employed to find the flexibility index, which is rigorous for convex regions. 

To avoid the convexity assumption, Grossmann and Floudas15 developed an active constraint 

strategy, where the two-level optimization formulation for the flexibility index problem can be 

reformulated as a mixed-integer linear or nonlinear programming model by applying the KKT 

conditions to the inner optimization problem. In addition, Pulsipher and Zavala16 proposed to 

use an ellipsoidal set to capture correlations of process parameters, as well as a mixed-integer 

conic programming formulation to compute the flexibility index. A number of approaches are 

proposed to quantify system flexibility, and an extensive review is provided by Grossmann et 

al. 17 If the nominal conditions of the process parameters are unknown, the flexibility index 

problem can be extended to the design centering problem18, which focuses on determining the 

nominal conditions that maximize the size of the design space. From a mathematical view, the 

design centering problem is a generalized semi-infinite programming problem19,20. Flexibility 

index and design centering are two complementary ways for estimating a candidate design 

space, which have been widely studied in recent decades; however, both methods need to 

specify the shape of design space in advance, which is quite hard to reflect the reality of the 

feasible region, especially for nonconvex cases.
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In the absence of models capable of efficiently probing the fullest extent of the feasible region, 

design spaces were obligated to be defined with an assumption of shape to be probed 

experimentally. With a robust model, there is no reason to make the shape assumption because 

we can effectively probe the boundaries to the extent of the feasible region. The challenge is 

thus computing and defining that boundary. Zhao and Chen21 first proposed representing the 

design model as an existential quantifier formula and applied the cylindrical algebraic 

decomposition (CAD) method22 to accurately describe the design space and explicitly express 

the relationships between uncertain parameters. The CAD method can provide a complete 

description of the design space (in this case, the design space is identical to the feasible region), 

and the triangular structure makes possible the explicit algebraic representation of the bounds 

of each process parameter. The method is suitable for convex and nonconvex systems described 

by polynomials. Zhao et al.23 proposed a space projection method based on the CAD method 

to deal with flexibility index problems. Due to the heavy computational burden of the CAD 

method, the above methods are only applicable to relatively small‐scale problems. For high-

dimensional systems consisting of a large number of equalities and limited inequalities, Zheng 

et al.24 proposed to build a surrogate model to correlate the inequality constraints based on an 

initial sample set. The design space is explicitly expressed via the CAD method, and the 

boundary can be checked to iteratively refine the CAD results. However, if the design space 

has a severely irregular shape, the computational burden of the CAD method will be very high. 

Moreover, since it is not appropriate to reduce process parameters, the number of inequality 

constraints becomes another key factor of the computational complexity.

In this work, we propose a novel design space description method based on efficient adaptive 

sampling and symbolic computation, and in which no recourse is considered for the realization 

of the parameters. The proposed method not only can eliminate all the equality constraints and 

state variables, but also significantly reduce the sampling burden, and decrease the number of 
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inequality constraints to one. In addition, there is a tradeoff between the complexity of the CAD 

method and the accuracy of design space description. The rest of this article is organized as 

follows. Sections 2 provides problem statements including the research framework. Section 3 

defines the design space based on the Kreisselmeier-Steinhauser (KS) function. Section 4 

illustrates the main steps of the CAD method. Section 5 provides an adaptive sampling strategy 

to find the explicit expression of the design space. Two case studies are provided in Section 6 

to illustrate the proposed methods. Section 7 discusses the key characteristics of the proposed 

method. Section 8 concludes the paper.

2. Problem statement

An ultimate goal of the design space definition problem is to accurately and explicitly describe 

the design space, regardless of whether it is a convex and nonconvex space. For a given design 

model with no recourse12, the feasibility of the model can be described as:

∀𝜽 ∈ 𝐷𝑆(𝜽){∀𝑗 ∈ 𝐽[𝑔𝑗(𝜽,𝒙) ≤ 0], ∀𝑖 ∈ 𝐼[ℎ𝑖(𝜽,𝒙) = 0]} (1)

where  and  are process parameters and state variables, respectively. Equation (1) states that  𝜽 𝒙

for any possible realization of process parameters in the design space, denoted as , all 𝐷𝑆(𝜽)

the individual constraints should be satisfied. In other words,  can also be defined as𝐷𝑆(𝜽)

𝐷𝑆(𝜽)≔{𝜽 ∈ ℝ𝑃|[𝑔𝑗(𝜽,𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽 ∧
ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼⋀
𝜽𝐿 ≤ 𝜽 ≤ 𝜽𝑈 ]} (2)

 represents the entire feasible region of process parameters. It is generally difficult to 𝐷𝑆(𝜽)

describe it analytically because of the nonlinearities of the design model. Based on previous 

work21, the CAD method can equivalently transform an inequality system to a triangular system, 

and the upper and lower bounds of each process parameter can be expressed explicitly. For 

high-dimensional cases, the equations and state variables can be eliminated through surrogate 

models for the inequality constraints24, which can reduce the computational burden of the CAD 

method. Since it needs to sample points over the whole design space, this method must sample 
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enough points and take many iterations to accurately capture the profile of the design space.

Figure 1. Conceptual computational framework.

In order to further ease the computational burden of the CAD method and improve the 

efficiency of adaptive sampling and surrogate modeling, a novel solution strategy is proposed 

in this work to explicitly describe the design space. The research framework is shown in Figure 

1, which can be interpreted as follows.

(1) For a given design model, the KS function can aggregate all inequality constraints, and then 

an underestimate of the desired design space, denoted as KS space, can be described by a 

single inequality constraint. The boundary of the KS space is continuously differentiable.

(2) The KS function is a transcendental function. To be able to process the KS function with 

the CAD method, an adaptive sampling strategy is proposed to create a polynomial 

surrogate model of the KS function. Two methods are presented to efficiently expand the 

boundary points of the KS space. i.e., line projection points through any two feasible LHS 

points, and perturbation boundary points around the adaptive sampling points. The cross-

validation method is applied to evaluate the stopping criteria of the adaptive sampling.

(3) The CAD method is applied to triangulate the polynomial surrogate model. A simple 
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checking rule is applied to evaluate the feasibility of the CAD result. 

Based on the above conceptual computational framework, we can point out two motivations:

(1) The complexity of the original CAD method25 is formulated as

𝑂(𝑑1
22n + 8𝑚2𝑛 + 6) (3)

which indicates that the complexity grows doubly exponentially with the number of variables 

n; d1 is the maximum degree in any one variable in the original model; m is the number of 

polynomials. After applying the KS function to aggregate all inequality constraints and create 

its polynomial surrogate model, the complexity can be reduced to Equation (4),

𝑂(𝑑2
22n + 8) (4)

where m has been reduced to one; d2 is the maximum degree in any one variable in the surrogate 

model. While still doubly exponential in the number of variables, if the fitted degree, d2, is not 

too large, the complexity is acceptable; thus, there is a tradeoff between the complexity of the 

CAD method and the accuracy of design space description.

(2) According to Equation (2), the equalities are used to represent the process model, and the 

state variables have the same dimension as equality constraints, i.e., dim(x) = |I|. Once the 

value of  is specified, we can run the simulation and obtain the results of x. The inequality 𝜽

constraints define the quality requirements of the process design problems. If we sample 

the points in the space of , the results of x in the equalities can be used to evaluate the 𝜽

inequality constraints. Thus, in this work, all the equality constraints and state variables can 

be eliminated when generating the surrogate model of the KS function. Moreover, since 

the KS space must be contained within the original design space, we only need to focus on 

finding the points on the boundary of the KS space. The intention is to locate as many 

boundary points as possible, which can significantly reduce the sampling burden.

In summary, approximating the design space by the KS space, the proposed method can ease 

the sampling burden of surrogate modeling, reduce the computational expense of the CAD 
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method, and the assumptions for the shape of design space are not required.

3. Design space approximation through KS function

The KS function was first proposed by G. Kreisselmeier and R. Steinhauser26, which was 

initially presented for controller design. In the last two decades, the KS function has been 

widely used in constraint aggregation methods for gradient-based optimization, e.g., chemical 

process design27, as well as problems involving local stress constraints, e.g., aircraft design28,29.

The KS function shown in Equation (5) can aggregate a set of inequality constraints into a 

single function, and it only contains one parameter ρ.

𝐾𝑆(𝜽,𝜌) =
1
𝜌ln [ 𝐽

∑
𝑗

𝑒𝜌 ∙ 𝑔𝑗(𝜽)] ≤ 0 (5)

where  are inequality constraints, . The KS function produces an envelope 𝑔𝑗(𝜽) ≤ 0 𝑗 ∈ 𝐽

surface that is continuous and represents a conservative estimate of the feasible region for a set 

of constraints.  is an aggregation parameter defined by the user, which can control how 𝜌 > 0

close the envelope is to the original constraints. In the following nonlinear and nonconvex 

example, the KS function as a constraint aggregation method, and the effect of increasing  for 𝜌

inequality constraints, can be visualized. 

An illustrative example

Consider the inequalities,

𝑔1:(𝜃2 ― 2)2 + (𝜃1 ― 2)3 + (𝜃2 ― 2)(𝜃1 ― 2) ― 0.5 ≤ 0
𝑔2:(𝜃2 ― 2)2 + (𝜃1 ― 2)2 ― 2 ≤ 0
𝑔3:𝜃1 ― 4 ≤ 0
𝑔4: ―𝜃1 ≤ 0
𝑔5:𝜃2 ― 4 ≤ 0
𝑔6: ― 𝜃2 ≤ 0

(6)

For the design space definition problem,  and  are regarded as the process parameters. The 𝜃1 𝜃2

feasible region of these inequality constraints, which can be denoted as a complete design space, 

is depicted by the yellow region shown in Figure 2(a). According to Equation (5), the KS 
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function of ,…,  is formulated as 𝑔1 𝑔6

𝐾𝑆(𝜽,𝜌) =
1
𝜌ln [𝑒𝜌 ∙ 𝑔1 + 𝑒𝜌 ∙ 𝑔2 + 𝑒𝜌 ∙ 𝑔3 + 𝑒𝜌 ∙ 𝑔4 + 𝑒𝜌 ∙ 𝑔5 + 𝑒𝜌 ∙ 𝑔6] (7)

which generates an underestimate profile of the design space after fixing . As  increases, the 𝜌 𝜌

profile depicted by the KS function can approach in the limit the true profile of the feasible 

region. As shown in Figure 2(b), when  = 5, the profile of the KS function is continuous and 𝜌

almost coincides with the real boundary of the feasible region. However, the profile for  = 2 𝜌

is smoother, although less accurate. 

   

(a)                                                                     (b)

Figure 2. Feasible region of the example and profiles of KS function with increasing .𝜌

The KS function can be applied to approximate the design space. Hence, the problem of 

approximately describing a design space can be transformed into describing the corresponding 

KS space. The major motivations for using the KS function can be stated as follows:

(1) The KS function can aggregate multiple inequality constraints, and the space can be 

depicted by a single inequality constraint. Since general constraints can be handled, the KS 

function is also applicable to non-convex design spaces.

(2) The KS function only involves one parameter , which is a scaling factor of the space. 𝜌 > 0
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As  increases, the KS function can provide a closer approximation to the design space, 𝜌

i.e.,

{𝜽 ∈ ℝ𝑛|𝐾𝑆(𝜽,𝜌1) ≤ 0} ⊂ {𝜽 ∈ ℝ𝑛|𝐾𝑆(𝜽,𝜌2) ≤ 0},   0 < 𝜌1 < 𝜌2 (8)

In the limit, when  tends to infinity, the KS function can exactly represent the design 𝜌

space, i.e.,

{𝜽 ∈ ℝ𝑛| lim
𝜌→∞ 

𝐾𝑆(𝜽,𝜌) ≤ 0} = {𝜽 ∈ ℝ𝑛|∀𝑗 ∈ 𝐽[𝑔𝑗(𝜽) ≤ 0]} (9)

(3) The KS function is continuously differentiable. The KS function can smooth the profile 

and reduce most irregular regions, e.g., removing the intersection points in the original 

design space. As shown in Figure 2(a), the design space contains two orange intersection 

points. However, the smooth profiles of the KS function in Figure 2(b) have no intersection 

points. For  and , the profile of  is smoother than the profile of 𝜌2 = 5 𝜌1 = 2 𝐾𝑆(𝜽,𝜌1) 𝐾𝑆

. (𝜽,𝜌2)

According to the KS function, the design model in Equation (2) can be reformulated as follows,

𝐾𝑆(𝜽,𝒙,𝜌) =
1
𝜌ln [ 𝐽

∑
𝑗

𝑒𝜌 ∙ 𝑔𝑗(𝜽,𝒙) +
𝑃

∑
𝑝

(𝑒𝜌 ∙ (𝜃𝐿
𝑝 ― 𝜃𝑝) + 𝑒𝜌 ∙ (𝜃𝑝 ― 𝜃𝑈

𝑝))] ≤ 0

ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼

(10)

where  represents the KS space for a fixed value of .𝐾𝑆(𝜽,𝒙) ≤ 0 𝜌

4. Explicit expression of design space through symbolic computation

Generally, the design space is a bounded and closed space. In previous work21, if a design space 

is formulated by a polynomial system, the CAD method can transform this polynomial system 

into a series of triangular subsystems, where each subsystem corresponds to a subspace. All 

the subspaces define the entire design space. For the design model shown in Equation (2), the 

formulation of each triangular subsystem is as follows.
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𝑘1 ≤ 𝜃1 ≤ 𝑞1
𝑘2(𝜃1) ≤ 𝜃2 ≤ 𝑞2(𝜃1)

⋮
𝑘𝑃(𝜃1,…,𝜃𝑃 ― 1) ≤ 𝜃𝑃 ≤ 𝑞𝑃(𝜃1,…,𝜃𝑃 ― 1)

𝑘𝑃 + 1(𝜃1,…,𝜃𝑃 ― 1,𝜃𝑃) ≤ 𝑥1 ≤ 𝑞𝑃 + 1(𝜃1,…,𝜃𝑃 ― 1,𝜃𝑃)
⋮

𝑘𝑃 + 𝑁(𝜃1,…,𝜃𝑃,𝑥1,…,𝑥𝑁 ― 1) ≤ 𝑥𝑁 ≤ 𝑞𝑃 + 𝑁(𝜃1,…,𝜃𝑃,𝑥1,…,𝑥𝑁 ― 1)

(11)

All the lower and upper bounds of the process parameters are explicit expressions. For a given 

, the lower and upper bound of , i.e.,  and , (𝜃1,…,𝜃𝑝) 𝜃𝑝 + 1 𝑘𝑝 + 1(𝜃1,…,𝜃𝑝) 𝑞𝑝 + 1(𝜃1,…,𝜃𝑝)

become constants. 

The CAD method mainly contains two stages: projection and lifting. In the projection stage, 

the key point is to calculate discriminants and resultants30 of polynomials, which can find the 

tangency and intersection points in each dimension. In this way, the space in each dimension 

can be decomposed by using these points. For the example in Equation (6), as shown in Figure 

3(a), if the triangular structure is set as , the green tangency points and orange 𝜃1 ≺ 𝜃2

intersection points can be calculated by

discriminant(𝑔1,𝜃2) = 38 ― 52𝜃1 + 25𝜃2
1 ― 4𝜃3

1,
discriminant(𝑔2,𝜃2) = ―4(2 ― 4𝜃1 + 𝜃2

1),
resultant(𝑔1,𝑔2,𝜃2) = 0.25 ∗ (473 ― 1440𝜃1 + 1700𝜃2

1 ― 1012𝜃3
1 +

                                            328𝜃4
1 ― 56𝜃5

1 + 4𝜃6
1)

(12)

Equation (12) are univariate polynomials of , so that  is eliminated. By performing the real 𝜃1 𝜃2

root isolation algorithm31, five distinct real roots of  for these polynomials can be obtained.𝜃1

0.585786 < 0.910159 < 1.35389 < 2.88639 < 3.41421

Figure 3(a) illustrates that the tangency and intersection points can be projected onto the -𝜃1

axis, i.e., A1: (0.585786, 0), A2: (0.910159, 0), A3: (1.35389, 0), A4: (2.88639, 0), A5: (3.41421, 

0). The boundary between any two adjacent projection points is continuously differentiable. 

Based on these projection points, the entire two-dimensional (2D) space can be decomposed 

into six cylindrical 2D subspaces, i.e., [0, A1], [A1, A2], [A2, A3], [A3, A4], [A4, A5], [A5, 4]. 

In the lifting stage, these cylindrical 2D subspaces should be checked successively. Taking the 
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subspace on [A1, A2] as an example, in Figure 3(b), the steps of the lifting stage are as follows.

(1) C1 is the midpoint of A1 and A2. After substituting C1,  and  can be converted to𝑔1 𝑔2

𝑔1: ― 2.46264 ― 1.25203 ∗ ( ― 2 + 𝜃2) + ( ― 2 + 𝜃2)2

𝑔2: ― 0.4324275990814064 + ( ― 2 + 𝜃2)2 (13)

Thus, the intersections with  and  on the vertical line can be solved, i.e., B1: (0.747973, 𝑔1 𝑔2

0.936478), B2: (0.747973, 1.34241), B3: (0.747973, 2.65759). 

(2) Based on B1, B2, B3 and the corresponding curves, the 2D cylindrical subspace on [A1, A2] 

can be decomposed into four parts, which are marked by different colors in Figure 3(b). 

