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 Abstract  

Due to increasing load and penetration of renewable, the electric grid is using time-of-use pricing for 

industrial customers. Involving energy-intensive processes, steel companies can reduce their production cost 

by accounting for changes in electricity pricing. In particular, steel companies can take advantage of 

processing flexibility to make better use of electric power, and thus reduce the energy cost. In this paper, we 

address a new integrated scheduling problem of multi-stage production derived from the rolling sector of 

steel production, with consideration of campaign decisions and demand-side management. The problem is 

formulated as a continuous time mixed-integer nonlinear programming (MINLP) model with generalized 

disjunctive programming (GDP) constraints, which is then reformulated as a mixed-integer linear 

programming (MILP) model. Numerical results are presented to demonstrate that the model is 

computationally efficient and compact. 
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1. Introduction 

Nomenclature  

Indices 

i, j Coils 

s, s’ Units 

k Slots 

st  The last slot of unit s 

tp Constant electricity price period 

Sets and Parameters 

S Set of total units, {1,2,..., }S S  

AC Set of units in acid rolling section 

S’ Set of units that have downstream units 

sL  Set of units that are downstream units of s 

N  Set of total coils 

sN  Set of coils that need to be processed at unit s, {1,2,..., }, \s sN n s S AC   

'
acN  Set of coils that need to be processed in acid rolling section, ' {1,2,..., }acN ac  

, 's sN  Set of coils that released from unit s to unit s’ 

sT  Set of slots at unit s, {1,2,..., }s sT t  

TP Set of electricity pricing periods, max{1,2, , }TP tp   

s

i  Processing time of coil i at unit s 

1m  Coefficient of total changeover costs in objective function 

2m  Coefficient of total costs of rolling facilities in objective function 

3m  Coefficient of total costs of electricity consumption in objective function 

,i j

sF  Changeover cost if coil i is processed followed by coil j at unit s 

i

smc  Minimum changeover cost of coil i with adjacent coil at unit s 

'tpT  Length of time period tp  

spwh  Electricity amount that unit s will consume per hour 

ssetup  Setup time between campaigns at unit s 

maxnB  Maximum capacity of each campaign 

rollerc  A constant cost of each rolling facility (roller) in acid rolling production 

buy
tpce  The price of electricity during time period tp 

L
tpcp  Lower bound of time period tp 

U
tpcp  Upper bound of time period tp 
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sUB  Upper bound of timing variables of unit s 

Discrete variable 

,s knbatch  Capacity of slot (campaign) k at unit s 

Binary variables 

,
s
i ky  If coil i is assigned to slot k at unit s 

, ,i j k

sz  If coil i is assigned to slot k and coil j is assigned to slot k+1 at unit s 

,s kr  If slot k at unit s is selected (k is not idle) 

Continuous variables 

 s

itb  Beginning time of coil i at unit s 

 s

itf  Completion time of coil i at unit s 

k

s
tb  Beginning time of slot k at unit s 

k

s
tf  Completion time of slot k at unit s 

,i k

stb  Beginning time of coil i in slot k at unit s 

,i k

stf  Completion time of coil i in slot k at unit s 

,i k

scd  Processing time of coil i in slot k at unit s, \s S AC  

k

ssd  Processing time of slot k at unit s, s AC  

tpp  Amount of electricity that is consumed during time period tp 

, ,s k tpT  Time fractions of a selected slot k during a constant time period tp at unit s 

 

The rolling sector is the major and most profitable sector in steel production, where semi-finished coils 

are further processed to various types of highly individualized finished products with high added-value. The 

average sale price of galvanized product (one of main products in rolling sector) during December 12-15, 

2017 in China was 5409 CNY/ton, which is 19.77% higher compared to 4516 CNY/ton, the price of hot 

rolled product (data from China Iron & Steel Association). It is becoming increasingly important to the steel 

enterprise, especially when facing supply-front reform which aims at promoting lean production. Nowadays, 

many steel enterprises are encountering decreasing profit margins due to the rising prices of electric power 

and raw material, which makes it critical to control costs to remain competitive. From the various methods to 

reduce production costs, optimizing production management is an effective approach, for which no additional 

investment is required. 



4 
 

Usually, a rolling sector consists of acid rolling, annealing, rewinding and a series of metal coating 

sections. Fig. 1 shows a simplified distribution of the rolling sector, which includes some typical sections. 

Each section uses its own criterion for scheduling the production and most of time they organize the 

production independently without coordination with other sections. Usually, this mode leads to some 

undesired situations such as unbalanced material flow, shortage of feedstock at downstream section and 

losses in production efficiency, which often yields extra production cost and decreased profit. This implies 

the need for proper integrated scheduling over all sections in the rolling sector to guarantee optimal 

production and to reduce production costs.  

 

Fig. 1  Typical distribution of rolling sector 

Another factor that represents a rather considerable part of production cost is electricity consumption. 

Steel production involves several energy-intensive processes, acid rolling for example. In a small to medium 

size steel company in China with 3.5 to 4 million tons of output, the monthly average electricity consumption 

in acid rolling sector is 7630 MWh, which consumes nearly 70% of the whole energy consumption of acid 

rolling. The main production step in acid rolling section is to roll the thick steel strip into a much thinner one. 