(3) On the vertical line, four sampling points in four parts can be determined, i.e., C1, C2, C3 

and C4, where C2, C3 and C4 are the midpoints of [B1, B2], [B2, B3] and [B3, 4], respectively.

(4) C1, C2, C3 and C4 are used to check the feasibility of all the subspaces. When substituting 

C1 to  and , we can get ( , ), which means that the subspace including C1 𝑔1 𝑔2 𝑔1 > 0 𝑔2 > 0

is infeasible, because they cannot meet the original signs, , . Similarly, for C2, 𝑔1 ≤ 0 𝑔2 ≤ 0

C3 and C4, we can obtain ( , ), ( , ) and ( , ), 𝑔1 < 0 𝑔2 > 0 𝑔1 < 0 𝑔2 < 0 𝑔1 < 0 𝑔2 > 0

respectively, and only the yellow subspace including C3 is feasible. Therefore, it is a part 

of the entire feasible region.

(5) As shown in Figure 3(c), on [A1, A2], the upper boundary of the feasible subspace is (D1, 

D3) and the lower boundary is (D1, D2). The coordinate of B3 is (0.747973, 2.65759). In 

Equation (13), 2.65759 is the second root of ; thus, for any value of  in [A1, A2], 𝑔2 = 0 𝜃1

the corresponding values of  on (D1, D3) are the second roots of , denoted 𝜃2 𝑔2(𝜃1,𝜃2) = 0

as . Similarly, the values of  on lower boundary (D1, D2) are the first roots 𝑅𝑜𝑜𝑡(𝑔2&, 2) 𝜃2

of , i.e., . Therefore, this subregion can be expressed as𝑔2(𝜃1,𝜃2) = 0 𝑅𝑜𝑜𝑡(𝑔2&, 1)

{0.585786 ≤ 𝜃1 ≤ 0.910159
𝑅𝑜𝑜𝑡(𝑔2&, 1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝑔2&, 2) (14)

which is a triangular and explicit expression of this feasible subspace. Moreover, since  𝑔2
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is a bivariate polynomial,  can be solved explicitly, and Equation (14) is reformulated as,𝜃2

{0.585786 ≤ 𝜃1 ≤ 0.910159
2 ― ―2 + 4𝜃1 ― 𝜃2

1 ≤ 𝜃2 ≤ 2  + ―2 + 4𝜃1 ― 𝜃2
1

(15)

After checking all the cylindrical subspaces, as shown in Figure 3(d) and Figure 3(e), another 

two feasible subspaces can be found. Finally, we know that the feasible region consists of three 

subregions, as shown in Figure 3(f). Equation (16) shows the complete triangular and explicit 

expressions of the feasible region. The command CylindricalDecomposition in Mathematica32 

can perform the CAD method. 

1.{0.585786 ≤ 𝜃1 ≤ 0.910159
2 ― ―2 + 4𝜃1 ― 𝜃2

1 ≤ 𝜃2 ≤ 2  + ―2 + 4𝜃1 ― 𝜃2
1

2.{0.910159 < 𝜃1 ≤ 1.35389
0.5(6 ― 𝜃1) ― 0.5 38 ― 52𝜃1 + 25𝜃2

1 ― 4𝜃3
1 ≤ 𝜃2 ≤

2  + ―2 + 4𝜃1 ― 𝜃2
1

3.{1.35389 < 𝜃1 ≤ 2.88639
0.5(6 ― 𝜃1) ― 0.5 38 ― 52𝜃1 + 25𝜃2

1 ― 4𝜃3
1 ≤ 𝜃2 ≤

0.5(6  ― 𝜃1) + 0.5 38  ― 52𝜃1 + 25𝜃2
1 ― 4𝜃3

1

(16)

   

(a)                                                                     (b)
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(c)                                                                     (d)

   

(e)                                                                     (f)

Figure 3. Solution process of the CAD method for the example.

According to the KS function, for a fixed , the design space can be approximated by𝜌

𝑦≔𝐾𝑆(𝜽,𝒙) ≤ 0 (17)

However, Equation (17) is an implicit and transcendental function, which cannot be directly 

used for symbolic computation. A common way is to create its polynomial surrogate model. 

As shown in Figure 4,  aggregates all the inequality constraints. The surrogate model 𝐾𝑆(𝜽,𝒙)

 can then be created through polynomial fitting, while the state variables  are eliminated. 𝑦(𝜽) 𝒙

Thus, the CAD result of  contains a series of subspaces, each of which is a triangular 𝑦(𝜽) ≤ 0

system of ,…, .𝜃1  𝜃𝑃
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Figure 4. Triangular structure obtained by the CAD method.

Once the polynomial surrogate model  is obtained, it is convenient to analyze the design 𝑦(𝜽)

space, because the space can be described by a single constraint. Moreover, as shown in Figure 

2(b), the smooth profile of the KS function has no intersection points, and we do not need to 

calculate the resultant for a single KS function. 

5. Polynomial fitting of KS function through adaptive sampling 

To create a polynomial surrogate model of the KS function, an adaptive sampling strategy is 

proposed. According to Equation (17), a point on the boundary of the KS space is denoted as 

{(𝜃1,…,𝜃𝑃) ∈ ℝ𝑃|𝐾𝑆(𝜽,𝒙) = 0} (18)

which can be solved by the following system of equations,

𝐾𝑆(𝜽,𝒙) = 0
ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼 (19)

Note that, since the bounds of process parameters are also used for formulating the KS function, 

the KS space must be a closed space. If the design space is described by a set of inequality 

constraints, the traditional methods to build a surrogate model need to sample enough points 

over the whole space. However, in this work, a single equation, , can describe the 𝐾𝑆(𝜽,𝒙) = 0

entire boundary of the KS space. Thus, we only focus on exploring enough sampling points on 

the boundary to create the surrogate model. The solution strategy of the proposed adaptive 
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sampling method is shown in Figure 5, which contains four steps:

(1) Initial LHS sampling. For a given number of sampling points, perform Latin hypercube 

sampling (LHS) over the space of process parameters. Those feasible sampled points in the 

feasible region forms a set A;

(2) Expanded boundary points. Through each pair of points in A, a line can be generated. Two 

intersection points of the line and the boundary can be obtained. All the intersection points 

on the boundary form an initial set B;

(3) Adaptive sampling. Based on the KS function, a simple DFO model of adaptive sampling 

is proposed. K-fold cross validation is applied to evaluate the stopping criteria. For each 

adaptive sampling point in set C,  points around the current adaptive point can be found 𝑃

through perturbation, which can form set D. All four sets are used for polynomial fitting.

(4) Explicit description. Through the CAD method, the fitted polynomial model  can be 𝑦(𝜽)

used to deduce the explicit expression of the KS space.

Figure 5. Solution strategy of the adaptive sampling method.
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5.1.  Initial LHS sampling

The LHS strategy33 is applied to generate a given number of sampling points, denoted as , 𝑛𝑢𝑚

in the process parameter space, where upper and lower bounds are required. Then, a feasibility 

check needs to be performed by evaluating  at each LHS point. The presence of the 𝐾𝑆(𝜽,𝒙)

state variables implies that the KS space is described by a set of multivariate functions of  𝜽

and . Thus, the feasibility can be checked by solving the following NLP model,𝒙

𝑢𝑎 = min 𝑢
𝑠.𝑡.  𝐾𝑆(𝜽,𝒙) ≤ 𝑢
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼

(20)

where  indicates that the point is feasible. All the feasible LHS sampling points and the 𝑢𝑎 ≤ 0

corresponding output of  form set . Note that the number of 𝐾𝑆(𝜽,𝒙) 𝐀 : = {(𝜽𝑎,𝑦𝑎), ∀𝑎 ∈ 𝑆𝐴}

LHS sampling points needs to be specified in advance. The more sampling points specified, 

the larger set A obtained, and the easier polynomial fitting will be.

Figure 6. Initial LHS sampling of the example. ( )𝜌 = 2, 𝑛𝑢𝑚 = 40

For the above-mentioned example with , the sampling ranges are set to [0, 4] and [0, 4] 𝜌 = 2

for  and . As shown in Figure 6, 40 points are sampled, and 9 of them are feasible.𝜃1 𝜃2

5.2.  Expanded boundary points

To build the surrogate model, we need to find enough sampling points on the boundary of the 
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KS space. In this subsection, based on the properties of the KS function and the obtained initial 

set A, an approach to efficiently locate many points on the boundary is proposed. For a pair of 

points in the set A, e.g.,  and , there are two directions,  and , which can be 𝜽1 𝜽2 𝜽1→𝜽2 𝜽2→𝜽1

formulated as follows,

𝜽1→𝜽2:   𝜽 = 𝜽1 + 𝛿 ∙ (𝜽2 ― 𝜽1)
𝜽2→𝜽1:   𝜽 = 𝜽2 + 𝛿 ∙ (𝜽1 ― 𝜽2) (21)

Along both directions, we can find two intersection points on the KS boundary by solving the 

following two optimization problems, 

max 𝛿
𝑠.𝑡.   𝐾𝑆(𝜽,𝒙) = 0
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼
         𝜽 = 𝜽1 + 𝛿 ∙ (𝜽2 ― 𝜽1)

(22)

max 𝛿
𝑠.𝑡.  𝐾𝑆(𝜽,𝒙) = 0
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼
         𝜽 = 𝜽2 + 𝛿 ∙ (𝜽1 ― 𝜽2)

(23)

If the set A contains  points, the total number of directions for all the pairs of points can be 𝑆𝐴

calculated from Equation (24), which is a permutation problem. The obtained boundary points 

and the output of  then define the set of initial boundary points, 𝐾𝑆(𝜽,𝒙) 𝐁 : = {(𝜽𝑏,𝑦𝑏), ∀𝑏 ∈ 𝑆𝐵

. For example, in Figure 7, 4 points can generate 4 3=12 boundary points. } ×

𝑆𝐵 = 𝐴2
𝑆𝐴 = 𝑆𝐴 ∙ (𝑆𝐴 ― 1) (24)

1

2

3

4

Figure 7. Illustration of expanded boundary points via line projection.
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Figure 8. Sampling points of the example. ( ).𝜌 = 2, 𝑛𝑢𝑚 = 40

For this example, 9 8=72 initial boundary points can be obtained by solving Equations (22) ×

and (23), which are marked as yellow points in Figure 8. Note that, even though we only have 

9 feasible LHS feasible points, 72 boundary points can be directly found in this step.

5.3.  Adaptive sampling

Based on the set of feasible LHS points A and the initial set of expanded boundary points B, a 

common multivariable polynomial fitting method can be executed to build the surrogate model 

between the process parameters  and the response , denoted as ,𝜽 = (𝜃1,…,𝜃𝑃) 𝑦 𝑦(𝜽)

𝑦(𝜽) = ∑𝐾

𝑘 = 0
𝑐𝑘𝜙𝑘(𝜽)   𝑤ℎ𝑒𝑟𝑒 𝜙𝑘(𝜽) = 𝜃𝑘1

1 ∙∙∙ 𝜃𝑘𝑃
𝑃 (25)

where  and . The sum is taken over all indices (nonnegative integer vectors) with 𝑐𝑘 ∈ ℝ 𝑐𝐾 ≠ 0

. For example, a bi-variable polynomial with , is formulated as follows,𝑘𝑃 ≤ 𝑑𝑒𝑔 𝑑𝑒𝑔 = 3

𝑦(𝜃1,𝜃2) = 𝑐0 + 𝑐1𝜃2 + 𝑐2𝜃2
2 + 𝑐3𝜃3

2 + 𝑐4𝜃1 + 𝑐5𝜃1𝜃2 +
𝑐6𝜃1𝜃2

2 + 𝑐7𝜃1𝜃3
2 + 𝑐8𝜃2

1 + 𝑐9𝜃2
1𝜃2 + 𝑐10𝜃2

1𝜃2
2 +

𝑐11𝜃2
1𝜃3

2 + 𝑐12𝜃3
1 + 𝑐13𝜃3

1𝜃2 + 𝑐14𝜃3
1𝜃2

2 + 𝑐15𝜃3
1𝜃3

2

The K-fold cross-validation (CV) method34 is used to evaluate the result of polynomial fitting. 

The number of folds, , should be specified in advance.  is given as the stop criteria of CV. 𝑘𝑓 𝜀𝐶𝑉

The set of B, C and D is split into  folds for cross validation, and the set A is used for each 𝑘𝑓
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fold. The maximum MSE (mean squared error) for all folds is used for comparison with . 𝜀𝐶𝑉

Moreover, the data set of process parameters should be normalized before polynomial fitting, 

denoted as . Then, a new point  can be roughly scaled by the current stored minimization 𝜽 𝜽

 and maximization , and the corresponding output of the fitted model is ,𝜽𝑚𝑖𝑛 𝜽𝑚𝑎𝑥 𝑦(𝜽)

𝜽 =
𝜽 ― 𝜽𝑚𝑖𝑛

𝜽𝑚𝑎𝑥 ― 𝜽𝑚𝑖𝑛 (26)

The purpose of adaptive sampling is to search the design space for areas of model inconsistency 

or model mismatch and to find points that maximize the model error. Since only the points on 

the boundary are considered, the adaptive sampling model is proposed as, 

max |𝑦(𝜽)|
𝑠.𝑡.  𝐾𝑆(𝜽,𝒙) = 0
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼
          𝜽𝑳 ≤ 𝜽 ≤ 𝜽𝑼

(27)

After relaxing the objective function  into two constraints,  and , |𝑦(𝜽)| 𝑦(𝜽) ≤ 𝑍 ― 𝑦(𝜽) ≤ 𝑍

we can apply an NLP solver to solve Equation (27); however, most adaptive sampling points 

are likely to fall into the same area that has the maximum model error and cannot escape to 

explore other areas, which is not conducive to polynomial fitting. Therefore, in order to explore 

the areas that contain more local information, we transform Equation (27) into the following 

derivative-free optimization (DFO) model,

min ― |𝑦(𝜽)| + 𝑀 ∙ 𝐾𝑆(𝜽)
𝑠.𝑡.𝜽𝑳 ≤ 𝜽 ≤ 𝜽𝑼 (28)

where M is a penalty coefficient. Compared with Equation (27), the equality system, i.e., ℎ𝑖

, can be viewed as a black box. This black-box model is used to calculate the (𝜽,𝒙) = 0, ∀𝑖 ∈ 𝐼

state variables x for each iteration of adaptive sampling, and then to evaluate the objective 

function of Equation (28). 

A DFO solver, Py-BOBYQA, which is a Python implementation of the BOBYQA (Bound 

Optimization BY Quadratic Approximation) Fortran solver by Powell35, is employed to solve 
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the adaptive sampling model. In this work, the purpose of adaptive sampling is to explore local 

areas leading to model mismatch as many as possible, rather than finding global optima in each 

iteration. Py-BOBYQA is based on the trust-region method, and it has superior performance 

in finding local solutions of nonlinear and nonconvex problems. Thus, we use this DFO solver 

to address the adaptive sampling problem. In addition, the initial values are of great importance 

to the results of the DFO solver. To take a more complete search, a reproducible random 

sequence of the data set is generated as the initial values, and more local optima can be found.

The obtained adaptive sampling points form set . To further expand the 𝐂 : = {(𝜽𝑐,𝑦𝑐), ∀𝑐 ∈ 𝑆𝐶}

points on the boundary, for a point in C, , a perturbation method is 𝜽𝑐 : = (𝜃𝑐1,…,𝜃𝑐𝑖,…,𝜃𝑐𝑃
)

proposed to find P points around , where P is the dimension of ,𝜽𝑐 𝜽

𝜽𝑖
𝑐 = (𝜃𝑖

𝑐1,…𝜃𝑖
𝑐𝑖,…,𝜃𝑖

𝑐𝑃),   ∀𝑖 ∈ 𝑃 (29)

First, we can find a point  in set A, which has the longest Euclidean 𝜽𝑎 : = (𝜃𝑎1,…,𝜃𝑎𝑖,…,𝜃𝑎𝑃
)

distance to . Then, assuming that the perturbation factor is , if  is located on the left side 𝜽𝑐 𝛼 𝜽𝑎

of  on the coordinate , i.e., ,  can be calculated by,𝜽𝑐 𝜃𝑖 𝜃𝑎𝑖 < 𝜃𝑐𝑖 𝜃𝑖
𝑐𝑖

𝜃𝑖
𝑐𝑖 = 𝜃𝑐𝑖 ∙ (1 + 𝛼),   𝑖 ∈ {1,2,…,𝑃} (30)

If  is located on the right side of , i.e., ,  can be calculated by,𝜽𝑎 𝜽𝑐 𝜃𝑎𝑖 > 𝜃𝑐𝑖 𝜃𝑖
𝑐𝑖

𝜃𝑖
𝑐𝑖 = 𝜃𝑐𝑖 ∙ (1 ― 𝛼),   𝑖 ∈ {1,2,…,𝑃} (31)

If , . For each point , the direction , can be formulated as,𝜃𝑎𝑖 = 𝜃𝑐𝑖 𝜃𝑖
𝑐𝑖 = 𝜃𝑐𝑖 𝜽𝑖

𝑐 𝜽𝑎⟶𝜽𝑖
𝑐

𝜽 = 𝜽𝑎 + 𝛿 ∙ (𝜽𝑖
𝑐 ― 𝜽𝑎) (32)

Through Equation (22), the intersection point on the KS boundary can be solved. All such 

intersection points can form set .𝐃 : = {(𝜽𝑑,𝑦𝑑), ∀𝑑 ∈ 𝑆𝐷}

To illustrate the above method, Figure 9 shows geometric interpretation of a bivariate case. In 

Figure 9(a),  is the current adaptive sampling point, and the blue point 𝜽𝑐 = (𝜃𝑐1,𝜃𝑐2
) 𝜽𝑎 =

 is a point in set A which is the farthest point from . Since the dimension P is 2 and (𝜃𝑎1,𝜃𝑎2
) 𝜽𝑐
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 is on the left of , two perturbation points around  can be expressed as follows,𝜽𝑎 𝜽𝑐 𝜽𝑐

𝜽1
𝑐 = (𝜃𝑐1 ∙ (1 + 𝛼),𝜃𝑐2

)

𝜽2
𝑐 = (𝜃𝑐1,𝜃𝑐2 ∙ (1 + 𝛼))

Thus, the following two direction formulations can be used to find two intersection points,  𝜽1
𝑑

and , on the boundary,𝜽2
𝑑

𝜽 = 𝜽𝑎 + 𝛿 ∙ (𝜽1
𝑐 ― 𝜽𝑎)

𝜽 = 𝜽𝑎 + 𝛿 ∙ (𝜽2
𝑐 ― 𝜽𝑎)

Similarly, as shown in Figure 9(b),  is on the right of , thus,𝜽𝑎 𝜽𝑐

𝜽1
𝑐 = (𝜃𝑐1 ∙ (1 ― 𝛼),𝜃𝑐2

)

𝜽2
𝑐 = (𝜃𝑐1,𝜃𝑐2 ∙ (1 ― 𝛼))

   

(a)                                                                     (b)

Figure 9. Perturbation points for an adaptive sampling point.

For the example, the maximum number of iterations for adaptive sampling is set to 50. Figure 

8 shows the results of four different sets of points. All the points are used for polynomial fitting. 

Figure 10(a) shows the MSE values of 4-fold CV. The final surrogate model with 4 degrees is
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𝑦0(𝜃1,𝜃2) = 0.332558  ― 4.924684
_
𝜃1 + 27.677621

_
𝜃

2

1 ― 48.130965
_
𝜃

3

1 + 25.497110
_
𝜃

4

1

― 1.355176
_
𝜃2 + 5.423242

_
𝜃1

_
𝜃2 ― 54.471859

_
𝜃

2

1

_
𝜃2 + 89.127179

_
𝜃

3

1

_
𝜃2

― 43.856384
_
𝜃

4

1

_
𝜃2 + 1.129803

_
𝜃

2

2 ― 18.827193
_
𝜃1

_
𝜃

2

2 + 60.655279
_
𝜃

2

1

_
𝜃

2

2

+ 21.796085
_
𝜃

3

1

_
𝜃

2

2 ― 44.339153
_
𝜃

4

1

_
𝜃

2

2 ― 0.2916
_
𝜃

3

2 + 14.54047
_
𝜃1

_
𝜃

3

2

+ 54.884484
_
𝜃

2

1

_
𝜃

3

2 ― 326.654775
_
𝜃

3

1

_
𝜃

3

2 + 223.200627
_
𝜃

4

1

_
𝜃

3

2 + 1.887766
_
𝜃

4

2

― 11.284009
_
𝜃1

_
𝜃

4

2 ― 44.465319
_
𝜃

4

2 + 212.964235
_
𝜃

3

1

_
𝜃

4

2 ― 134.362005
_
𝜃

4

1

_
𝜃

4

2

 
(a)                                                                      (b)

Figure 10. Surrogate model of the example ( ).𝜌 = 2, 𝑛𝑢𝑚 = 40

5.4.  Explicit description

Since the sampling data has been normalized before performing polynomial fitting, the profile 

of the KS space, , should be limited within a square with [0,1] sides. Considering the 𝑦(𝜽) ≤ 0

polynomial fitting error, the profile may be slightly outside of the square. Hence, the KS space 

based on the surrogate model is the intersection of  and , i.e.,𝑦(𝜽) ≤ 0 0 ≤ 𝜽 ≤ 1

{𝜽 ∈ ℝ𝑃|𝑦(𝜽) ≤ 0 ∧ 0 ≤ 𝜽 ≤ 1} (33)

The CAD method can transform Equation (33) into a triangular system, which consists of a 

series of subspaces, and each subspace is formulated as, 

𝑘′1 ≤ 𝜃1 ≤ 𝑞′1
𝑘′2(𝜃1) ≤ 𝜃2 ≤ 𝑞′2(𝜃1)

⋮
𝑘′𝑃(𝜃1,…,𝜃𝑃 ― 1) ≤ 𝜃𝑃 ≤ 𝑞′𝑃(𝜃1,…,𝜃𝑃 ― 1)

(34)
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For the example, the corresponding triangular system with  is as follows:𝜃1 ≺ 𝜃2

 1:{0 ≤ 𝜃1 < 0.0964731
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 2)

 2:{0.0964731 ≤ 𝜃1 < 0.137589
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,3) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,4)

 3:{0.137589 ≤ 𝜃1 ≤ 0.266024
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 3)

 4:{0.266024 < 𝜃1 ≤ 0.290682
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 1

 5:{0.290682 < 𝜃1 ≤ 0.376366
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 3)

 6:{0.376366 < 𝜃1 ≤ 0.732135
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2)

 7:{0.732135 < 𝜃1 ≤ 0.91514
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 2)

 8:{0.91514 < 𝜃1 ≤ 1
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2)

where  is a pure function with the parameter , which is provided in Supporting 𝛤0(𝜃1, #1) 𝜃1

Information.  means nth root of  for a given . The result 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,𝑛) 𝛤0(𝜃1, #1) = 0 𝜃1

indicates that the bounds of  are explicit expressions of . To further test the feasibility of 𝜃2 𝜃1

the subspaces, a random point  can be converted into the KS space by Equation (35), denoted 𝜽𝑠

as .  means that the current subspace is feasible,𝜽𝑠 𝐾𝑆(𝜽𝑠) ≤ 0

𝜽𝑠 = 𝜽𝑠 ∙ (𝜽𝑚𝑎𝑥 ― 𝜽𝑚𝑖𝑛) + 𝜽𝑚𝑖𝑛 (35)

In the original data set, the maximum values of  and  are 2.809134, 3.03503, and the 𝜃1 𝜃2

minimum values are 0.653351, 1.251803, respectively. Taking the first subspace as an example, 

a chosen point is  = (0.05, 0.4) and the corresponding  is (0.761141, 1.965094). 𝜽𝑠 𝜽𝑠 𝐾𝑆(𝜽𝑠)

 means that the first subspace is feasible. Similarly, we can find that the = ―0.207169 < 0

other subspaces are also feasible. The final KS space is shown in Figure 10(b).

Note that through Equations (26), (34) and (35), the CAD result can be used to evaluate the KS 

space. Each point satisfying  can be transformed into the KS space. The triangular 𝑦(𝜽) ≤ 0
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formulation of KS space is formulated as follows,

𝜽𝑚𝑖𝑛
1 + (𝜽𝑚𝑎𝑥

1 ― 𝜽𝑚𝑖𝑛
1 ) ∙ 𝑘′1 ≤ 𝜃1 ≤ 𝑞′1 ∙ (𝜽𝑚𝑎𝑥

1 ― 𝜽𝑚𝑖𝑛
1 ) + 𝜽𝑚𝑖𝑛

1

𝜽𝑚𝑖𝑛
2 + (𝜽𝑚𝑎𝑥

2 ― 𝜽𝑚𝑖𝑛
2 ) ∙ 𝑘′2( 𝜃1 ― 𝜽𝑚𝑖𝑛

1

𝜽𝑚𝑎𝑥
1 ― 𝜽𝑚𝑖𝑛

1
) ≤ 𝜃2 ≤ 𝑞′2( 𝜃1 ― 𝜽𝑚𝑖𝑛

1

𝜽𝑚𝑎𝑥
1 ― 𝜽𝑚𝑖𝑛

1
) ∙ (𝜽𝑚𝑎𝑥

2 ― 𝜽𝑚𝑖𝑛
2 ) + 𝜽𝑚𝑖𝑛

2

⋮

(36)

Moreover, another critical parameter, the number of initial LHS points, , is also discussed. 𝑛𝑢𝑚

First, compared with the result shown in Figure 8, we apply the algorithm by setting num = 80. 

In this case, 16 feasible LHS points can be found, and more expanded boundary points can be 

located. In Figure 11, the denser boundary points can generate a more precise surrogate model.

(a)                                                                      (b)

Figure 11. Sampling points and surrogate model of the example. ( ).𝜌 = 2, 𝑛𝑢𝑚 = 80

(a)                                                                      (b)

Figure 12. Sampling points and surrogate model of the example. ( ).𝜌 = 5, 𝑛𝑢𝑚 = 40

Then, another key parameter is . Compared with , we test the KS function with . 𝜌 𝜌 = 2 𝜌 = 5

All sampling points are shown in Figure 12(a). The KS space is illustrated in Figure 12(b). We 
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can see that the shape of the KS space with  more completely covers the feasible region 𝜌 = 5

than Figure 11(b). Therefore, we can conclude that more LHS points are more conducive to 

the polynomial fitting, and larger  can make the profile closer to the original feasible region.𝜌

6. Case studies

Two case studies are presented to illustrate the proposed design space description method. 

Pyomo36 is applied to define the models. The GAMS global solver, BARON, is used to solve 

the NLP models through the interface of Pyomo and GAMS, and Py-BOBYQA is applied to 

solve the DFO models. For both cases, the parameters in Table 1 are set to the same values. 

The difference is the parameter , which will be specified at different values.𝜌

Table 1. The specifications of the parameters.

Initial LHS 

points, num

Degree of polynomial,

deg

Perturbation,

𝛼

Maximum

Iteration

MSE of CV, 

𝜀𝐶𝑉

K-fold,

𝑘𝑓

100 4 0.2 50 10-10 4

6.1.  CSTR reaction

This case study deals with a 2-step reaction with the following mechanism10,37,

𝐴 + 𝐵
𝑘1

𝐶,  𝑟1 = 𝑘1 ∙ 𝑐𝐴 ∙ 𝑐𝑏

𝐶
𝑘2

𝐷 + 𝐸,  𝑟2 = 𝑘2 ∙ 𝑐𝑐

where  are the reaction rates. Two process parameters correspond to the residence time, , 𝑟𝑗 𝜃1

and the ratio of the concentration of B to A, .  correspond to the model parameters, which 𝜃2 𝑘𝑗

are fixed at their mean values {0.31051, 0.026650}. The feasible ranges of  and  are given 𝜃1 𝜃2

as follows.

0 ≤ 𝜃1 ≤ 550
0 ≤ 𝜃2 ≤ 6

The mass balance of the CSTR reaction is given by the following set of equations,
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𝑐0
𝐴 ― 𝑐𝐴 + 𝜃1 ∙ ( ― 𝑟1) = 0

𝑐0
𝐵 ― 𝑐𝐵 + 𝜃1 ∙ ( ― 𝑟1) = 0

𝑐0
𝐶 ― 𝑐𝐶 + 𝜃1 ∙ (𝑟1 ― 𝑟2) = 0

𝑐0
𝐷 ― 𝑐𝐷 + 𝜃1 ∙ 𝑟2 = 0

𝑐0
𝐸 ― 𝑐𝐸 + 𝜃1 ∙ 𝑟2 = 0

where  are initial concentrations . The 𝑐0
𝑖 {𝑐0

𝐴 = 0.53, 𝑐0
𝐵 = 0.53 ∙ 𝜃2,𝑐0

𝐶 = 0,𝑐0
𝐷 = 0,𝑐0

𝐸 = 0}

quality constraints are the minimum yield of D and the minimum ratio of D to unreacted species.

𝑐𝐷

𝑐0
𝐴 ― 𝑐𝐴

≥ 0.9

𝑐𝐷

𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶
≥ 0.2

In this case,  is fixed to 20. Figure 13(a) shows the feasible LHS points and updated points. 𝜌

All the updated points are located at the boundary of the KS space, and we can create the 

following 4-degree polynomial surrogate model with this small amount of sampling points.

𝑦1(𝜃1,𝜃2) = 0.00003937  + 0.001384
_
𝜃1 ― 0.000118

_
𝜃

2

1 ― 0.003772
_
𝜃

3

1 + 0.002389
_
𝜃

4

1

― 0.000678
_
𝜃2 ― 0.165238

_
𝜃1

_
𝜃2 ― 0.563174

_
𝜃

2

1

_
𝜃2 + 0.265011

_
𝜃

3

1

_
𝜃2

+ 0.464374
_
𝜃

4

1

_
𝜃2 + 0.003796

_
𝜃

2

2 ― 0.790496
_
𝜃1

_
𝜃

2

2 + 10.757368
_
𝜃

2

1

_
𝜃

2

2

― 15.685365
_
𝜃

3

1

_
𝜃

2

2 + 5.714148
_
𝜃

4

1

_
𝜃

2

2 ― 0.007253
_
𝜃

3

2 + 2.002811
_
𝜃1

_
𝜃

3

2

― 21.109944
_
𝜃

2

1

_
𝜃

3

2 + 31.940187
_
𝜃

3

1

_
𝜃

3

2 ― 12.825599
_
𝜃

4

1

_
𝜃

3

2 + 0.004422
_
𝜃

4

2

― 1.035763
_
𝜃1

_
𝜃

4

2 + 10.935095
_
𝜃

2

1

_
𝜃

4

2 ― 16.595443
_
𝜃

3

1

_
𝜃

4

2 + 6.691871
_
𝜃

4

1

_
𝜃

4

2

The profile of  is shown in Figure 13(b). Because of normalization, the profile is 𝑦1(𝜃1,𝜃2) = 0

limited within a square with [0,1] sides.  can be used to describe the KS space. 𝑦1(𝜃1,𝜃2) ≤ 0

Through the CAD method, the equivalent triangular system can be obtained, which consists of 

3 explicit 2D subspaces.

1:{0 ≤ 𝜃1 ≤ 0.107855
𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&, 3)

2:{0.107855 < 𝜃1 < 0.90871
𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&, 2)

3:{0.90871 ≤ 𝜃1 ≤ 1
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&, 2)
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where  is provided in Supporting Information. Due to the error of polynomial fitting, 𝛤1(𝜃1, #1)

the feasibility of each subspace must be tested. In the stored data set, the maximum values of 

 and  are 549.94261, 5.491875; the minimum values are 337.704, 0.226248. Taking the 𝜃1 𝜃2

second subspace as an example, a sampling point is chosen as  = (0.5, 0.8).  = (443.823, 𝜽𝑠 𝜽𝑠

4.43875) is calculated by Equation (35).  indicates that the second 𝐾𝑆(𝜽𝑠) = ―0.011638 < 0

subspace is feasible. Similarly, the other subspaces can be tested for feasibility Moreover, to 

show the performance of , Figure 14 illustrates the results with . Since  is set smaller, 𝜌 𝜌 = 5 𝜌

the KS space is smaller than . The required CPU/Wall times are reported in Table 2.𝜌 = 20

 

(a)                                                                      (b)

Figure 13. Results of design space description for Case 1. ( , BARON)𝜌 = 20

 

(a)                                                                      (b)

Figure 14. Results of design space description for Case 1. ( , BARON)𝜌 = 5
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6.2.  Michael Addition Reaction

This case study deals with the Michael Addition Reaction with kinetics10 described by the 

following equations,

𝐴𝐻 + 𝐵
𝑘1

𝐴 ― + 𝐵𝐻 + ,  𝑟1 = 𝑘1 ∙ 𝑐𝐴𝐻 ∙  𝑐𝐵

𝐴 ― + 𝐶
𝑘2

𝐴𝐶 ― ,  𝑟2 = 𝑘2 ∙ 𝑐𝐴 ― ∙ 𝑐𝐶

𝐴𝐶 ― 𝑘3
𝐴 ― + 𝐶,  𝑟3 = 𝑘3 ∙ 𝑐𝐴𝐶 ―

𝐴𝐶 ― + 𝐴𝐻
𝑘4

𝐴 ― + 𝑃,  𝑟4 = 𝑘4 ∙ 𝑐𝐴𝐶 ― ∙ 𝑐𝐴𝐻

𝐴𝐶 ― + 𝐵𝐻 + 𝑘5
𝑃 + 𝐵,  𝑟5 = 𝑘5 ∙ 𝑐𝐴𝐶 ― ∙ 𝑐𝐵𝐻 +

where  are reaction rates. The rate constants  correspond to the model parameters, fixed at 𝑟𝑖 𝑘𝑖

their mean values: {49.7796, 8.9316, 1.3177, 0.3109, 3.8781}. The mass balance is as follows, 

𝑐0
𝐴𝐻 ― 𝑐𝐴𝐻 + 𝜃1 ∙ ( ― 𝑟1 ― 𝑟4) = 0

𝑐0
𝐵 ― 𝑐𝐵 + 𝜃1 ∙ ( ― 𝑟1 + 𝑟5) = 0

𝑐0
𝐶 ― 𝑐𝐶 + 𝜃1 ∙ ( ― 𝑟2 + 𝑟3) = 0

𝑐0
𝐴 ― ― 𝑐𝐴 ― + 𝜃1 ∙ (𝑟1 ― 𝑟2 + 𝑟3 + 𝑟4) = 0

𝑐0
𝐴𝐶 ― ― 𝑐𝐴𝐶 ― + 𝜃1 ∙ (𝑟2 ― 𝑟3 ― 𝑟4 ― 𝑟5) = 0

𝑐0
𝐵𝐻 + ― 𝑐𝐵𝐻 + + 𝜃1 ∙ (𝑟1 ― 𝑟5) = 0

𝑐0
𝑃 ― 𝑐𝑃 + 𝜃1 ∙ (𝑟4 + 𝑟5) = 0

Two quality constraints are specifying that the conversion of C must be greater than 90%, and 

that the concentration of  in the outlet must be less than 0.002, 𝐴𝐶 ―

𝑐0
𝐶 ― 𝑐𝐶 ― 𝑐𝐴𝐶 ―

𝑐0
𝐶

≥ 0.9

𝑐𝐴𝐶 ― ≤ 0.002

The initial concentrations { , , , , , , } are set to {0.3955, 0.3955/ , 𝑐0
𝐴𝐻 𝑐0

𝐵 𝑐0
𝐶 𝑐0

𝐴 ― 𝑐0
𝐴𝐶 ― 𝑐0

𝐵𝐻 + 𝑐0
𝑃 𝜃2

0.25, 0, 0, 0, 0}. The process parameters are the residence time  and the molar ratio .𝜃1 𝜃2

400 ≤ 𝜃1 ≤ 1400
10 ≤ 𝜃2 ≤ 30

The KS parameter  is fixed to 10. Figure 15(a) shows all the feasible LHS points and updated 𝜌

boundary points, which can demonstrate the boundary of the KS space. Based on all the points, 
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the polynomial surrogate model with four degrees can be created.