All the rolling mills are driven by electricity and it consumes a large amount of electricity to generate rolling 

pressure during production. Due to the rapid increase of power demand, the power grid is now using time-of-

use pricing strategy on industry customers to improve the utilization of electricity power on the demand side 
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and keep stability of the power supply. Pricing of electricity can significantly affect the production mode and 

profitability of steel production. In this context, the steel enterprise can take advantage of production 

flexibility and pricing scheme to gain potential benefits, and reduce energy cost by organizing production on 

proper pricing time period. 

Production scheduling has become a major optimization problem of industrial significance. Harjunkoski 

et al. (2014), Maravelias and Sung (2009), Méndez et al. (2006) reviewed the scope for industrial applications 

of scheduling models and solution methods. As for the steel industry, most of the literature focuses on the 

upstream process of steel production involving steel making and casting process. Harjunkoski and 

Grossmann (2001) addressed a decomposition approach to solve complex scheduling problem in steel 

making process. Tang et al. (2000) proposed a multiple traveling salesman model for hot rolling scheduling. 

Pacciarelli and Pranzo (2004) developed a model of steelmaking-continuous casting production based on 

alternative graph formulation with detailed constraints that are relevant for the scheduling problem. Tang et al. 

(2001) gave a comprehensive analysis of scheduling of integrated steel production. (Li et al., 2012) addressed 

a multi-stage scheduling problem of steelmaking process with batching decision at the casting stage. A unit-

specific event-based continuous time MILP model is developed and a modified rolling horizon method is 

proposed to solve the problem. Compared with much research on steelmaking scheduling, not much attention 

has been paid to the integrated scheduling of the rolling sector, which includes multiple finishing sections of 

steel production. The rolling sector is characterized by different production structure from steel making and 

continuous casting process. Production in the rolling sector has features of low-volume and high-variety, and 

more complex supply networks between the associated sections. Therefore, it is challenging to schedule the 

processing tasks for all sections in the rolling sector with respect of technological constraints while seeking 

overall optimal profit.  

From the viewpoint of time representation, models can be classified into continuous-time model and 

discrete-time model. Compared with discrete time, continuous time models can account for timings more 
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accurately and are closer to the real production (Floudas and Lin, 2004). The approaches to formulate 

continuous time models include the time-slot concept (Erdirik-Dogan and Grossmann, 2008; Jose M Pinto 

and Grossmann, 1996a, 1996b; Pinto and Grossmann, 1994), order precedence and event based concept. The 

slot concept and order precedence methods are suitable for sequential processes, while the event based 

concept is more suitable for network processes (Floudas and Lin, 2004). According to the characteristics of 

the considered scheduling problem, the slot concept is adopted in this paper. 

The management of power consumption in industrial processes has recently received much attention. 

Mitra et al. (2012) investigated production planning of continuous process with respect of time-sensitive 

electricity prices based on discrete time representation. Castro et al. (2011) addressed optimal scheduling of 

continuous plants with energy constraints based on discrete time representation. Castro et al. (2013) proposed 

RTN formulations for industrial demand side management of a steel plant based on discrete-time 

representation. Zhang et al. (2017) proposed scheduling models based on RTN formulations and discrete time 

representation that incorporate the EAFs’ flexibilities to reduce the electricity cost. For the models with 

discrete time representation, it is easier to calculate the electricity consumption due to the fixed time interval 

for both electricity price and processing task. In contrast, for continuous time models, it is more difficult 

since the relevant times of event points or time slots are variables to be determined. Castro et al. (2009) 

proposed a new continuous time representation for handling variable electricity cost based on a resource-task 

network (RTN) representation. Nolde and Morari (2010) addressed the electrical load tracking scheduling of 

a steel section and proposed a general approach with 6 binary variables to represent task-time interaction 

relationships for continuous time formulations, which has been used and extended by other researchers. This 

approach is adopted in (Hadera and Harjunkoski, 2013) and modified by Hadera et al. (2015).  Hadera et al. 

(2015) addressed the scheduling of the melt shop section of a stainless steel production plant, where a 2-

binary variable approach was proposed compared with the 6-binary variable approach. Apart from steel 

production, Castro et al. (2014) applied the concept in Nolde and Morari (2010) to optimize the maintenance 
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scheduling in a gas engine plant. They formulated the concept as GDP constraints and found a tighter model 

for accounting for electricity consumption. In this paper, we improve these GDP constraints in Castro et al. 

(2014) to deal with electricity consumption. While in Castro et al. (2014), the number of time slots is known 

a-priori, in this paper the number of time slots is a variable to be determined that results from the campaign 

decisions in the acid rolling section of the steel plant.  

In this paper, we address a new practical integrated scheduling problem with demand-side management 

consideration, which is derived from the rolling sector of steel production. The main contribution of this 

paper is the first attempt to determine an integrated scheduling of multiple finishing sections in steel 

production, and to achieve coordination of the scheduling with energy consumption. Due to the new features 

and distinctions with other scheduling problems in steel production, former formulations cannot be easily 

adapted to the problem considered in this paper. A new hybrid MINLP/GDP model is proposed in this paper 

to address the scheduling to the problem based on the continuous time concept. To take advantage of MILP 

solvers, the MINLP model is transformed into an MILP model by linearization and hull reformulation. 

The remaining paper is organized as follows. Section 2 gives a brief description of the production in the 

rolling sector and the statement of the integrated scheduling problem under consideration. In Section 3, an 

MINLP model is established with GDP constraints. Section 4 presents the reformulation of the MINLP 

model, where the non-linear constraints are linearized, and the GDP constraints are reformulated as MILP 

constraints. Next, in Section 5, numerical tests are conducted and analyses of the results are made. Section 6 

draws the conclusion of this paper and describes future work. 