𝑦2(𝜃1,𝜃2) = 0.008668  ―0.070106
_
𝜃1 +0.180528

_
𝜃

2

1 ―0.193306
_
𝜃

3

1 +0.071808
_
𝜃

4

1

―1.627739
_
𝜃2 ―49.395899

_
𝜃1

_
𝜃2 +212.180206

_
𝜃

2

1

_
𝜃2 ―391.591254

_
𝜃

3

1

_
𝜃2 +230.359832

_
𝜃

4

1
_
𝜃2 +75.211453

_
𝜃

2

2 ―364.868356
_
𝜃1

_
𝜃

2

2 +858.685883
_
𝜃

2

1

_
𝜃

2

2 ―532.802744
_
𝜃

3

1

_
𝜃

2

2 ―35.709792
_
𝜃

4

1

_
𝜃

2

2 ―38.784014
_
𝜃

3

2 +191.959125
_
𝜃1

_
𝜃

3

2 ―902.219004
_
𝜃

2

1

_
𝜃

3

2 +903.265210
_
𝜃

3

1

_
𝜃

3

2

―155.198075
_
𝜃

4

1

_
𝜃

3

2 ―17.521365
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4
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4
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2

1
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3

1
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4

1

_
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4
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(a)                                                                      (b)

 Figure 15. Results of design space description for Case 2. ( , BARON)𝜌 = 10

The profile of the surrogate model  is shown in Figure 15(b). Because of the 𝑦2(𝜃1,𝜃2) = 0

polynomial fitted error, the profile is slightly outside of the square. According to Equation (33), 

the CAD method can generate a triangular and explicit system as follows, where  is 𝛤2(𝜃1, #1)
provided in Supporting Information.

1:{0 ≤ 𝜃1 ≤ 0.118986
𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 3)

2:{0.118986 < 𝜃1 < 0.228252
𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&,2)

3:{0.228252 ≤ 𝜃1 ≤ 0.930122
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 2)

4:{0.930122 < 𝜃1 ≤ 0.990867
0 ≤ 𝜃2 ≤ 1

5:{0.990867 < 𝜃1 ≤ 1
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 2)
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In the data set of polynomial fitting, the maximum values of  and  are 1400 and 29.9977, 𝜃1 𝜃2

and the minimum values are 644.084 and 10, respectively. Taking the third subspace as an 

example, a sampling point is chosen as  = (0.6, 0.5) and  is (1097.63, 19.9989). 𝜽𝑠 𝜽𝑠 𝐾𝑆(𝜽𝑠)

 means that the subspace is feasible. Moreover, Figure 16 illustrates the = ―0.250481 < 0

results with . For this case, Figure 15(b) and Figure 16(b) are almost the same, which 𝜌 = 5

indicates that  can provide a good approximation of the feasible region.𝜌 = 10

 

(a)                                                                      (b)

Figure 16. Results of design space description for Case 2. ( , BARON)𝜌 = 5

Table 2. Summary of model information and computational expense.

Model information Proposed method

Part 1 Part 2
Number of

eqs / ineqs

Number of 

variables
𝜌 Adaptive sampling and 

surrogate modeling

Explicit 

description 

Use CAD 

method only

20 154.29 / 687.98 (BARON) 0.23 / 0.24
Case 1 8 / 6 10

5 89.81 / 578.12 (BARON) 0.26 / 0.29
0.35 / 0.36

352.68 / 2279.72 (BARON) 0.25 / 0.27
10

251.68 / 476.16 (CONOPT4) 0.22 / 0.22

380.53/ 2701.63 (BARON) 0.25 / 0.25
Case 2 13 / 6 15

5
265.71 / 498.40 (CONOPT4) 0.20 / 0.21

>7200 / 

>7200*

*Cannot solve within 7200 seconds.

The computational time includes CPU time (s) / Wall time (s)

In Table 2, the model information of both cases and the computational times are summarized. 

Case 1 includes 8 equalities and 10 variables; Case 2 has a larger scale, involving 13 equalities 
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and 15 variables. The adaptive sampling and surrogate modeling are executed in Python, and 

the explicit description based on the CAD method is implemented in Mathematica. The CAD 

method transforms the surrogate model of KS function very fast. In addition, we also compare 

the computational time with using the CAD method only. The CAD method can directly solve 

Case 1 in 0.36s; however, Case 2 cannot be handled within 7200s, because of the larger scale. 

The proposed method can solve Case 2 in around 2500s when using the BARON solver.

7. Discussion

The proposed method consists of adaptive sampling and symbolic computation. There are some 

key points that can affect the results. To further clarify the performance of the proposed method, 

some discussion is provided in this section.

7.1.  Values of critical parameters

The critical parameters mainly contain the initial LHS points, num and the parameter of the KS 

function, ρ. As shown in Figure 8 and Figure 11a, it is obvious that more initial LHS points are 

specified, the denser the boundary points can be found, and the more accurate the surrogate 

model will be. In addition, note that there may be empty spaces on the boundary, e.g., Figure 

8. The main reasons are lack of feasible LHS points to generate the line projections on the 

boundary and/or lack of exploration during DFO search. The empty spaces can affect the 

polynomial fitting accuracy. In particular, if the empty area contains critical nonlinear features, 

the fitted polynomial will have a serious distortion. Thus, to reduce the empty areas, we can 

set a larger initial number of LHS points and a more stringent stopping criteria of adaptive 

sampling, including a larger iteration limit and a smaller termination error of K-fold cross 

validation.

Moreover, there are two main limitations for the KS function, i.e, the exponential functions can 

make the KS function strongly nonlinear; it is difficult to determine an appropriate value of ρ 
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for a specific problem. The different values of ρ have been compared in the example and cases. 

A small value of ρ may lead to an overly conservative KS function, while too large a value of 

ρ may make the KS function ill-conditioned and cause unstable convergence and making it 

difficult to solve. Therefore, there is a tradeoff between accuracy of the KS function and ease 

of finding its surrogate model. A larger value of ρ can make the envelope closer to the real 

constrains, but possibly capture the undesired complex nonlinearity as well. It is not easy to 

create an accurate surrogate model for the KS function with complex or nonlinear structures. 

For simplicity, in this work, the value of ρ needs to be specified in advance.

7.2.  Selection of NLP solvers

In the procedure of adaptive sampling, we propose two methods to expand the boundary points, 

as shown in Figure 7 and Figure 9. Because there must be two intersection points for a line and 

the boundary. The target is to locate both points; thus, the formula of the line should be defined 

by a parametric form, as shown in Equation (21). Both methods of expanding boundary points 

involve solving NLP models. 

The real intersection points refer to the global optimal solutions, and common NLP solvers 

cannot guarantee finding the global optima. In the above cases, the global NLP solver, BARON, 

is adopted, and the results show that we can locate the boundary points effectively. Moreover, 

it is worth noting that, as the value of ρ and the number of inequalities increases, the KS 

function will be very complex and highly nonlinear, which will cause unstable convergence. 

Therefore, BARON is often time consuming. To ease the computational burden, it is necessary 

to compare the performance with a local solver. The local NLP solver in GAMS, CONOPT4, 

is selected to deal with Case 1. The results shown in Figure 17 indicate that this local NLP 

solver is also acceptable, and the design space can be described accurately. However, compared 

with Figure 15(a), Figure 17(a) shows that some points in set B overlap on the points in set A 

and some are located inside. The main reason is that the optimization model converges to the 
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local solutions. Nonetheless, we also can use these points to build the surrogate model, because 

these points are located within the design space. The CPU/Wall time for using CONOPT4 is 

251.68s/476.16s, which is significantly less than using BARON. In addition, for an extremely 

complex and nonlinear model, BARON may require long computational times, and may not 

guarantee finding the global optimum for a fixed time limit. Therefore, there is also a tradeoff 

between the selection of solvers and the computational efficiency.

(a)                                                                      (b)

Figure 17. Results of design space description for Case 2. ( , CONOPT4)𝜌 = 10

7.3.  Effect of nonconvexity 

The above numerical example and the Michael addition reaction case involve non-convex 

feasible spaces. Figure 2 indicates that the non-convex boundary can be described more 

accurately as the value of ρ increases. To further show the characteristics and performances of 

the proposed method, the example shown in Equation (6) is modified as Equation (37), which 

has a more nonconvex feasible region. The parameters are set to .𝜌 = 5, 𝑛𝑢𝑚 = 80

𝑔1: ― ((𝜃2 ― 2)2 + (𝜃1 ― 2)3 + (𝜃2 ― 2)(𝜃1 ― 2) ― 0.5) ≤ 0
𝑔2:(𝜃2 ― 2)2 + (𝜃1 ― 2)2 ― 2 ≤ 0
𝑔3:𝜃1 ― 4 ≤ 0
𝑔4: ―𝜃1 ≤ 0
𝑔5:𝜃2 ― 4 ≤ 0
𝑔6: ― 𝜃2 ≤ 0

(37)
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In this case, BARON and CONOPT4 are compared. Figure 18(a) indicates that BARON cannot 

capture the inner nonconvex areas, because the solutions are always converged to the global 

maxima, i.e., the outermost boundary points. Thus, a large empty area on the boundary can be 

generated. By comparison, the local solver CONOPT4 can converge to local solutions, and the 

inner nonconvex areas can be described more completely, as shown in Figure 18(b). Based on 

these points, Figure 19 shows that the surrogate model can be created effectively. Therefore, 

the local solvers are more suitable for the problems with strongly nonconvex feasible regions. 

 

(a)                                                                      (b)

Figure 18. Sampling points of the modified example by using (a) BARON; (b) CONOPT4.

 

(a)                                                                      (b)

Figure 19. Surrogate model of the modified example. (a) Real space; (b) KS space obtained 

by CONOPT4
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8. Conclusions

In this paper, we propose a novel design space description method based on adaptive sampling 

and symbolic computation. The KS function is applied to aggregate all the inequality 

constraints, and the KS space can approximate the design space with a single constraint. Thus, 

we only need to focus on finding the sampling points on the boundary of the KS space. Based 

on the feasible LHS points and adaptive sampling points, two methods have been presented to 

effectively expand the set of boundary points. i.e., line projection to the boundary through any 

two feasible LHS points, and perturbation around the adaptive sampling points. The obtained 

polynomial surrogate model can be transformed into an equivalent triangular model through 

the CAD method, which can be further used to describe the KS space explicitly.

The case studies show that the proposed method is applicable to both convex and nonconvex 

feasible regions. Moreover, it is worth noting that, the CAD method is originally limited to 

polynomial functions, but the proposed method can address the inequality constraints with 

transcendental terms. This is because before performing the CAD method, the single KS 

function should be fitted as a multivariate polynomial by using the proposed adaptive sampling 

method. In addition, theoretically, the proposed method is more applicable to the cases with a 

small number of process parameters, because it is not easy to generate a single surrogate 

polynomial model in a high-dimensional space. 

Acknowledgements

The authors gratefully acknowledge the financial support from Eli Lilly and Company, and the 

Center for Advanced Process Decision-making (CAPD) from Carnegie Mellon University.

Literature Cited

1 Hakemeyer C, McKnight N, John RS, Meier S, Trexler-Schmidt M, Kelley B, Zettl F, 

Puskeiler R, Kleinjans A, Lim F, Wurth, C. Process characterization and design space 

definition. Biologicals. 2016;44(5):306-318.

Page 36 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

37

2 Kusumo KP, Gomoescu L, Paulen R, García-Muñoz S, Pantelides CC, Shah N, Chachuat B. 

Bayesian approach to probabilistic design space characterization: a nested sampling strategy. 

Ind Eng Chem Res. 2019;59(6):2396-2408.

3 Huang J, Kaul G, Cai C, Chatlapalli R, Hernandez-Abad P, Ghosh K, Nagi A. Quality by 

design case study: an integrated multivariate approach to drug product and process 

development. Int J Pharm. 2009;382(1-2):23-32.

4 Garcia-Munoz S, Luciani CV, Vaidyaraman S, Seibert KD. Definition of design spaces using 

mechanistic models and geometric projections of probability maps. Org Process Res Dev. 

2015;19(8):1012-1023.

5 Goyal V, Ierapetritou MG. Determination of operability limits using simplicial 

approximation. AIChE J. 2002;48(12):2902-2909.

6 Rogers A, Ierapetritou MG. Feasibility and flexibility analysis of blackbox processes part 1: 

surrogate-based feasibility analysis. Chem Eng Sci. 2015;137:986-1004.

7 Rogers A, Ierapetritou MG. Feasibility and flexibility analysis of blackbox processes part 2: 

surrogate-based flexibility analysis. Chem Eng Sci. 2015;137:1005-1013.

8 Wang Z, Ierapetritou M. A novel feasibility analysis method for blackbox processes using a 

radial basis function adaptive sampling approach. AIChE J. 2017;63(2):532-550.

9 Metta N, Ramachandran R, Ierapetritou M. A novel adaptive sampling based methodology 

for feasible region identification of compute intensive models using artificial neural network. 

AIChE J. 2021;67(2):e17095.

10 Laky D, Xu S, Rodriguez JS, Vaidyaraman S, García-Muñoz S, Laird C. An optimization-

based framework to define the probabilistic design space of pharmaceutical processes with 

model uncertainty. Processes, 2019;7(2):96.

11 Zhang Q, Grossmann IE, Lima RM. On the relation between flexibility analysis and robust 

optimization for linear systems. AIChE J. 2016;62(9):3109-3123.

Page 37 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

38

12 Halemane KP, Grossmann IE. Optimal process design under uncertainty. AIChE J. 

1983;29(3):425-433.

13 Swaney RE, Grossmann IE. An index for operational flexibility in chemical process design. 

Part I: Formulation and theory. AIChE J. 1985;31(4):621-630.

14 Swaney RE, Grossmann IE. An index for operational flexibility in chemical process design. 

Part II: Computational algorithms. AIChE J. 1985;31(4):631-641

15 Grossmann IE, Floudas CA. Active constraint strategy for flexibility analysis in chemical 

processes. Comput Chem Eng. 1987;11(6): 675-693.

16 Pulsipher JL, Zavala VM. A mixed-integer conic programming formulation for computing 

the flexibility index under multivariate gaussian uncertainty. Comput Chem Eng. 2018;119: 

302-308.

17 Grossmann IE, Calfa BA, Garcia-Herreros P. Evolution of concepts and models for 

quantifying resiliency and flexibility of chemical processes. Comput Chem Eng. 2014;70:22-

34.

18 Harwood SM, Barton PI. How to solve a design centering problem. Math Methods Oper 

Res. 2017;86(1):215-254. 

19 Still G. Generalized semi-infinite programming: Theory and methods. Eur J Oper Res. 

1999;119(2):301-313.

20 Vázquez FG, Rückmann JJ, Stein O, Still G. Generalized semi-infinite programming: a 

tutorial. J Comput Appl Math. 2008;217(2):394-419.

21 Zhao F, Chen X. Analytical and triangular solutions to operational flexibility analysis using 

quantifier elimination. AIChE J. 2018;64(11):3894-3911.

22 Collins GE. Quantifier elimination for real closed fields by cylindrical algebraic 

decomposition. Lect Notes Comput Sci. 1975;33:134-183.

Page 38 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

39

23 Zhao F, Zheng C, Zhang S, Zhu L, Chen X. Quantification of process flexibility via space 

projection. AIChE J. 2019;65(10):e16706.

24 Zheng C, Zhao F, Zhu L, Chen X. Operational flexibility analysis of high-dimensional 

systems via cylindrical algebraic decomposition. Ind Eng Chem Res. 2020;59(10):4670-4687.

25 Collins GE. Quantifier elimination for real closed fields by cylindrical algebraic 

decomposition. Lec Notes Comp Sci. 1975;33:134-183.

26 Kreisselmeier G, Steinhauser R. Systematic control design by optimizing a vector 

performance index. Proc. IFAC Symp. On Computer-Aided Design of Control Systems. Zurich, 

Switzerland, 1979.