2. Problem Statement 

To explain the considered scheduling problem, a brief description of the production in rolling sector is 

introduced first. In this paper, a series of typical sections are considered, including acid rolling, continuous 

annealing, galvanizing, tin plating, and rewinding as shown in Fig. 2. There is intermediate storage between 
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the associated sections. These sections give rise to a multi-stage process. The acid rolling section is the 

bottleneck process of the rolling sector, which usually has parallel production units to ensure sufficient 

supply to downstream sections. Steel coil, the feedstock in rolling sector, starts processing with acid rolling 

section (C1) and then goes through several of the sections according to the processing route. These include 

continuous annealing (C2) or galvanizing (C3) and tin plating (C4) or rewinding (C5). The processing route 

of each coil is predetermined based on its final use and the sequence of processing cannot be changed. The 

processing mode differs for sections in the rolling sector according to various technical requirements. In 

general, the processing facility in the acid rolling section uses continuous operations for processing, while the 

handling unit is a production campaign that is composed from a group of coils. As for the other sections, the 

production is carried out in discrete coils, which are processed sequentially.  

 

Fig. 2  Considered distribution of rolling sector 

In acid rolling production, each campaign consists of several coils that are welded from head to tail. Each 

campaign will consume a new roller, which has a fixed cost. There is a constant setup time between two 

adjacent campaigns for adjusting production conditions, such as changing the roller. The production is 

continuously conducted within a campaign, so the processing time of a campaign is equal to the summation 

of the processing times of the coils that belonging to the campaign. To simplify the problem, the completion 

time of a coil in acid rolling production is roughly considered to be the same as the completion time of its 

campaign. The capacity of each campaign can vary within a maximum volume. The number of campaigns 

and the capacity of each campaign need to be determined. In general, full utilization of the campaign capacity 

is the ideal case since the cost of the roller is very expensive. However, it changes when considering the 
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energy consumption as well. For example, if a campaign is designed too large, and the production is partially 

conducted during the high electricity price period, then one has to determine whether the campaign should be 

reduced to a smaller size for the sake of decreased energy cost, while this will lead to insufficient utilization 

of roller and waste of money. Hence, some trade-offs should be made between energy cost and facility cost. 

Without loss of generality, we assume that the parallel units of acid rolling section are heterogeneous, with 

unit-dependent energy consumption and setup time.  

In the other sections, coils are characterized by many properties, such as width, thickness, annealing 

temperature and composition of coating metal. When processing coils that are different in characteristics, the 

equipment will be adjusted to meet varied processing condition and thus cause a changeover cost. The larger 

the difference is, the higher the changeover cost will be. Therefore, adjusting the equipment frequently should 

be avoided to reduce changeover costs. The difference of any adjacent processed coils is represented by 

sequence-dependent changeover costs in this paper. 

The integrated scheduling problem of the rolling sector with consideration of campaign decision and 

demand-side management can be stated as follows. 

Given:  

1) A set of units s AC in acid rolling section and a set of units \s S AC in other sections in rolling sector; 

2) Processing route of each coil; 

3) Set of total coils i N , set of coils '
aci N that are processed at acid rolling section and set of coils 

,  \si N s S AC  that are processed at unit s; 

4) A set of time slots sk T at unit s; 

5) A set of units ' ss L that are downstream units of s; 

6) A set of coils , 's si N that are supplied to unit s’ from unit s; 
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7) Processing time of coil i at unit s, s
i ; 

8) Setup time between series campaigns at unit s, ,  ssetup s AC ; 

9) Maximum capacity of each campaign, maxnB ; 

10) A set of electricity pricing periods, tp TP ,with constant electricity price of each period buy
tpce ; 

11) Time boundaries of each price period, L
tpcp and U

tpcp . 

Determine: 

1) The assignment of the coils in the acid rolling section; 

2) Campaign composition, campaign capacity, number of campaigns at each unit of acid rolling section and 

timetable of campaigns with consideration of electricity pricing; 

3) Coil sequence and timetable in the sections after acid rolling; 

4) Electricity consumption of each electricity pricing period; 

5) Completion time of the entire production. 

The objective is to minimize the total weighted production costs that consist of changeover costs, rolling 

facility costs and energy consumption costs. The following assumptions are made in the optimization 

problem. 

1) There are coils at each intermediate storage at the beginning of the schedule; 

2) To simplify the problem, we only observe the electricity consumption in one electricity pricing cycle and 

we assume that the given coils which need to be processed in the acid rolling section can all be finished 

within one cycle; 

3) To simplify the problem, it is assumed that there are two units in acid rolling section and one unit in each 

of the other sections, which is also a base case in practical production. 

3. Mathematical Formulation 
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The proposed MINLP/GDP formulation addresses a multi-stage process in coil production with 

consideration of various operational constraints and electricity consumption management. The formulation is 

a hybrid of the slot-based continuous-time concept (see Fig. 3), the immediate precedence concept and GDP. 

The immediate precedence formulation is known to represent sequence-dependent relationships, which are 

used to account for changeover costs in this paper. Since the model is based on the continuous-time concept, 

one of the challenges is to determine the location of the time slots in the discrete time periods of electricity 

pricing when calculating the electricity consumption. Inspired by recent work of Castro et al. (2014), we 

extend the GDP constraints to deal with the electricity consumption calculation in this paper. GDP (Raman 

and Grossmann, 1994) is a logic-based modeling method which is known for representing complex logic 

constraints and has been applied to many scheduling problems (Castro and Grossmann, 2012). In the context 

of the continuous time representation, as for time-slot based model, the number of slots needs to be specified 

a-priori. For the problem under consideration, the slots can be classified into two categories. For the acid 

rolling section, the production is campaign oriented. As a consequence of the variable campaign capacity, the 

number of slots is unknown and needs to be estimated. While for the remaining sections, the production is 

coil oriented, there is no need to estimate the number of slots since the number of slots is equal to the number 

of coils at each section, which is given. More details about the estimation of the number of slots are given in 

Section 3.4. 
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Fig. 3 Representation of time slots for each processing stage 

3.1 Objective function 

The objective function of this integrated scheduling problem includes three items. The first one is 

sequence-dependent changeover cost. The goal is to minimize the costs caused by sharp variation in 

characteristics of adjacent processed coils and to implicitly ensure production smoothness. The second item is 

the cost of rolling facilities (rollers), which aims at increasing the utilization of rollers to reduce production 

costs. The last item is the cost of electricity consumption by acid rolling production. The objective of the 

model is to minimize the total production costs. These cost items are the typical economic targets in real 

production.  

 
, , ,

/

1 + 2  + 3
ij i j k

s s s s

s s buy
roller s k tp tp

s S AC i N j N k T s AC k T tp TP

obj m F z m c r m ce p
      

            （1） 

3.2 Acid rolling related constraints 

Since the production mode in the acid rolling section is different compared to other sections, the 

constraints related to acid rolling production are listed individually. The production in the acid rolling section 

is campaign-oriented and one time slot corresponds to one campaign which may include multiple coils. The 

number of campaigns, the schedule of campaigns and the compositions of each campaign are determined in 

the model, but the coil sequencing within a given campaign is not considered because in practice it can be 
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easily determined by the schedulers. Following are the constraints that apply to the production in the acid 

rolling section. 

 Assignment and campaign related constraints:  

Every coil i of set '
acN should be exactly assigned to one campaign (slot) k of one unit s in the acid rolling 

section.  

 '
, , 1,

s

s k i ac
s AC k T

y i N
 

     （2） 

As for each slot k at unit s, the campaign capacity ,s knbatch equals to the number of coils that are assigned 

to slot k.  

 
'

, , , , ,
ac

s k s k i s
i N

nbatch y s AC k T


     （3） 

For time-slot based models with variable number of slots, there are redundant slots due to the over 

estimation of the number of slots. In this paper, the binary variable , =1s kr indicates the slot k at unit s is 

selected; otherwise the slot is idle. Normally, idle slots are located at the end of the slots sequence. In this 

paper, due to the characteristics of the problem under consideration, the idle slots are located at the beginning 

of the slot sequence as defined by the symmetry breaking constraints (4). Therefore, the corresponding 

timings of idle slots are enforced to be zero by constraints (4), (7) and (8), which satisfy the logic 

requirements of the disjunctions in the GDP constraints (10).  

  , , 1, , \s k s k s sr r s AC k T t     （4） 

As for the selected slot k of unit s, its campaign capacity ,s knbatch is smaller than the maximum campaign 

capacity maxB . Otherwise, the campaign capacity is equal to zero. 

 , , max , , ,s k s k s k sr nbatch nB r s AC k T       （5） 

 Timing constraints 
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As for the processing of campaign, the duration of a campaign s
ksd is equal to the summation of the 

processing times s
i of the coils that belong to that campaign (see Fig. 3). 

 
'

, , , ,
ac

s s
k i s k i s

i N

sd y s AC k T


      （6） 

For each slot k at unit s, the relationships of beginning time 
s
ktb  and completion time 

s

ktf  are described in 

constraints (7). 

 , ,
s s s

k k sktf tb sd s AC k T      （7） 

There is a constant setup time ssetup between adjacent campaigns, given by equation (8). Therefore, the 

beginning time of a slot is greater than or equal to its predecessor’s completion time plus a setup time, as long 

as its predecessor is a selected slot. There is no setup time between any two idle slots. 

 1, , , \ { }
s ss

ks k s sktf setup r tb s AC k T t       （8） 

It is assumed that the completion time of a coil 
's

itf is equal to its campaign completion time as shown in 

constraints (9), which introduce non-linearity in the model. The non-linearity is reformulated as a set of linear 

constraints in Section 4 since it introduces the product of the continuous variable 
s

ktf and binary variable , ,s k iy . 