27 Rooney WC, Biegler LT. Optimal process design with model parameter uncertainty and 

process variability. AIChE J. 2003;49(2):438-449.

28 Martins JRRA, Alonso JJ, Reuther JJ. High-fidelity aerostructural design optimization of a 

supersonic business jet. J Aircr. 2004;41(3):523-530.

29 Brooks TR, Martins JRRA, Kennedy GJ. High-fidelity aerostructural optimization of tow-

steered composite wings. J Fluids Struct. 2019;88:122-147. 

30 Gelfand IM, Kapranov MM, Zelevinsky AV. Discriminants, resultants, and 

multidimensional determinants. Birkhäuser: Theory & Applications, 1994.

31 Sagraloof M, Mehlhorn K. Computing real roots of real polynomials. J Symb Comput. 2016; 

73:46-86.

32 Wolfram Research Inc. Mathematica Version 12.2. Champaign, IL. 2020.

33 Deutsch JL, Deutsch CV. Latin hypercube sampling with multidimensional uniformity. J 

Stat Plan Inference. 2012;142(3):763-772.

34 Zhang P. Model selection via multifold cross validation. Ann stat. 1993;21(1):299-313.

35 Powell MJD. The BOBYQA Algorithm for Bound Constrained Optimization Without 

Derivatives. Technical report, Department of Applied Mathematics and Theoretical Physics, 

Page 39 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

40

University of Cambridge. 2009.

36 Hart WE, Watson JP, Woodruff DL. Pyomo: modeling and solving mathematical programs 

in Python. Math Program Comput. 2011;3(3):219-260.

37 Chen W, Biegler LT, García-Muñoz S. An approach for simultaneous estimation of reaction 

kinetics and curve resolution from process and spectral data. J Chemom. 2016;30(9):506-522. 

Page 40 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

1

Design Space Description through 

Adaptive Sampling and Symbolic Computation 

Fei Zhao, Ignacio E. Grossmann*

Center for Advanced Process Decision-Making, Department of Chemical Engineering, 

Carnegie Mellon University, Pittsburgh, PA 15213

Salvador García Muñoz, Stephen D. Stamatis

Synthetic Molecule Design and Development, Lilly Research Laboratories, Indianapolis, IN 

46285

Abstract

Design space definition is one of the key parts in pharmaceutical research and development. In 

this article, we propose a novel solution strategy to explicitly describe the design space without 

recourse decisions. First, to smooth the boundary, the Kreisselmeier-Steinhauser (KS) function 

is applied to aggregate all inequality constraints. Next, for creating a surrogate polynomial 

model of the KS function, we focus on finding sampling points on the boundary of KS space. 

After performing Latin hypercube sampling (LHS), two methods are presented to efficiently 

expand the boundary points, i.e., line projection to the boundary through any two feasible LHS 

points and perturbation around the adaptive sampling points. Finally, a symbolic computation 

method, cylindrical algebraic decomposition, is applied to transform the surrogate model into 

a series of explicit and triangular subsystems, which can be converted to describe the KS space. 

Two case studies show the efficiency of the proposed algorithm.

Keywords: process design; design space; adaptive sampling; symbolic computation; cylindrical 

algebraic decomposition
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1. Introduction

In the pharmaceutical industry, process parameters1 correspond to degrees of freedom or 

variables that can be manipulated in the operation of a manufacturing process, and which can 

be measured and set within the controller tolerance for a desired value. Design space is defined 

as “multidimensional combination and interaction of input variables and process parameters 

that have been demonstrated to provide assurance of quality”2. In other words, Product quality 

is maintained as long as the process parameters are controlled within the design space.

Early approaches to identify the design space were solely based on experiments and empirical 

functions3. By performing extensive experiments, the relationships of process parameters and 

critical quality attributes (CQAs) can be built through regression and the process parameters 

that have medium/high impacts on the CQAs can be determined. The design space is visualized 

by response surface modeling and further verified by additional experiments4. This method 

requires extensive experiments, and it is very time-consuming and expensive. To lower the 

cost of developing design spaces, mechanistic models that contain relationships of process 

parameters and CQAs can be formulated in advance and parametrized with less data. Goyal 

and Ierapetritou5 proposed an approach based on outer-approximation to identify the operating 

envelopes where process operation is feasible, safe, and profitable. In addition, in order to 

address the computationally expensive models, the surrogate-based methods are then proposed. 

Rogers and Ierapetritou6,7 applied Kriging as the surrogate models to approximate the original 

functions and identify the design spaces with limited samplings. Compared with the kriging 

surrogate models, Wang and Ierapetritou8 used RBF surrogate models. Metta et al.9 proposed 

to use an artificial neural network to create the surrogate models for addressing problems that 

are computationally expensive or do not have constraints in closed form.

Moreover, optimization approaches based on mechanistic models have been extensively 

studied to describe the design space10,11. Characterizing a design space for a process design 
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model is analogous to the flexibility index problem in the chemical industry12,13,14. The 

flexibility index is used to describe an operational range, which represents a maximum scaled 

departure of all process parameters from the given nominal conditions. It is worth stating that 

“design space” and “feasible space” are interchangeably used in the pharmaceutical industry. 

Generally, it is not easy to accurately describe the boundary of the real design space because 

of the high nonlinearity. The flexibility index can approximate the design space by a largest 

inscribed subspace with a specific shape, which may be a rectangle, ellipse, or other shapes. 

Because we are only concerned with this subspace, for simplicity, this subspace is denoted as 

“design space” in this paper. When approximating it as a rectangle, the vertex direction search 

method13 can be employed to find the flexibility index, which is rigorous for convex regions. 

To avoid the convexity assumption, Grossmann and Floudas15 developed an active constraint 

strategy, where the two-level optimization formulation for the flexibility index problem can be 

reformulated as a mixed-integer linear or nonlinear programming model by applying the KKT 

conditions to the inner optimization problem. In addition, Pulsipher and Zavala16 proposed to 

use an ellipsoidal set to capture correlations of process parameters, as well as a mixed-integer 

conic programming formulation to compute the flexibility index. A number of approaches are 

proposed to quantify system flexibility, and an extensive review is provided by Grossmann et 

al. 17 If the nominal conditions of the process parameters are unknown, the flexibility index 

problem can be extended to the design centering problem18, which focuses on determining the 

nominal conditions that maximize the size of the design space. From a mathematical view, the 

design centering problem is a generalized semi-infinite programming problem19,20. Flexibility 

index and design centering are two complementary ways for estimating a candidate design 

space, which have been widely studied in recent decades; however, both methods need to 

specify the shape of design space in advance, which is quite hard to reflect the reality of the 

feasible region, especially for nonconvex cases.
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In the absence of models capable of efficiently probing the fullest extent of the feasible region, 

design spaces were obligated to be defined with an assumption of shape to be probed 

experimentally. With a robust model, there is no reason to make the shape assumption because 

we can effectively probe the boundaries to the extent of the feasible region. The challenge is 

thus computing and defining that boundary. Zhao and Chen21 first proposed representing the 

design model as an existential quantifier formula and applied the cylindrical algebraic 

decomposition (CAD) method22 to accurately describe the design space and explicitly express 

the relationships between uncertain parameters. The CAD method can provide a complete 

description of the design space (in this case, the design space is identical to the feasible region), 

and the triangular structure makes possible the explicit algebraic representation of the bounds 

of each process parameter. The method is suitable for convex and nonconvex systems described 

by polynomials. Zhao et al.23 proposed a space projection method based on the CAD method 

to deal with flexibility index problems. Due to the heavy computational burden of the CAD 

method, the above methods are only applicable to relatively small‐scale problems. For high-

dimensional systems consisting of a large number of equalities and limited inequalities, Zheng 

et al.24 proposed to build a surrogate model to correlate the inequality constraints based on an 

initial sample set. The design space is explicitly expressed via the CAD method, and the 

boundary can be checked to iteratively refine the CAD results. However, if the design space 

has a severely irregular shape, the computational burden of the CAD method will be very high. 

Moreover, since it is not appropriate to reduce process parameters, the number of inequality 

constraints becomes another key factor of the computational complexity.

In this work, we propose a novel design space description method based on efficient adaptive 

sampling and symbolic computation, and in which no recourse is considered for the realization 

of the parameters. The proposed method not only can eliminate all the equality constraints and 

state variables, but also significantly reduce the sampling burden, and decrease the number of 
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inequality constraints to one. In addition, there is a tradeoff between the complexity of the CAD 

method and the accuracy of design space description. The rest of this article is organized as 

follows. Sections 2 provides problem statements including the research framework. Section 3 

defines the design space based on the Kreisselmeier-Steinhauser (KS) function. Section 4 

illustrates the main steps of the CAD method. Section 5 provides an adaptive sampling strategy 

to find the explicit expression of the design space. Two case studies are provided in Section 6 

to illustrate the proposed methods. Section 7 discusses the key characteristics of the proposed 

method. Section 8 concludes the paper.

2. Problem statement

An ultimate goal of the design space definition problem is to accurately and explicitly describe 

the design space, regardless of whether it is a convex and nonconvex space. For a given design 

model with no recourse12, the feasibility of the model can be described as:

∀𝜽 ∈ 𝐷𝑆(𝜽){∀𝑗 ∈ 𝐽[𝑔𝑗(𝜽,𝒙) ≤ 0], ∀𝑖 ∈ 𝐼[ℎ𝑖(𝜽,𝒙) = 0]} (1)

where  and  are process parameters and state variables, respectively. Equation (1) states that  𝜽 𝒙

for any possible realization of process parameters in the design space, denoted as , all 𝐷𝑆(𝜽)

the individual constraints should be satisfied. In other words,  can also be defined as𝐷𝑆(𝜽)

𝐷𝑆(𝜽)≔{𝜽 ∈ ℝ𝑃|[𝑔𝑗(𝜽,𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽 ∧
ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼⋀
𝜽𝐿 ≤ 𝜽 ≤ 𝜽𝑈 ]} (2)

 represents the entire feasible region of process parameters. It is generally difficult to 𝐷𝑆(𝜽)

describe it analytically because of the nonlinearities of the design model. Based on previous 

work21, the CAD method can equivalently transform an inequality system to a triangular system, 

and the upper and lower bounds of each process parameter can be expressed explicitly. For 

high-dimensional cases, the equations and state variables can be eliminated through surrogate 

models for the inequality constraints24, which can reduce the computational burden of the CAD 

method. Since it needs to sample points over the whole design space, this method must sample 
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enough points and take many iterations to accurately capture the profile of the design space.

Figure 1. Conceptual computational framework.

In order to further ease the computational burden of the CAD method and improve the 

efficiency of adaptive sampling and surrogate modeling, a novel solution strategy is proposed 

in this work to explicitly describe the design space. The research framework is shown in Figure 

1, which can be interpreted as follows.

(1) For a given design model, the KS function can aggregate all inequality constraints, and then 

an underestimate of the desired design space, denoted as KS space, can be described by a 

single inequality constraint. The boundary of the KS space is continuously differentiable.

(2) The KS function is a transcendental function. To be able to process the KS function with 

the CAD method, an adaptive sampling strategy is proposed to create a polynomial 

surrogate model of the KS function. Two methods are presented to efficiently expand the 

boundary points of the KS space. i.e., line projection points through any two feasible LHS 

points, and perturbation boundary points around the adaptive sampling points. The cross-

validation method is applied to evaluate the stopping criteria of the adaptive sampling.

(3) The CAD method is applied to triangulate the polynomial surrogate model. A simple 
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checking rule is applied to evaluate the feasibility of the CAD result. 

Based on the above conceptual computational framework, we can point out two motivations:

(1) The complexity of the original CAD method25 is formulated as

𝑂(𝑑1
22n + 8𝑚2𝑛 + 6) (3)

which indicates that the complexity grows doubly exponentially with the number of variables 

n; d1 is the maximum degree in any one variable in the original model; m is the number of 

polynomials. After applying the KS function to aggregate all inequality constraints and create 

its polynomial surrogate model, the complexity can be reduced to Equation (4),

𝑂(𝑑2
22n + 8) (4)

where m has been reduced to one; d2 is the maximum degree in any one variable in the surrogate 

model. While still doubly exponential in the number of variables, if the fitted degree, d2, is not 

too large, the complexity is acceptable; thus, there is a tradeoff between the complexity of the 

CAD method and the accuracy of design space description.

(2) According to Equation (2), the equalities are used to represent the process model, and the 

state variables have the same dimension as equality constraints, i.e., dim(x) = |I|. Once the 

value of  is specified, we can run the simulation and obtain the results of x. The inequality 𝜽

constraints define the quality requirements of the process design problems. If we sample 

the points in the space of , the results of x in the equalities can be used to evaluate the 𝜽

inequality constraints. Thus, in this work, all the equality constraints and state variables can 

be eliminated when generating the surrogate model of the KS function. Moreover, since 

the KS space must be contained within the original design space, we only need to focus on 

finding the points on the boundary of the KS space. The intention is to locate as many 

boundary points as possible, which can significantly reduce the sampling burden.

In summary, approximating the design space by the KS space, the proposed method can ease 

the sampling burden of surrogate modeling, reduce the computational expense of the CAD 
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method, and the assumptions for the shape of design space are not required.

3. Design space approximation through KS function

The KS function was first proposed by G. Kreisselmeier and R. Steinhauser26, which was 

initially presented for controller design. In the last two decades, the KS function has been 

widely used in constraint aggregation methods for gradient-based optimization, e.g., chemical 

process design27, as well as problems involving local stress constraints, e.g., aircraft design28,29.

The KS function shown in Equation (5) can aggregate a set of inequality constraints into a 

single function, and it only contains one parameter ρ.

𝐾𝑆(𝜽,𝜌) =
1
𝜌ln [ 𝐽

∑
𝑗

𝑒𝜌 ∙ 𝑔𝑗(𝜽)] ≤ 0 (5)

where  are inequality constraints, . The KS function produces an envelope 𝑔𝑗(𝜽) ≤ 0 𝑗 ∈ 𝐽

surface that is continuous and represents a conservative estimate of the feasible region for a set 

of constraints.  is an aggregation parameter defined by the user, which can control how 𝜌 > 0

close the envelope is to the original constraints. In the following nonlinear and nonconvex 

example, the KS function as a constraint aggregation method, and the effect of increasing  for 𝜌

inequality constraints, can be visualized. 

An illustrative example

Consider the inequalities,

𝑔1:(𝜃2 ― 2)2 + (𝜃1 ― 2)3 + (𝜃2 ― 2)(𝜃1 ― 2) ― 0.5 ≤ 0
𝑔2:(𝜃2 ― 2)2 + (𝜃1 ― 2)2 ― 2 ≤ 0
𝑔3:𝜃1 ― 4 ≤ 0
𝑔4: ―𝜃1 ≤ 0
𝑔5:𝜃2 ― 4 ≤ 0
𝑔6: ― 𝜃2 ≤ 0

(6)

For the design space definition problem,  and  are regarded as the process parameters. The 𝜃1 𝜃2

feasible region of these inequality constraints, which can be denoted as a complete design space, 

is depicted by the yellow region shown in Figure 2(a). According to Equation (5), the KS 
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function of ,…,  is formulated as 𝑔1 𝑔6

𝐾𝑆(𝜽,𝜌) =
1
𝜌ln [𝑒𝜌 ∙ 𝑔1 + 𝑒𝜌 ∙ 𝑔2 + 𝑒𝜌 ∙ 𝑔3 + 𝑒𝜌 ∙ 𝑔4 + 𝑒𝜌 ∙ 𝑔5 + 𝑒𝜌 ∙ 𝑔6] (7)

which generates an underestimate profile of the design space after fixing . As  increases, the 𝜌 𝜌

profile depicted by the KS function can approach in the limit the true profile of the feasible 

region. As shown in Figure 2(b), when  = 5, the profile of the KS function is continuous and 𝜌

almost coincides with the real boundary of the feasible region. However, the profile for  = 2 𝜌

is smoother, although less accurate. 

   

(a)                                                                     (b)

Figure 2. Feasible region of the example and profiles of KS function with increasing .𝜌

The KS function can be applied to approximate the design space. Hence, the problem of 

approximately describing a design space can be transformed into describing the corresponding 

KS space. The major motivations for using the KS function can be stated as follows:

(1) The KS function can aggregate multiple inequality constraints, and the space can be 

depicted by a single inequality constraint. Since general constraints can be handled, the KS 

function is also applicable to non-convex design spaces.