  '
'

, , , , '
s

s s

s k i aci k
s AC k T

tf tf y i N s AC
 

      （9） 

 Electricity consumption constraints 

Computing the actual electricity consumption, accounting for the interactions between a production 

campaign and the varying electricity pricing periods is the most challenging part of the model. We extend the 

method by Castro et al. (2014), who have represented the possible locations of a slot over a constant 

electricity pricing period as a GDP formulation. 
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Constraints (10) are the updated GDP formulations representing the interactions. Similar, but not the 

same as in (Castro et al., 2014), there are seven interaction possibilities of a slot (s,k) with respect of a 

constant electricity pricing period tp in this paper as shown in Fig 4. Any idle slot, indicated by the negation 

of the Boolean variable ,s kR , has no interaction with electricity pricing period. As mentioned before, all 

related timings of idle slots are enforced to be equal to zero. These idle slots will not take part in the 

computation of energy consumption in the reformulations of constraints (10), which can speed up the 

convergence of the model. For any selected slot indicated by the Boolean variable ,s kR , its location over 

electricity pricing period falls into the remaining six possibilities, which are indicated by Boolean variables 

, ,s k tpA to , ,s k tpF  in constraints (10). The time factor variable , ,s k tpT  represents time fractions of a selected slot 

in each pricing period. For example, for any selected slot that falls into case A (see Fig. 4), its beginning time 

is greater than or equal to the lower bound of time period tp, and its completion time is less than or equal to 

the upper bound of time period tp, which means that the duration of the slot is entirely contained by period tp. 

Therefore, for case A, the fraction , ,s k tpT is equal to the duration of slot s. As for case B, the beginning time 

of slot s is less than or equal to the lower bound of time period tp, and the completion time of slot s is 

between the lower bound and upper bound of the time period tp. In this case, the slot s is partially located at 

the time period tp-1 and tp, and the fraction , ,s k tpT is equal to the completion time of slot s minus the lower 

bound of time period tp as shown in Fig 4. All the remaining cases can be formulated in a similar way. Note 

that in constraints (10) a selected slot can satisfy the conditions for more than one cases, e.g. when the 

beginning time of slot s is equal to the lower bound of time period tp and the completion time of slot s is 

equal to the upper bound of time period tp, slot s can satisfy both the conditions of cases of A and B. This 

overlap has no effect on the final result of the model, since the GDP constraint is based on exclusive 

disjunctions, which means that each slot can fall into only one of the cases in the disjunctions, and the final 

result will satisfy the real timing logic.  
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s k tp s k tp s k tp

s s sL L L
k k ktp tp tp
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ktp tp tpk k

s s sU U
s k tp k tp tpk k

s sL U
ks k tp tp s k tp tpk

R

A B C

tb cp tb cp tb cp

tf cp tf cp tb cp

T sd tf cp tf cp

T tf cp T cp tb

   
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0 0
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T
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R A B

      
      

   
   
   

  
 
 
 
 
 
 
 
 
 
 
 
 



   

         

, , , , , , , ,, , , , { , }s k tp s k tp s k tp s k tpC D E F True False

（10） 

Equation (11) calculates the total amount of electricity that is consumed during time period tp.  

 , , ,  
s

tp s s k tp
s AC k T

p pwh T tp TP
 

     （11） 

 

Fig. 4  Possible interactions of a slot with a constant time period 
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The summation of the time factors over all pricing periods is equal to the duration of the slot, given by 

constraints (12). It is a constraint that is obtained from the production point of view. Although redundant, it 

can help to reduce the integrality gap of the reformulation of constraints (10). The detailed motivation of 

developing equation (12) can be seen in Section 3. 

 , , , , ,s k s k tp s
tp TP

sd T s AC k T


      （12） 

3.3 General constraints  

Following are some general constraints that apply to the processing tasks in the sections after the acid 

rolling section (see Fig. 3).  

 Allocation constraints 

Each coil should be exactly assigned to one slot of a corresponding unit. 

 , , 1, \ ,
s

s k i s
k T

y s S AC i N


     （13） 

Each slot should be exactly assigned to one coil. 

 , , 1,  \ ,
s

s k i s
i N

y s S AC k T


     （14） 

 Timing constraints 

In this paper, we need to calculate the beginning and completion times of both slots (
s
ktb  and 

s

ktf ) and 

coils ( 
s

itb and 
s

itf ). To link up the timings of slots with the timings of coils, two set of disaggregated variables 

,
s
i ktb  and ,

s
i ktf  are introduced in the model. ,

s
i ktb  and ,

s
i ktf  are the beginning time and completion time of coil i 

in slot k at unit s, respectively. As shown in constraints (15)-(16), ,
s
i ktb  and ,

s
i ktf  will make sense only when 

coil i is exactly assigned to slot k at unit s; otherwise, they will be equal to zero due to constraints (13) and 

(14). 

 , , , ,  \ , ,s
i k s s k i s stb UB y s S AC k T i N       （15） 
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 , , , ,  \ , ,s
i k s s k i s stf UB y s S AC k T i N       （16） 

As for slot k of unit s that is assigned to coil i, the slot duration
,i k

scd is equal to the processing time of i; 

otherwise, 
,i k

scd is zero.  

 
, , ,= , \ , ,

i k

s s
i s k i s scd y s S AC k T i N      （17） 

Equation (18) states the relationships of the disaggregated variables ,
s
i ktb  and ,

s
i ktf . 

 , , , , / , ,s s s
i k i k i k s stf tb cd s S AC k T i N       （18） 

Constraints (19) and (20) are to calculate the beginning and completion time of slot k at unit s, 

respectively. 

 ,= , \ ,
s

s s
k i k s

i N

tb tb s S AC k T


    （19） 

 ,= , \ ,
s

s s
i k sk

i N

tf tf s S AC k T


    （20） 

Constraints (21) state that there is no crossover between adjacent slots. 

 1, \ , \ { },
s s

k s s sktf tb s S AC k T t i N      （21） 

Beginning and completion time of coils are calculated by constraints (22) and (23). 

 
,= \ ,

s

s
s

i i k s
k T

tb tb s S AC i N


   ，  （22） 

 
,= \ ,

s

s
s

i k si
k T

tf tf s S AC i N


   ，  （23） 

Constraints (24) ensure that any coil can begin processing at downstream section only when it has been 

finished at upstream section. 

   '

', ', ' ,
s s

i s sitf tb s S s L i N      （24） 

 Immediate precedence constraints  
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In this paper, we apply the compact constraints proposed by Erdirik-Dogan and Grossmann (2008) to 

account for immediate precedence relationships of coils. For any coil i that is located at slot k of unit s, as 

long as k is not the last one in the slot sequence, there must be a coil j that is located at slot k+1. Similarly, for 

any coil j that is located at slot k+1 of unit s, there must be a coil i that is located at slot k of unit s.  

 , , , ,= , \ , , \{ }
s

s
s k i i j k s s s

j N

y z s S AC i N k T t


     （25） 

 , +1, , ,= , \ , , \ { }
s

s
s k j i j k s s s

i N

y z s S AC j N k T t


     （26） 

3.4 Slot estimation and variable bounding 

 Estimation of the number of slots 

For continuous time models with slot-based representation, one of the issues is the estimation of the 

number of slots (Floudas and Lin, 2004). On one hand, under-estimation of slots will lead to sub-optimal or 

even infeasibility of the model; on the other hand, over-estimation of slots will increase the difficulty in 

solving model. So it is very important to make a proper estimation of the number of slots. As mentioned 

before, only the slots that are associated with acid rolling section need to be estimated. In this paper, we use a 

simple rule to estimate the number of slots, as given by equation (27). The number of slots sn is equal to 

leastNB , which is the minimum number of campaigns that can process all the ac coils at a single unit of acid 

rolling. leastNB is calculated as equation (27). Therefore, even for the extreme case where all coils are 

processed at the same unit, it also guarantees that the number of slots is enough to process all the coils and 

the production is feasible. For general cases where coils are processed at both units, the slots are also 

adequate and provide certain flexibility. Although we cannot guarantee that the proposed rule to estimate the 

number of slots will lead to the optimal solution, it still makes sense for real production.  

 
max

least

ac
sn NB

nB

 
   

 
 （27） 
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 Variable bounding 

The timing related constraints such as (15)-(16), (33), (43), (45), (48)-(49) need information from upper 

bounds of the timing variables. As mentioned before, we only observe the electricity consumption in one 

cycle of the electricity pricing. Therefore, the upper bound of timing variables corresponding to acid rolling 

section is set to be the same as the length of the cycle time 
max

U
tpcp . The upper bounds of timing variables in 

the remaining sections are calculated by equation (28). 

 
'

'
' , ', '

s

s
s s i s

i N

UB UB s S s L


     （28） 

 Lower bound of total changeover costs 

To obtain a tighter relaxation of the scheduling model, we specify a lower bound of the total sequence-

dependent changeover costs in the objective function (1) by the underlying cost structure. The lower bound of 

the total changeover costs is calculated by equations (29)-(30).  

  ,min , \ ,s s
i i j s

j i
mc F s S AC i N


    （29） 

  
, ,

\ \

max
ij i j k

s
s s s s

s s s s
i i

i N
s S AC i N j N k T s S AC i N

F z BestC mc mc


     


   

 
       （30） 

The sequence-dependent costs are represented by a two dimensional matrix as shown in Fig. 5. We can 

see that each coil i has a potential minimum changeover cost s
imc with other coils, which is highlighted in red 

color in Fig.5. In the best case all the coils can be processed adjacently with the coil that has the minimum 

changeover cost. Let BestC  be the total changeover costs for the best case which is calculated by equation 

(30). Hence, the total changeover costs must be greater than or equal to BestC as given by equation (30). 
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Fig. 5  A matrix of sequence-dependent changeover costs 

4. Reformulation 

The scheduling model given by equations (1)-(26), (29)-(30) includes non-linear constraints and GDP 

constraints. We reformulate the model as an MILP by the following steps.  

 Linearization 

To linearize equation (9), a set of auxiliary continuous variables 
,

s

i k
 (Glover, 1975) are introduced in this 

paper. Let , , , ,  , , '
ss

i k s k i s acktf y s AC k T i N      , then we obtain equations (31)-(35). When binary variable 

, , 0s k iy  , then equations (32)-(33) are activated and enforce , 0s
i k  , which is consistent with , , 0

s

s k iktf y  . 

Equations (34)-(35) are relaxed in this case. When 
, ,

1
s k i

y  , equations (34)-(35) are activated and enforce 

,

ss
i k ktf . Equations (32)-(33) are relaxed in this case. In this way, equation (9) is reformulated as a set of 

MILP constraints.  

  '

, , , '
s

s
s

i ki
s AC k T

tf i I s AC
 

      （31） 

 , 0s
i k   （32） 

 , , ,
s

i k s s k iUB y    （33） 

 , , ,(1 )
ss

i k s s k iktf UB y      （34） 
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 ,

ss
i k ktf   （35） 

 Hull reformulation of GDP constraints 

The GDP constraints can be reformulated as MILP constraints in different ways, including the alternative 

big-M reformulation and the hull reformulation (Grossmann and Lee, 2003). The relaxed feasible region of 

the hull reformulation is proven to be at least as tight, if not tighter, than the one from big-M reformulation 

(Grossmann and Lee, 2003), although the size of hull reformulation is larger than the big-M reformulation. In 

this paper, the hull reformulation is adopted for reformulating the GDP constraints (10) of the model. In the 

reformulation, the logic variables , ,s k tpA to , ,s k tpF are replaced by the binary variables , ,s k tpa to , ,k s tpf , 

respectively. To obtain the hull reformulation of equation (10), the timing variables of slot (s,k) in the 

disjunctions are disaggregated by equations (36)-(37). 