(2) The KS function only involves one parameter , which is a scaling factor of the space. 𝜌 > 0
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As  increases, the KS function can provide a closer approximation to the design space, 𝜌

i.e.,

{𝜽 ∈ ℝ𝑛|𝐾𝑆(𝜽,𝜌1) ≤ 0} ⊂ {𝜽 ∈ ℝ𝑛|𝐾𝑆(𝜽,𝜌2) ≤ 0},   0 < 𝜌1 < 𝜌2 (8)

In the limit, when  tends to infinity, the KS function can exactly represent the design 𝜌

space, i.e.,

{𝜽 ∈ ℝ𝑛| lim
𝜌→∞ 

𝐾𝑆(𝜽,𝜌) ≤ 0} = {𝜽 ∈ ℝ𝑛|∀𝑗 ∈ 𝐽[𝑔𝑗(𝜽) ≤ 0]} (9)

(3) The KS function is continuously differentiable. The KS function can smooth the profile 

and reduce most irregular regions, e.g., removing the intersection points in the original 

design space. As shown in Figure 2(a), the design space contains two orange intersection 

points. However, the smooth profiles of the KS function in Figure 2(b) have no intersection 

points. For  and , the profile of  is smoother than the profile of 𝜌2 = 5 𝜌1 = 2 𝐾𝑆(𝜽,𝜌1) 𝐾𝑆

. (𝜽,𝜌2)

According to the KS function, the design model in Equation (2) can be reformulated as follows,

𝐾𝑆(𝜽,𝒙,𝜌) =
1
𝜌ln [ 𝐽

∑
𝑗

𝑒𝜌 ∙ 𝑔𝑗(𝜽,𝒙) +
𝑃

∑
𝑝

(𝑒𝜌 ∙ (𝜃𝐿
𝑝 ― 𝜃𝑝) + 𝑒𝜌 ∙ (𝜃𝑝 ― 𝜃𝑈

𝑝))] ≤ 0

ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼

(10)

where  represents the KS space for a fixed value of .𝐾𝑆(𝜽,𝒙) ≤ 0 𝜌

4. Explicit expression of design space through symbolic computation

Generally, the design space is a bounded and closed space. In previous work21, if a design space 

is formulated by a polynomial system, the CAD method can transform this polynomial system 

into a series of triangular subsystems, where each subsystem corresponds to a subspace. All 

the subspaces define the entire design space. For the design model shown in Equation (2), the 

formulation of each triangular subsystem is as follows.
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𝑘1 ≤ 𝜃1 ≤ 𝑞1
𝑘2(𝜃1) ≤ 𝜃2 ≤ 𝑞2(𝜃1)

⋮
𝑘𝑃(𝜃1,…,𝜃𝑃 ― 1) ≤ 𝜃𝑃 ≤ 𝑞𝑃(𝜃1,…,𝜃𝑃 ― 1)

𝑘𝑃 + 1(𝜃1,…,𝜃𝑃 ― 1,𝜃𝑃) ≤ 𝑥1 ≤ 𝑞𝑃 + 1(𝜃1,…,𝜃𝑃 ― 1,𝜃𝑃)
⋮

𝑘𝑃 + 𝑁(𝜃1,…,𝜃𝑃,𝑥1,…,𝑥𝑁 ― 1) ≤ 𝑥𝑁 ≤ 𝑞𝑃 + 𝑁(𝜃1,…,𝜃𝑃,𝑥1,…,𝑥𝑁 ― 1)

(11)

All the lower and upper bounds of the process parameters are explicit expressions. For a given 

, the lower and upper bound of , i.e.,  and , (𝜃1,…,𝜃𝑝) 𝜃𝑝 + 1 𝑘𝑝 + 1(𝜃1,…,𝜃𝑝) 𝑞𝑝 + 1(𝜃1,…,𝜃𝑝)

become constants. 

The CAD method mainly contains two stages: projection and lifting. In the projection stage, 

the key point is to calculate discriminants and resultants30 of polynomials, which can find the 

tangency and intersection points in each dimension. In this way, the space in each dimension 

can be decomposed by using these points. For the example in Equation (6), as shown in Figure 

3(a), if the triangular structure is set as , the green tangency points and orange 𝜃1 ≺ 𝜃2

intersection points can be calculated by

discriminant(𝑔1,𝜃2) = 38 ― 52𝜃1 + 25𝜃2
1 ― 4𝜃3

1,
discriminant(𝑔2,𝜃2) = ―4(2 ― 4𝜃1 + 𝜃2

1),
resultant(𝑔1,𝑔2,𝜃2) = 0.25 ∗ (473 ― 1440𝜃1 + 1700𝜃2

1 ― 1012𝜃3
1 +

                                            328𝜃4
1 ― 56𝜃5

1 + 4𝜃6
1)

(12)

Equation (12) are univariate polynomials of , so that  is eliminated. By performing the real 𝜃1 𝜃2

root isolation algorithm31, five distinct real roots of  for these polynomials can be obtained.𝜃1

0.585786 < 0.910159 < 1.35389 < 2.88639 < 3.41421

Figure 3(a) illustrates that the tangency and intersection points can be projected onto the -𝜃1

axis, i.e., A1: (0.585786, 0), A2: (0.910159, 0), A3: (1.35389, 0), A4: (2.88639, 0), A5: (3.41421, 

0). The boundary between any two adjacent projection points is continuously differentiable. 

Based on these projection points, the entire two-dimensional (2D) space can be decomposed 

into six cylindrical 2D subspaces, i.e., [0, A1], [A1, A2], [A2, A3], [A3, A4], [A4, A5], [A5, 4]. 

In the lifting stage, these cylindrical 2D subspaces should be checked successively. Taking the 
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subspace on [A1, A2] as an example, in Figure 3(b), the steps of the lifting stage are as follows.

(1) C1 is the midpoint of A1 and A2. After substituting C1,  and  can be converted to𝑔1 𝑔2

𝑔1: ― 2.46264 ― 1.25203 ∗ ( ― 2 + 𝜃2) + ( ― 2 + 𝜃2)2

𝑔2: ― 0.4324275990814064 + ( ― 2 + 𝜃2)2 (13)

Thus, the intersections with  and  on the vertical line can be solved, i.e., B1: (0.747973, 𝑔1 𝑔2

0.936478), B2: (0.747973, 1.34241), B3: (0.747973, 2.65759). 

(2) Based on B1, B2, B3 and the corresponding curves, the 2D cylindrical subspace on [A1, A2] 

can be decomposed into four parts, which are marked by different colors in Figure 3(b). 

(3) On the vertical line, four sampling points in four parts can be determined, i.e., C1, C2, C3 

and C4, where C2, C3 and C4 are the midpoints of [B1, B2], [B2, B3] and [B3, 4], respectively.

(4) C1, C2, C3 and C4 are used to check the feasibility of all the subspaces. When substituting 

C1 to  and , we can get ( , ), which means that the subspace including C1 𝑔1 𝑔2 𝑔1 > 0 𝑔2 > 0

is infeasible, because they cannot meet the original signs, , . Similarly, for C2, 𝑔1 ≤ 0 𝑔2 ≤ 0

C3 and C4, we can obtain ( , ), ( , ) and ( , ), 𝑔1 < 0 𝑔2 > 0 𝑔1 < 0 𝑔2 < 0 𝑔1 < 0 𝑔2 > 0

respectively, and only the yellow subspace including C3 is feasible. Therefore, it is a part 

of the entire feasible region.

(5) As shown in Figure 3(c), on [A1, A2], the upper boundary of the feasible subspace is (D1, 

D3) and the lower boundary is (D1, D2). The coordinate of B3 is (0.747973, 2.65759). In 

Equation (13), 2.65759 is the second root of ; thus, for any value of  in [A1, A2], 𝑔2 = 0 𝜃1

the corresponding values of  on (D1, D3) are the second roots of , denoted 𝜃2 𝑔2(𝜃1,𝜃2) = 0

as . Similarly, the values of  on lower boundary (D1, D2) are the first roots 𝑅𝑜𝑜𝑡(𝑔2&, 2) 𝜃2

of , i.e., . Therefore, this subregion can be expressed as𝑔2(𝜃1,𝜃2) = 0 𝑅𝑜𝑜𝑡(𝑔2&, 1)

{0.585786 ≤ 𝜃1 ≤ 0.910159
𝑅𝑜𝑜𝑡(𝑔2&, 1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝑔2&, 2) (14)

which is a triangular and explicit expression of this feasible subspace. Moreover, since  𝑔2

Page 52 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

13

is a bivariate polynomial,  can be solved explicitly, and Equation (14) is reformulated as,𝜃2

{0.585786 ≤ 𝜃1 ≤ 0.910159
2 ― ―2 + 4𝜃1 ― 𝜃2

1 ≤ 𝜃2 ≤ 2  + ―2 + 4𝜃1 ― 𝜃2
1

(15)

After checking all the cylindrical subspaces, as shown in Figure 3(d) and Figure 3(e), another 

two feasible subspaces can be found. Finally, we know that the feasible region consists of three 

subregions, as shown in Figure 3(f). Equation (16) shows the complete triangular and explicit 

expressions of the feasible region. The command CylindricalDecomposition in Mathematica32 

can perform the CAD method. 

1.{0.585786 ≤ 𝜃1 ≤ 0.910159
2 ― ―2 + 4𝜃1 ― 𝜃2

1 ≤ 𝜃2 ≤ 2  + ―2 + 4𝜃1 ― 𝜃2
1

2.{0.910159 < 𝜃1 ≤ 1.35389
0.5(6 ― 𝜃1) ― 0.5 38 ― 52𝜃1 + 25𝜃2

1 ― 4𝜃3
1 ≤ 𝜃2 ≤

2  + ―2 + 4𝜃1 ― 𝜃2
1

3.{1.35389 < 𝜃1 ≤ 2.88639
0.5(6 ― 𝜃1) ― 0.5 38 ― 52𝜃1 + 25𝜃2

1 ― 4𝜃3
1 ≤ 𝜃2 ≤

0.5(6  ― 𝜃1) + 0.5 38  ― 52𝜃1 + 25𝜃2
1 ― 4𝜃3

1

(16)

   

(a)                                                                     (b)
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(c)                                                                     (d)

   

(e)                                                                     (f)

Figure 3. Solution process of the CAD method for the example.

According to the KS function, for a fixed , the design space can be approximated by𝜌

𝑦≔𝐾𝑆(𝜽,𝒙) ≤ 0 (17)

However, Equation (17) is an implicit and transcendental function, which cannot be directly 

used for symbolic computation. A common way is to create its polynomial surrogate model. 

As shown in Figure 4,  aggregates all the inequality constraints. The surrogate model 𝐾𝑆(𝜽,𝒙)

 can then be created through polynomial fitting, while the state variables  are eliminated. 𝑦(𝜽) 𝒙

Thus, the CAD result of  contains a series of subspaces, each of which is a triangular 𝑦(𝜽) ≤ 0

system of ,…, .𝜃1  𝜃𝑃
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Figure 4. Triangular structure obtained by the CAD method.

Once the polynomial surrogate model  is obtained, it is convenient to analyze the design 𝑦(𝜽)

space, because the space can be described by a single constraint. Moreover, as shown in Figure 

2(b), the smooth profile of the KS function has no intersection points, and we do not need to 

calculate the resultant for a single KS function. 

5. Polynomial fitting of KS function through adaptive sampling 

To create a polynomial surrogate model of the KS function, an adaptive sampling strategy is 

proposed. According to Equation (17), a point on the boundary of the KS space is denoted as 

{(𝜃1,…,𝜃𝑃) ∈ ℝ𝑃|𝐾𝑆(𝜽,𝒙) = 0} (18)

which can be solved by the following system of equations,

𝐾𝑆(𝜽,𝒙) = 0
ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼 (19)

Note that, since the bounds of process parameters are also used for formulating the KS function, 

the KS space must be a closed space. If the design space is described by a set of inequality 

constraints, the traditional methods to build a surrogate model need to sample enough points 

over the whole space. However, in this work, a single equation, , can describe the 𝐾𝑆(𝜽,𝒙) = 0

entire boundary of the KS space. Thus, we only focus on exploring enough sampling points on 

the boundary to create the surrogate model. The solution strategy of the proposed adaptive 
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sampling method is shown in Figure 5, which contains four steps:

(1) Initial LHS sampling. For a given number of sampling points, perform Latin hypercube 

sampling (LHS) over the space of process parameters. Those feasible sampled points in the 

feasible region forms a set A;

(2) Expanded boundary points. Through each pair of points in A, a line can be generated. Two 

intersection points of the line and the boundary can be obtained. All the intersection points 

on the boundary form an initial set B;

(3) Adaptive sampling. Based on the KS function, a simple DFO model of adaptive sampling 

is proposed. K-fold cross validation is applied to evaluate the stopping criteria. For each 

adaptive sampling point in set C,  points around the current adaptive point can be found 𝑃

through perturbation, which can form set D. All four sets are used for polynomial fitting.

(4) Explicit description. Through the CAD method, the fitted polynomial model  can be 𝑦(𝜽)

used to deduce the explicit expression of the KS space.

Figure 5. Solution strategy of the adaptive sampling method.
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5.1.  Initial LHS sampling

The LHS strategy33 is applied to generate a given number of sampling points, denoted as , 𝑛𝑢𝑚

in the process parameter space, where upper and lower bounds are required. Then, a feasibility 

check needs to be performed by evaluating  at each LHS point. The presence of the 𝐾𝑆(𝜽,𝒙)

state variables implies that the KS space is described by a set of multivariate functions of  𝜽

and . Thus, the feasibility can be checked by solving the following NLP model,𝒙

𝑢𝑎 = min 𝑢
𝑠.𝑡.  𝐾𝑆(𝜽,𝒙) ≤ 𝑢
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼

(20)

where  indicates that the point is feasible. All the feasible LHS sampling points and the 𝑢𝑎 ≤ 0

corresponding output of  form set . Note that the number of 𝐾𝑆(𝜽,𝒙) 𝐀 : = {(𝜽𝑎,𝑦𝑎), ∀𝑎 ∈ 𝑆𝐴}

LHS sampling points needs to be specified in advance. The more sampling points specified, 

the larger set A obtained, and the easier polynomial fitting will be.

Figure 6. Initial LHS sampling of the example. ( )𝜌 = 2, 𝑛𝑢𝑚 = 40

For the above-mentioned example with , the sampling ranges are set to [0, 4] and [0, 4] 𝜌 = 2

for  and . As shown in Figure 6, 40 points are sampled, and 9 of them are feasible.𝜃1 𝜃2

5.2.  Expanded boundary points

To build the surrogate model, we need to find enough sampling points on the boundary of the 
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KS space. In this subsection, based on the properties of the KS function and the obtained initial 

set A, an approach to efficiently locate many points on the boundary is proposed. For a pair of 

points in the set A, e.g.,  and , there are two directions,  and , which can be 𝜽1 𝜽2 𝜽1→𝜽2 𝜽2→𝜽1

formulated as follows,

𝜽1→𝜽2:   𝜽 = 𝜽1 + 𝛿 ∙ (𝜽2 ― 𝜽1)
𝜽2→𝜽1:   𝜽 = 𝜽2 + 𝛿 ∙ (𝜽1 ― 𝜽2) (21)

Along both directions, we can find two intersection points on the KS boundary by solving the 

following two optimization problems, 

max 𝛿
𝑠.𝑡.   𝐾𝑆(𝜽,𝒙) = 0
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼
         𝜽 = 𝜽1 + 𝛿 ∙ (𝜽2 ― 𝜽1)

(22)

max 𝛿
𝑠.𝑡.  𝐾𝑆(𝜽,𝒙) = 0
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼
         𝜽 = 𝜽2 + 𝛿 ∙ (𝜽1 ― 𝜽2)

(23)

If the set A contains  points, the total number of directions for all the pairs of points can be 𝑆𝐴

calculated from Equation (24), which is a permutation problem. The obtained boundary points 

and the output of  then define the set of initial boundary points, 𝐾𝑆(𝜽,𝒙) 𝐁 : = {(𝜽𝑏,𝑦𝑏), ∀𝑏 ∈ 𝑆𝐵

. For example, in Figure 7, 4 points can generate 4 3=12 boundary points. } ×

𝑆𝐵 = 𝐴2
𝑆𝐴 = 𝑆𝐴 ∙ (𝑆𝐴 ― 1) (24)

1

2

3

4

Figure 7. Illustration of expanded boundary points via line projection.
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Figure 8. Sampling points of the example. ( ).𝜌 = 2, 𝑛𝑢𝑚 = 40

For this example, 9 8=72 initial boundary points can be obtained by solving Equations (22) ×

and (23), which are marked as yellow points in Figure 8. Note that, even though we only have 

9 feasible LHS feasible points, 72 boundary points can be directly found in this step.

5.3.  Adaptive sampling

Based on the set of feasible LHS points A and the initial set of expanded boundary points B, a 

common multivariable polynomial fitting method can be executed to build the surrogate model 

between the process parameters  and the response , denoted as ,𝜽 = (𝜃1,…,𝜃𝑃) 𝑦 𝑦(𝜽)

𝑦(𝜽) = ∑𝐾

𝑘 = 0
𝑐𝑘𝜙𝑘(𝜽)   𝑤ℎ𝑒𝑟𝑒 𝜙𝑘(𝜽) = 𝜃𝑘1

1 ∙∙∙ 𝜃𝑘𝑃
𝑃 (25)

where  and . The sum is taken over all indices (nonnegative integer vectors) with 𝑐𝑘 ∈ ℝ 𝑐𝐾 ≠ 0

. For example, a bi-variable polynomial with , is formulated as follows,𝑘𝑃 ≤ 𝑑𝑒𝑔 𝑑𝑒𝑔 = 3

𝑦(𝜃1,𝜃2) = 𝑐0 + 𝑐1𝜃2 + 𝑐2𝜃2
2 + 𝑐3𝜃3

2 + 𝑐4𝜃1 + 𝑐5𝜃1𝜃2 +
𝑐6𝜃1𝜃2

2 + 𝑐7𝜃1𝜃3
2 + 𝑐8𝜃2

1 + 𝑐9𝜃2
1𝜃2 + 𝑐10𝜃2

1𝜃2
2 +

𝑐11𝜃2
1𝜃3

2 + 𝑐12𝜃3
1 + 𝑐13𝜃3

1𝜃2 + 𝑐14𝜃3
1𝜃2

2 + 𝑐15𝜃3
1𝜃3

2

The K-fold cross-validation (CV) method34 is used to evaluate the result of polynomial fitting. 