 , , , , , , , , , , , ,= + + , , ,
s A B C D E F
k s k tp s k tp s k tp s k tp s k tp s k tp stb tb tb tb tb tb tb s AC k T tp TP       （36） 

 , , , , , , , , , , , ,= + + , , ,
s A B C D E F

sk s k tp s k tp s k tp s k tp s k tp s k tptf tf tf tf tf tf tf s AC k T tp TP       （37） 

The inequalities in the disjunctions are rewritten as equations (38)-(49) in terms of disaggregated 

variables and the new binary variables with respect of the logical expressions in the disjunctions. Take case A 

as an example which is given by equations (38)-(39). The disaggregated variables of beginning time and 

completion time of a slot are between the lower bound and upper bound of the time period tp when , , 1s k tpa  ; 

otherwise they are equal to zero. Other cases can be treated in a similar way. 

 , ,, , , , , , ,
AL U
s k tptp s k tp tp s k tp scp a tb cp a s AC k T tp TP         （38） 

 , , , ,, , , , ,
AL U

tp s k tp tp s k tp ss k tpcp a tf cp a s AC k T tp TP         （39） 

 , , , ,0 , , ,
B L
s k tp tp s k tp stb cp b s AC k T tp TP        （40） 

 , , , ,, , , , ,
BL U

tp s k tp tp s k tp ss k tpcp b tf cp b s AC k T tp TP         （41） 
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 , ,, , , , , , ,
CL U
s k tptp s k tp tp s k tp scp c tb cp c s AC k T tp TP         （42） 

 , , , ,, , , , ,
CU

tp s k tp s s k tp ss k tpcp c tf UB c s AC k T tp TP         （43） 

 , , , ,0 , , ,
D L
s k tp tp s k tp stb cp d s AC k T tp TP        （44） 

 , , , ,, , , , ,
DU

tp s k tp s s k tp ss k tpcp d tf UB d s AC k T tp TP         （45） 

 , , , ,0 , , ,
E L
s k tp tp s k tp stb cp e s AC k T tp TP        （46） 

 , ,, ,0 , , ,
E L

tp s k tp ss k tptf cp e s AC k T tp TP        （47） 

 , ,, , , , , , ,
FU
s k tptp s k tp s s k tp scp f tb UB f s AC k T tp TP         （48） 

 , , , ,, , , , ,
FU

tp s k tp s s k tp ss k tpcp f tf UB f s AC k T tp TP         （49） 

The logic proposition in (10) is transformed into a linear constraint as in (50), stating that exactly only 

one of the possible locations can happen when the corresponding slot is selected. 

 , , , , , , , , , , , , ,+ + + + + = , , ,s k tp s k tp s k tp s k tp s k tp s k tp s k sa b c d e f r s AC k T tp TP     （50） 

The time factor , ,s k tpT is equal to the summation of the potential time fractions over all cases, as given by 

equation (51). An observation from the solving process of model is that, when the binary variables , ,s k tpa to 

, ,s k tpd  in equation (51) are relaxed as continuous variables in the range of [0, 1], each term in equation (51) 

takes a value of zero. Therefore, the value of variable , ,s k tpT is zero, which results in poor relaxation of the 

model. Constraints (12) ensure that the summation of , ,s k tpT is equal to the duration of slot (s,k), and 

therefore the fraction variables , ,s k tpT will not be all zero. Hence, constraints (12) help to improve the LP 

relaxation, and hence speed up the computation of the model. 
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, ,, , , , , , , ,, ,

, ,

( ) ( )

             ( ) , , ,

B Cs L U
s k tps k tp k s k tp tp s k tp tp s k tps k tp

U L
tp tp s k tp s

T sd a tf cp b cp c tb

cp cp d s AC k T tp TP

        

      
 （51） 

In summary, the proposed MILP model is given by equations (1)-(8), (11)-(26) and (29)-(51). 

5. Case study and numerical experiments 

To test the performance of the integrated scheduling model, numerical experiments are carried out on 

instances based on typical data of practical production. The models resulting from linearization and hull 

reformulations of the GDP constraints were implemented in GAMS 24.7.3 and solved with CPLEX 12.6.3 

solver with four threads, and default options up to relative optimality tolerance = 0.0001 and 0.01, 

respectively. The hardware consisted on a laptop with an Intel i7-6500U (@2.50GHz) with 8GB of RAM 

running Windows 10 system. 

A number of different-scaled instances are considered that resulted from combination of various numbers 

of coils in each section and the number of electricity pricing periods. The settings of coefficients and 

parameters are listed in Table 1. We tested the model on two scenarios of electricity pricing period with 

max 4tp   and max 7tp  , respectively. The cycle time of electricity pricing is set to be 24 hours. The detailed 

data of electricity price is provided in Tables 2 and 3. Four groups of coils are used in the test problems with 

the number of coils being gradually increased.  

The computational statistics of the 8 instances are given in Table 4. The size of the model has clearly a 

great impact on the solution time. With larger sizes of the instances, the solution time increases, especially for 

instance 7 and instance 8. The optimal solutions of all the instances were obtained within 3600 CPU times 

with a relative optimality tolerance of 0.01. Especially for instances 1 to instance 6, all optimal solutions are 

obtained within one minute, which can be viewed as a quick solution in practical production environment. 

Reducing the optimality tolerance to 0.0001, the optimal solutions for all the instances except instance 8 were 
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obtained within 3600 CPU times. The integrality gaps in Table 4 show that the proposed model has a fairly 

tight relaxation.  

As an illustrative example, Fig. 6 presents the Gantt chart of the optimal solution of Instance 1 obtained 

by CPLEX. In Instance 1, there are 4 time periods tp1 to tp4 in a cycle of electricity pricing. In the acid 

rolling section, there are two campaigns at unit 1 with 2 coils and 4 coils, respectively, and one campaign at 

unit 2 with 4 coils. We can see that all these campaigns are processed in tp1 and tp2, the periods with 

relatively lower electricity price. These coils are then released to downstream sections and continue further 

processing. The completion time of the entire schedule is 47.7 hour. In actual practice, the scheduling plan of 

each section in the rolling sector is manually made by schedulers with some kind of simple heuristics. 

Usually for the production in the acid rolling section, the coils are grouped with the goal of maximizing the 

roller utilization. The cost of energy consumption is rarely considered. As for the other sections, the coils are 

sequenced with a greedy-based strategy to achieve the minimum changeover costs. For Instance 1, the total 

production cost obtained by the practical solution method is 153.36 (103 CNY), which is 34% higher 

compared with the result of 114.4 (103 CNY) from our model. Not only that, the solution time is also 

significantly reduced with our model.  

Table 1. Coefficients and parameters data 

m1 m2 m3 roller
c  

(103 CNY) max
B  

1setup  

(hour) 

2setup  

(hour) 
1

pwh  

(MW.h) 
2

pwh  

(MW.h) 

0.3 0.2 0.5 50 4 0.8 1.2 15 17 

 
 

Tabel 2 . Electricity price data of max 4tp   

tp 1 2 3 4 

Load type Valley-load Flat-load Peak-load Flat-load 

L

tp
cp (hour) 0 8 14 19 

U

tp
cp (hour) 8 14 19 24 

buy

tp
c (CNY/KW.h) 0.338 0.659 1.112 0.659 
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Tabel 3 . Electricity price data of max 7tp   

tp 1 2 3 4 5 6 7 

Load type Valley-load Flat-load Peak-load Flat-load Peak-load Flat-load Valley-load 

L
tpcp  (hour) 0 6 8 11 18 21 22 

U
tpcp  (hour) 6 8 11 18 21 22 24 

buy
tpc  (CNY/KW.h) 0.338 0.659 1.112 0.659 1.112 0.659 0.338 

 

 

Table 4. Computational statistics of the instances 

Instance 

Coil number 

Period 

Model size 
Cost 

(103 CNY) 
Integrality 
gap (%) 

CPUs * 

C1 C2 C3 C4 C5 
Discrete 
variable 

Continuous 
variable 

Constraints 

1 10 7 4 6 5 4 860 1,944 1,716 114.14 10.80 
0.91 
0.91 

2 10 7 4 6 5 7 970 2,289 2,151 112.80 9.74 
1.66 
1.39 

3 15 10 10 10 5 4 3,163 5,440 3,381 116.46 4.46 
5.51 
4.98 

4 15 10 10 10 5 7 3,307 5,899 3,960 118.11 5.79 
31.33 
20.72 

5 20 15 15 13 6 4 9,132 13,350 5,984 157.28 5.57 
66.75 
15.98 

6 20 15 15 13 6 7 9,312 13,923 6,707 158.78 6.50 
50.72 
46.44 

7 25 20 20 20 10 4 24,484 32,277 10,766 210.18 10.97 
1511.28 
1181.98 

8 25 20 20 20 10 7 24,736 33,078 11,777 208.52 10.70 
6172.25 
1983.33 

*: CPU seconds for 10-4 and 10-2 optimality tolerance, respectively.  
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Fig. 6  Gantt chart of the optimal solution of Instance 1 

6. Conclusion 

In this paper, we have considered the production in the multiple finishing sections of steel industry, where 

the target is to obtain schedules of all these sections under various technical constraints. Especially for the 

energy intensive sections, electricity consumption is also optimized based on demand-side management 

techniques. The integrated scheduling problem of the rolling sector with consideration of energy consumption 

under time-of-use electricity prices was proposed to optimize the coordination of production and electricity 

consumption, and minimize the typical production costs.  

Based on a continuous time representation, the MINLP/GDP model was formulated with nonlinear and 

disjunctive constraints, and then reformulated as a tight MILP model through hull reformulation and exact 

linearization. Also, a lower bound for the objective was specified for the model. The results of the numerical 

experiments demonstrated the effectiveness and tightness of the model. 

 The rolling sector is a multi-stage process with parallel sections at each stage. This is a typical structure 

in industrial production, so the proposed model can also be extended to the integrated scheduling in other 

similar processes, such as aluminium production, which mainly consists of two stages (electrolysis and 

casting) with parallel lines. The production in the rolling sector is complicated with consumption of not only 
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electricity but also other energy and resources such as coal and water. As for future research, to achieve more 

efficient production, these resources should also be considered explicitly, which will make the scheduling 

problem more complex.  
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