The number of folds, , should be specified in advance.  is given as the stop criteria of CV. 𝑘𝑓 𝜀𝐶𝑉

The set of B, C and D is split into  folds for cross validation, and the set A is used for each 𝑘𝑓
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fold. The maximum MSE (mean squared error) for all folds is used for comparison with . 𝜀𝐶𝑉

Moreover, the data set of process parameters should be normalized before polynomial fitting, 

denoted as . Then, a new point  can be roughly scaled by the current stored minimization 𝜽 𝜽

 and maximization , and the corresponding output of the fitted model is ,𝜽𝑚𝑖𝑛 𝜽𝑚𝑎𝑥 𝑦(𝜽)

𝜽 =
𝜽 ― 𝜽𝑚𝑖𝑛

𝜽𝑚𝑎𝑥 ― 𝜽𝑚𝑖𝑛 (26)

The purpose of adaptive sampling is to search the design space for areas of model inconsistency 

or model mismatch and to find points that maximize the model error. Since only the points on 

the boundary are considered, the adaptive sampling model is proposed as, 

max |𝑦(𝜽)|
𝑠.𝑡.  𝐾𝑆(𝜽,𝒙) = 0
         ℎ𝑖(𝜽,𝒙) = 0,   ∀𝑖 ∈ 𝐼
          𝜽𝑳 ≤ 𝜽 ≤ 𝜽𝑼

(27)

After relaxing the objective function  into two constraints,  and , |𝑦(𝜽)| 𝑦(𝜽) ≤ 𝑍 ― 𝑦(𝜽) ≤ 𝑍

we can apply an NLP solver to solve Equation (27); however, most adaptive sampling points 

are likely to fall into the same area that has the maximum model error and cannot escape to 

explore other areas, which is not conducive to polynomial fitting. Therefore, in order to explore 

the areas that contain more local information, we transform Equation (27) into the following 

derivative-free optimization (DFO) model,

min ― |𝑦(𝜽)| + 𝑀 ∙ 𝐾𝑆(𝜽)
𝑠.𝑡.𝜽𝑳 ≤ 𝜽 ≤ 𝜽𝑼 (28)

where M is a penalty coefficient. Compared with Equation (27), the equality system, i.e., ℎ𝑖

, can be viewed as a black box. This black-box model is used to calculate the (𝜽,𝒙) = 0, ∀𝑖 ∈ 𝐼

state variables x for each iteration of adaptive sampling, and then to evaluate the objective 

function of Equation (28). 

A DFO solver, Py-BOBYQA, which is a Python implementation of the BOBYQA (Bound 

Optimization BY Quadratic Approximation) Fortran solver by Powell35, is employed to solve 
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the adaptive sampling model. In this work, the purpose of adaptive sampling is to explore local 

areas leading to model mismatch as many as possible, rather than finding global optima in each 

iteration. Py-BOBYQA is based on the trust-region method, and it has superior performance 

in finding local solutions of nonlinear and nonconvex problems. Thus, we use this DFO solver 

to address the adaptive sampling problem. In addition, the initial values are of great importance 

to the results of the DFO solver. To take a more complete search, a reproducible random 

sequence of the data set is generated as the initial values, and more local optima can be found.

The obtained adaptive sampling points form set . To further expand the 𝐂 : = {(𝜽𝑐,𝑦𝑐), ∀𝑐 ∈ 𝑆𝐶}

points on the boundary, for a point in C, , a perturbation method is 𝜽𝑐 : = (𝜃𝑐1,…,𝜃𝑐𝑖,…,𝜃𝑐𝑃
)

proposed to find P points around , where P is the dimension of ,𝜽𝑐 𝜽

𝜽𝑖
𝑐 = (𝜃𝑖

𝑐1,…𝜃𝑖
𝑐𝑖,…,𝜃𝑖

𝑐𝑃),   ∀𝑖 ∈ 𝑃 (29)

First, we can find a point  in set A, which has the longest Euclidean 𝜽𝑎 : = (𝜃𝑎1,…,𝜃𝑎𝑖,…,𝜃𝑎𝑃
)

distance to . Then, assuming that the perturbation factor is , if  is located on the left side 𝜽𝑐 𝛼 𝜽𝑎

of  on the coordinate , i.e., ,  can be calculated by,𝜽𝑐 𝜃𝑖 𝜃𝑎𝑖 < 𝜃𝑐𝑖 𝜃𝑖
𝑐𝑖

𝜃𝑖
𝑐𝑖 = 𝜃𝑐𝑖 ∙ (1 + 𝛼),   𝑖 ∈ {1,2,…,𝑃} (30)

If  is located on the right side of , i.e., ,  can be calculated by,𝜽𝑎 𝜽𝑐 𝜃𝑎𝑖 > 𝜃𝑐𝑖 𝜃𝑖
𝑐𝑖

𝜃𝑖
𝑐𝑖 = 𝜃𝑐𝑖 ∙ (1 ― 𝛼),   𝑖 ∈ {1,2,…,𝑃} (31)

If , . For each point , the direction , can be formulated as,𝜃𝑎𝑖 = 𝜃𝑐𝑖 𝜃𝑖
𝑐𝑖 = 𝜃𝑐𝑖 𝜽𝑖

𝑐 𝜽𝑎⟶𝜽𝑖
𝑐

𝜽 = 𝜽𝑎 + 𝛿 ∙ (𝜽𝑖
𝑐 ― 𝜽𝑎) (32)

Through Equation (22), the intersection point on the KS boundary can be solved. All such 

intersection points can form set .𝐃 : = {(𝜽𝑑,𝑦𝑑), ∀𝑑 ∈ 𝑆𝐷}

To illustrate the above method, Figure 9 shows geometric interpretation of a bivariate case. In 

Figure 9(a),  is the current adaptive sampling point, and the blue point 𝜽𝑐 = (𝜃𝑐1,𝜃𝑐2
) 𝜽𝑎 =

 is a point in set A which is the farthest point from . Since the dimension P is 2 and (𝜃𝑎1,𝜃𝑎2
) 𝜽𝑐
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 is on the left of , two perturbation points around  can be expressed as follows,𝜽𝑎 𝜽𝑐 𝜽𝑐

𝜽1
𝑐 = (𝜃𝑐1 ∙ (1 + 𝛼),𝜃𝑐2

)

𝜽2
𝑐 = (𝜃𝑐1,𝜃𝑐2 ∙ (1 + 𝛼))

Thus, the following two direction formulations can be used to find two intersection points,  𝜽1
𝑑

and , on the boundary,𝜽2
𝑑

𝜽 = 𝜽𝑎 + 𝛿 ∙ (𝜽1
𝑐 ― 𝜽𝑎)

𝜽 = 𝜽𝑎 + 𝛿 ∙ (𝜽2
𝑐 ― 𝜽𝑎)

Similarly, as shown in Figure 9(b),  is on the right of , thus,𝜽𝑎 𝜽𝑐

𝜽1
𝑐 = (𝜃𝑐1 ∙ (1 ― 𝛼),𝜃𝑐2

)

𝜽2
𝑐 = (𝜃𝑐1,𝜃𝑐2 ∙ (1 ― 𝛼))

   

(a)                                                                     (b)

Figure 9. Perturbation points for an adaptive sampling point.

For the example, the maximum number of iterations for adaptive sampling is set to 50. Figure 

8 shows the results of four different sets of points. All the points are used for polynomial fitting. 

Figure 10(a) shows the MSE values of 4-fold CV. The final surrogate model with 4 degrees is
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𝑦0(𝜃1,𝜃2) = 0.332558  ― 4.924684
_
𝜃1 + 27.677621

_
𝜃

2

1 ― 48.130965
_
𝜃

3

1 + 25.497110
_
𝜃

4

1

― 1.355176
_
𝜃2 + 5.423242

_
𝜃1

_
𝜃2 ― 54.471859

_
𝜃

2

1

_
𝜃2 + 89.127179

_
𝜃

3

1

_
𝜃2

― 43.856384
_
𝜃

4

1

_
𝜃2 + 1.129803

_
𝜃

2

2 ― 18.827193
_
𝜃1

_
𝜃

2

2 + 60.655279
_
𝜃

2

1

_
𝜃

2

2

+ 21.796085
_
𝜃

3

1

_
𝜃

2

2 ― 44.339153
_
𝜃

4

1

_
𝜃

2

2 ― 0.2916
_
𝜃

3

2 + 14.54047
_
𝜃1

_
𝜃

3

2

+ 54.884484
_
𝜃

2

1

_
𝜃

3

2 ― 326.654775
_
𝜃

3

1

_
𝜃

3

2 + 223.200627
_
𝜃

4

1

_
𝜃

3

2 + 1.887766
_
𝜃

4

2

― 11.284009
_
𝜃1

_
𝜃

4

2 ― 44.465319
_
𝜃

4

2 + 212.964235
_
𝜃

3

1

_
𝜃

4

2 ― 134.362005
_
𝜃

4

1

_
𝜃

4

2

 
(a)                                                                      (b)

Figure 10. Surrogate model of the example ( ).𝜌 = 2, 𝑛𝑢𝑚 = 40

5.4.  Explicit description

Since the sampling data has been normalized before performing polynomial fitting, the profile 

of the KS space, , should be limited within a square with [0,1] sides. Considering the 𝑦(𝜽) ≤ 0

polynomial fitting error, the profile may be slightly outside of the square. Hence, the KS space 

based on the surrogate model is the intersection of  and , i.e.,𝑦(𝜽) ≤ 0 0 ≤ 𝜽 ≤ 1

{𝜽 ∈ ℝ𝑃|𝑦(𝜽) ≤ 0 ∧ 0 ≤ 𝜽 ≤ 1} (33)

The CAD method can transform Equation (33) into a triangular system, which consists of a 

series of subspaces, and each subspace is formulated as, 

𝑘′1 ≤ 𝜃1 ≤ 𝑞′1
𝑘′2(𝜃1) ≤ 𝜃2 ≤ 𝑞′2(𝜃1)

⋮
𝑘′𝑃(𝜃1,…,𝜃𝑃 ― 1) ≤ 𝜃𝑃 ≤ 𝑞′𝑃(𝜃1,…,𝜃𝑃 ― 1)

(34)
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For the example, the corresponding triangular system with  is as follows:𝜃1 ≺ 𝜃2

 1:{0 ≤ 𝜃1 < 0.0964731
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 2)

 2:{0.0964731 ≤ 𝜃1 < 0.137589
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,3) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,4)

 3:{0.137589 ≤ 𝜃1 ≤ 0.266024
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 3)

 4:{0.266024 < 𝜃1 ≤ 0.290682
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 1

 5:{0.290682 < 𝜃1 ≤ 0.376366
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 3)

 6:{0.376366 < 𝜃1 ≤ 0.732135
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2)

 7:{0.732135 < 𝜃1 ≤ 0.91514
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&, 2)

 8:{0.91514 < 𝜃1 ≤ 1
𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,2)

where  is a pure function with the parameter , which is provided in Supporting 𝛤0(𝜃1, #1) 𝜃1

Information.  means nth root of  for a given . The result 𝑅𝑜𝑜𝑡(𝛤0(𝜃1, #1)&,𝑛) 𝛤0(𝜃1, #1) = 0 𝜃1

indicates that the bounds of  are explicit expressions of . To further test the feasibility of 𝜃2 𝜃1

the subspaces, a random point  can be converted into the KS space by Equation (35), denoted 𝜽𝑠

as .  means that the current subspace is feasible,𝜽𝑠 𝐾𝑆(𝜽𝑠) ≤ 0

𝜽𝑠 = 𝜽𝑠 ∙ (𝜽𝑚𝑎𝑥 ― 𝜽𝑚𝑖𝑛) + 𝜽𝑚𝑖𝑛 (35)

In the original data set, the maximum values of  and  are 2.809134, 3.03503, and the 𝜃1 𝜃2

minimum values are 0.653351, 1.251803, respectively. Taking the first subspace as an example, 

a chosen point is  = (0.05, 0.4) and the corresponding  is (0.761141, 1.965094). 𝜽𝑠 𝜽𝑠 𝐾𝑆(𝜽𝑠)

 means that the first subspace is feasible. Similarly, we can find that the = ―0.207169 < 0

other subspaces are also feasible. The final KS space is shown in Figure 10(b).

Note that through Equations (26), (34) and (35), the CAD result can be used to evaluate the KS 

space. Each point satisfying  can be transformed into the KS space. The triangular 𝑦(𝜽) ≤ 0
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formulation of KS space is formulated as follows,

𝜽𝑚𝑖𝑛
1 + (𝜽𝑚𝑎𝑥

1 ― 𝜽𝑚𝑖𝑛
1 ) ∙ 𝑘′1 ≤ 𝜃1 ≤ 𝑞′1 ∙ (𝜽𝑚𝑎𝑥

1 ― 𝜽𝑚𝑖𝑛
1 ) + 𝜽𝑚𝑖𝑛

1

𝜽𝑚𝑖𝑛
2 + (𝜽𝑚𝑎𝑥

2 ― 𝜽𝑚𝑖𝑛
2 ) ∙ 𝑘′2( 𝜃1 ― 𝜽𝑚𝑖𝑛

1

𝜽𝑚𝑎𝑥
1 ― 𝜽𝑚𝑖𝑛

1
) ≤ 𝜃2 ≤ 𝑞′2( 𝜃1 ― 𝜽𝑚𝑖𝑛

1

𝜽𝑚𝑎𝑥
1 ― 𝜽𝑚𝑖𝑛

1
) ∙ (𝜽𝑚𝑎𝑥

2 ― 𝜽𝑚𝑖𝑛
2 ) + 𝜽𝑚𝑖𝑛

2

⋮

(36)

Moreover, another critical parameter, the number of initial LHS points, , is also discussed. 𝑛𝑢𝑚

First, compared with the result shown in Figure 8, we apply the algorithm by setting num = 80. 

In this case, 16 feasible LHS points can be found, and more expanded boundary points can be 

located. In Figure 11, the denser boundary points can generate a more precise surrogate model.

(a)                                                                      (b)

Figure 11. Sampling points and surrogate model of the example. ( ).𝜌 = 2, 𝑛𝑢𝑚 = 80

(a)                                                                      (b)

Figure 12. Sampling points and surrogate model of the example. ( ).𝜌 = 5, 𝑛𝑢𝑚 = 40

Then, another key parameter is . Compared with , we test the KS function with . 𝜌 𝜌 = 2 𝜌 = 5

All sampling points are shown in Figure 12(a). The KS space is illustrated in Figure 12(b). We 
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can see that the shape of the KS space with  more completely covers the feasible region 𝜌 = 5

than Figure 11(b). Therefore, we can conclude that more LHS points are more conducive to 

the polynomial fitting, and larger  can make the profile closer to the original feasible region.𝜌

6. Case studies

Two case studies are presented to illustrate the proposed design space description method. 

Pyomo36 is applied to define the models. The GAMS global solver, BARON, is used to solve 

the NLP models through the interface of Pyomo and GAMS, and Py-BOBYQA is applied to 

solve the DFO models. For both cases, the parameters in Table 1 are set to the same values. 

The difference is the parameter , which will be specified at different values.𝜌

Table 1. The specifications of the parameters.

Initial LHS 

points, num

Degree of polynomial,

deg

Perturbation,

𝛼

Maximum

Iteration

MSE of CV, 

𝜀𝐶𝑉

K-fold,

𝑘𝑓

100 4 0.2 50 10-10 4

6.1.  CSTR reaction

This case study deals with a 2-step reaction with the following mechanism10,37,

𝐴 + 𝐵
𝑘1

𝐶,  𝑟1 = 𝑘1 ∙ 𝑐𝐴 ∙ 𝑐𝑏

𝐶
𝑘2

𝐷 + 𝐸,  𝑟2 = 𝑘2 ∙ 𝑐𝑐

where  are the reaction rates. Two process parameters correspond to the residence time, , 𝑟𝑗 𝜃1

and the ratio of the concentration of B to A, .  correspond to the model parameters, which 𝜃2 𝑘𝑗

are fixed at their mean values {0.31051, 0.026650}. The feasible ranges of  and  are given 𝜃1 𝜃2

as follows.

0 ≤ 𝜃1 ≤ 550
0 ≤ 𝜃2 ≤ 6

The mass balance of the CSTR reaction is given by the following set of equations,

Page 66 of 80

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

27

𝑐0
𝐴 ― 𝑐𝐴 + 𝜃1 ∙ ( ― 𝑟1) = 0

𝑐0
𝐵 ― 𝑐𝐵 + 𝜃1 ∙ ( ― 𝑟1) = 0

𝑐0
𝐶 ― 𝑐𝐶 + 𝜃1 ∙ (𝑟1 ― 𝑟2) = 0

𝑐0
𝐷 ― 𝑐𝐷 + 𝜃1 ∙ 𝑟2 = 0

𝑐0
𝐸 ― 𝑐𝐸 + 𝜃1 ∙ 𝑟2 = 0

where  are initial concentrations . The 𝑐0
𝑖 {𝑐0

𝐴 = 0.53, 𝑐0
𝐵 = 0.53 ∙ 𝜃2,𝑐0

𝐶 = 0,𝑐0
𝐷 = 0,𝑐0

𝐸 = 0}

quality constraints are the minimum yield of D and the minimum ratio of D to unreacted species.

𝑐𝐷

𝑐0
𝐴 ― 𝑐𝐴

≥ 0.9

𝑐𝐷

𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶
≥ 0.2

In this case,  is fixed to 20. Figure 13(a) shows the feasible LHS points and updated points. 𝜌

All the updated points are located at the boundary of the KS space, and we can create the 

following 4-degree polynomial surrogate model with this small amount of sampling points.

𝑦1(𝜃1,𝜃2) = 0.00003937  + 0.001384
_
𝜃1 ― 0.000118

_
𝜃

2

1 ― 0.003772
_
𝜃

3

1 + 0.002389
_
𝜃

4

1

― 0.000678
_
𝜃2 ― 0.165238

_
𝜃1

_
𝜃2 ― 0.563174

_
𝜃

2

1

_
𝜃2 + 0.265011

_
𝜃

3

1

_
𝜃2

+ 0.464374
_
𝜃

4

1

_
𝜃2 + 0.003796

_
𝜃

2

2 ― 0.790496
_
𝜃1

_
𝜃

2

2 + 10.757368
_
𝜃

2

1

_
𝜃

2

2

― 15.685365
_
𝜃

3

1

_
𝜃

2

2 + 5.714148
_
𝜃

4

1

_
𝜃

2

2 ― 0.007253
_
𝜃

3

2 + 2.002811
_
𝜃1

_
𝜃

3

2

― 21.109944
_
𝜃

2

1

_
𝜃

3

2 + 31.940187
_
𝜃

3

1

_
𝜃

3

2 ― 12.825599
_
𝜃

4

1

_
𝜃

3

2 + 0.004422
_
𝜃

4

2

― 1.035763
_
𝜃1

_
𝜃

4

2 + 10.935095
_
𝜃

2

1

_
𝜃

4

2 ― 16.595443
_
𝜃

3

1

_
𝜃

4

2 + 6.691871
_
𝜃

4

1

_
𝜃

4

2

The profile of  is shown in Figure 13(b). Because of normalization, the profile is 𝑦1(𝜃1,𝜃2) = 0

limited within a square with [0,1] sides.  can be used to describe the KS space. 𝑦1(𝜃1,𝜃2) ≤ 0

Through the CAD method, the equivalent triangular system can be obtained, which consists of 

3 explicit 2D subspaces.

1:{0 ≤ 𝜃1 ≤ 0.107855
𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&,2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&, 3)

2:{0.107855 < 𝜃1 < 0.90871
𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&, 2)

3:{0.90871 ≤ 𝜃1 ≤ 1
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤1(𝜃1, #1)&, 2)
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where  is provided in Supporting Information. Due to the error of polynomial fitting, 𝛤1(𝜃1, #1)

the feasibility of each subspace must be tested. In the stored data set, the maximum values of 

 and  are 549.94261, 5.491875; the minimum values are 337.704, 0.226248. Taking the 𝜃1 𝜃2

second subspace as an example, a sampling point is chosen as  = (0.5, 0.8).  = (443.823, 𝜽𝑠 𝜽𝑠

4.43875) is calculated by Equation (35).  indicates that the second 𝐾𝑆(𝜽𝑠) = ―0.011638 < 0

subspace is feasible. Similarly, the other subspaces can be tested for feasibility Moreover, to 

show the performance of , Figure 14 illustrates the results with . Since  is set smaller, 𝜌 𝜌 = 5 𝜌

the KS space is smaller than . The required CPU/Wall times are reported in Table 2.𝜌 = 20

 

(a)                                                                      (b)

Figure 13. Results of design space description for Case 1. ( , BARON)𝜌 = 20

 

(a)                                                                      (b)

Figure 14. Results of design space description for Case 1. ( , BARON)𝜌 = 5
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6.2.  Michael Addition Reaction

This case study deals with the Michael Addition Reaction with kinetics10 described by the 

following equations,

𝐴𝐻 + 𝐵
𝑘1

𝐴 ― + 𝐵𝐻 + ,  𝑟1 = 𝑘1 ∙ 𝑐𝐴𝐻 ∙  𝑐𝐵

𝐴 ― + 𝐶
𝑘2

𝐴𝐶 ― ,  𝑟2 = 𝑘2 ∙ 𝑐𝐴 ― ∙ 𝑐𝐶

𝐴𝐶 ― 𝑘3
𝐴 ― + 𝐶,  𝑟3 = 𝑘3 ∙ 𝑐𝐴𝐶 ―

𝐴𝐶 ― + 𝐴𝐻
𝑘4

𝐴 ― + 𝑃,  𝑟4 = 𝑘4 ∙ 𝑐𝐴𝐶 ― ∙ 𝑐𝐴𝐻

𝐴𝐶 ― + 𝐵𝐻 + 𝑘5
𝑃 + 𝐵,  𝑟5 = 𝑘5 ∙ 𝑐𝐴𝐶 ― ∙ 𝑐𝐵𝐻 +

where  are reaction rates. The rate constants  correspond to the model parameters, fixed at 𝑟𝑖 𝑘𝑖

their mean values: {49.7796, 8.9316, 1.3177, 0.3109, 3.8781}. The mass balance is as follows, 

𝑐0
𝐴𝐻 ― 𝑐𝐴𝐻 + 𝜃1 ∙ ( ― 𝑟1 ― 𝑟4) = 0

𝑐0
𝐵 ― 𝑐𝐵 + 𝜃1 ∙ ( ― 𝑟1 + 𝑟5) = 0

𝑐0
𝐶 ― 𝑐𝐶 + 𝜃1 ∙ ( ― 𝑟2 + 𝑟3) = 0

𝑐0
𝐴 ― ― 𝑐𝐴 ― + 𝜃1 ∙ (𝑟1 ― 𝑟2 + 𝑟3 + 𝑟4) = 0

𝑐0
𝐴𝐶 ― ― 𝑐𝐴𝐶 ― + 𝜃1 ∙ (𝑟2 ― 𝑟3 ― 𝑟4 ― 𝑟5) = 0

𝑐0
𝐵𝐻 + ― 𝑐𝐵𝐻 + + 𝜃1 ∙ (𝑟1 ― 𝑟5) = 0

𝑐0
𝑃 ― 𝑐𝑃 + 𝜃1 ∙ (𝑟4 + 𝑟5) = 0

Two quality constraints are specifying that the conversion of C must be greater than 90%, and 

that the concentration of  in the outlet must be less than 0.002, 𝐴𝐶 ―

𝑐0
𝐶 ― 𝑐𝐶 ― 𝑐𝐴𝐶 ―

𝑐0
𝐶

≥ 0.9

𝑐𝐴𝐶 ― ≤ 0.002

The initial concentrations { , , , , , , } are set to {0.3955, 0.3955/ , 𝑐0
𝐴𝐻 𝑐0

𝐵 𝑐0
𝐶 𝑐0

𝐴 ― 𝑐0
𝐴𝐶 ― 𝑐0

𝐵𝐻 + 𝑐0
𝑃 𝜃2

0.25, 0, 0, 0, 0}. The process parameters are the residence time  and the molar ratio .𝜃1 𝜃2

400 ≤ 𝜃1 ≤ 1400
10 ≤ 𝜃2 ≤ 30

The KS parameter  is fixed to 10. Figure 15(a) shows all the feasible LHS points and updated 𝜌

boundary points, which can demonstrate the boundary of the KS space. Based on all the points, 
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the polynomial surrogate model with four degrees can be created.

𝑦2(𝜃1,𝜃2) = 0.008668  ―0.070106
_
𝜃1 +0.180528

_
𝜃

2

1 ―0.193306
_
𝜃

3

1 +0.071808
_
𝜃

4

1

―1.627739
_
𝜃2 ―49.395899

_
𝜃1

_
𝜃2 +212.180206

_
𝜃

2

1

_
𝜃2 ―391.591254

_
𝜃

3

1

_
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(a)                                                                      (b)

 Figure 15. Results of design space description for Case 2. ( , BARON)𝜌 = 10

The profile of the surrogate model  is shown in Figure 15(b). Because of the 𝑦2(𝜃1,𝜃2) = 0

polynomial fitted error, the profile is slightly outside of the square. According to Equation (33), 

the CAD method can generate a triangular and explicit system as follows, where  is 𝛤2(𝜃1, #1)
provided in Supporting Information.

1:{0 ≤ 𝜃1 ≤ 0.118986
𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 2) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 3)

2:{0.118986 < 𝜃1 < 0.228252
𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&,1) ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&,2)

3:{0.228252 ≤ 𝜃1 ≤ 0.930122
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 2)

4:{0.930122 < 𝜃1 ≤ 0.990867
0 ≤ 𝜃2 ≤ 1

5:{0.990867 < 𝜃1 ≤ 1
0 ≤ 𝜃2 ≤ 𝑅𝑜𝑜𝑡(𝛤2(𝜃1, #1)&, 2)
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In the data set of polynomial fitting, the maximum values of  and  are 1400 and 29.9977, 𝜃1 𝜃2

and the minimum values are 644.084 and 10, respectively. Taking the third subspace as an 

example, a sampling point is chosen as  = (0.6, 0.5) and  is (1097.63, 19.9989). 𝜽𝑠 𝜽𝑠 𝐾𝑆(𝜽𝑠)

 means that the subspace is feasible. Moreover, Figure 16 illustrates the = ―0.250481 < 0

results with . For this case, Figure 15(b) and Figure 16(b) are almost the same, which 𝜌 = 5

indicates that  can provide a good approximation of the feasible region.𝜌 = 10

 

(a)                                                                      (b)

Figure 16. Results of design space description for Case 2. ( , BARON)𝜌 = 5

Table 2. Summary of model information and computational expense.

Model information Proposed method

Part 1 Part 2
Number of

eqs / ineqs

Number of 

variables
𝜌 Adaptive sampling and 

surrogate modeling

Explicit 

description 

Use CAD 

method only

20 154.29 / 687.98 (BARON) 0.23 / 0.24
Case 1 8 / 6 10

5 89.81 / 578.12 (BARON) 0.26 / 0.29
0.35 / 0.36

352.68 / 2279.72 (BARON) 0.25 / 0.27
10

251.68 / 476.16 (CONOPT4) 0.22 / 0.22

380.53/ 2701.63 (BARON) 0.25 / 0.25
Case 2 13 / 6 15

5
265.71 / 498.40 (CONOPT4) 0.20 / 0.21

>7200 / 

>7200*

*Cannot solve within 7200 seconds.

The computational time includes CPU time (s) / Wall time (s)

In Table 2, the model information of both cases and the computational times are summarized. 

Case 1 includes 8 equalities and 10 variables; Case 2 has a larger scale, involving 13 equalities 
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and 15 variables. The adaptive sampling and surrogate modeling are executed in Python, and 

the explicit description based on the CAD method is implemented in Mathematica. The CAD 

method transforms the surrogate model of KS function very fast. In addition, we also compare 

the computational time with using the CAD method only. The CAD method can directly solve 

Case 1 in 0.36s; however, Case 2 cannot be handled within 7200s, because of the larger scale. 

The proposed method can solve Case 2 in around 2500s when using the BARON solver.

7. Discussion

The proposed method consists of adaptive sampling and symbolic computation. There are some 

key points that can affect the results. To further clarify the performance of the proposed method, 

some discussion is provided in this section.

7.1.  Values of critical parameters

The critical parameters mainly contain the initial LHS points, num and the parameter of the KS 

function, ρ. As shown in Figure 8 and Figure 11a, it is obvious that more initial LHS points are 

specified, the denser the boundary points can be found, and the more accurate the surrogate 

model will be. In addition, note that there may be empty spaces on the boundary, e.g., Figure 

8. The main reasons are lack of feasible LHS points to generate the line projections on the 

boundary and/or lack of exploration during DFO search. The empty spaces can affect the 

polynomial fitting accuracy. In particular, if the empty area contains critical nonlinear features, 

the fitted polynomial will have a serious distortion. Thus, to reduce the empty areas, we can 

set a larger initial number of LHS points and a more stringent stopping criteria of adaptive 

sampling, including a larger iteration limit and a smaller termination error of K-fold cross 

validation.

Moreover, there are two main limitations for the KS function, i.e, the exponential functions can 

make the KS function strongly nonlinear; it is difficult to determine an appropriate value of ρ 
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for a specific problem. The different values of ρ have been compared in the example and cases. 

A small value of ρ may lead to an overly conservative KS function, while too large a value of 

ρ may make the KS function ill-conditioned and cause unstable convergence and making it 

difficult to solve. Therefore, there is a tradeoff between accuracy of the KS function and ease 

of finding its surrogate model. A larger value of ρ can make the envelope closer to the real 

constrains, but possibly capture the undesired complex nonlinearity as well. It is not easy to 

create an accurate surrogate model for the KS function with complex or nonlinear structures. 

For simplicity, in this work, the value of ρ needs to be specified in advance.

7.2.  Selection of NLP solvers

In the procedure of adaptive sampling, we propose two methods to expand the boundary points, 

as shown in Figure 7 and Figure 9. Because there must be two intersection points for a line and 

the boundary. The target is to locate both points; thus, the formula of the line should be defined 

by a parametric form, as shown in Equation (21). Both methods of expanding boundary points 

involve solving NLP models. 

The real intersection points refer to the global optimal solutions, and common NLP solvers 

cannot guarantee finding the global optima. In the above cases, the global NLP solver, BARON, 

is adopted, and the results show that we can locate the boundary points effectively. Moreover, 

it is worth noting that, as the value of ρ and the number of inequalities increases, the KS 

function will be very complex and highly nonlinear, which will cause unstable convergence. 

Therefore, BARON is often time consuming. To ease the computational burden, it is necessary 

to compare the performance with a local solver. The local NLP solver in GAMS, CONOPT4, 

is selected to deal with Case 1. The results shown in Figure 17 indicate that this local NLP 

solver is also acceptable, and the design space can be described accurately. However, compared 

with Figure 15(a), Figure 17(a) shows that some points in set B overlap on the points in set A 

and some are located inside. The main reason is that the optimization model converges to the 
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local solutions. Nonetheless, we also can use these points to build the surrogate model, because 

these points are located within the design space. The CPU/Wall time for using CONOPT4 is 

251.68s/476.16s, which is significantly less than using BARON. In addition, for an extremely 

complex and nonlinear model, BARON may require long computational times, and may not 

guarantee finding the global optimum for a fixed time limit. Therefore, there is also a tradeoff 

between the selection of solvers and the computational efficiency.

(a)                                                                      (b)

Figure 17. Results of design space description for Case 2. ( , CONOPT4)𝜌 = 10

7.3.  Effect of nonconvexity 

The above numerical example and the Michael addition reaction case involve non-convex 

feasible spaces. Figure 2 indicates that the non-convex boundary can be described more 

accurately as the value of ρ increases. To further show the characteristics and performances of 

the proposed method, the example shown in Equation (6) is modified as Equation (37), which 

has a more nonconvex feasible region. The parameters are set to .𝜌 = 5, 𝑛𝑢𝑚 = 80

𝑔1: ― ((𝜃2 ― 2)2 + (𝜃1 ― 2)3 + (𝜃2 ― 2)(𝜃1 ― 2) ― 0.5) ≤ 0
𝑔2:(𝜃2 ― 2)2 + (𝜃1 ― 2)2 ― 2 ≤ 0
𝑔3:𝜃1 ― 4 ≤ 0
𝑔4: ―𝜃1 ≤ 0
𝑔5:𝜃2 ― 4 ≤ 0
𝑔6: ― 𝜃2 ≤ 0

(37)
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In this case, BARON and CONOPT4 are compared. Figure 18(a) indicates that BARON cannot 

capture the inner nonconvex areas, because the solutions are always converged to the global 

maxima, i.e., the outermost boundary points. Thus, a large empty area on the boundary can be 

generated. By comparison, the local solver CONOPT4 can converge to local solutions, and the 

inner nonconvex areas can be described more completely, as shown in Figure 18(b). Based on 

these points, Figure 19 shows that the surrogate model can be created effectively. Therefore, 

the local solvers are more suitable for the problems with strongly nonconvex feasible regions. 

 

(a)                                                                      (b)

Figure 18. Sampling points of the modified example by using (a) BARON; (b) CONOPT4.

 

(a)                                                                      (b)

Figure 19. Surrogate model of the modified example. (a) Real space; (b) KS space obtained 

by CONOPT4
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8. Conclusions

In this paper, we propose a novel design space description method based on adaptive sampling 

and symbolic computation. The KS function is applied to aggregate all the inequality 

constraints, and the KS space can approximate the design space with a single constraint. Thus, 

we only need to focus on finding the sampling points on the boundary of the KS space. Based 

on the feasible LHS points and adaptive sampling points, two methods have been presented to 

effectively expand the set of boundary points. i.e., line projection to the boundary through any 

two feasible LHS points, and perturbation around the adaptive sampling points. The obtained 

polynomial surrogate model can be transformed into an equivalent triangular model through 

the CAD method, which can be further used to describe the KS space explicitly.

The case studies show that the proposed method is applicable to both convex and nonconvex 

feasible regions. Moreover, it is worth noting that, the CAD method is originally limited to 

polynomial functions, but the proposed method can address the inequality constraints with 

transcendental terms. This is because before performing the CAD method, the single KS 

function should be fitted as a multivariate polynomial by using the proposed adaptive sampling 

method. In addition, theoretically, the proposed method is more applicable to the cases with a 

small number of process parameters, because it is not easy to generate a single surrogate 

polynomial model in a high-dimensional space. 
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