Integrated scheduling of rolling sector in steel production with consideration of energy consumption under time-of-use electricity prices

Shengnan Zhaoa,b, Ignacio E. Grossmannc, Lixin Tangd,e*

a Liaoning Engineering Laboratory of Operations Analytics and Optimization for Smart Industry
b State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
c Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, United States
d Liaoning Key Laboratory of Manufacturing System and Logistics, Northeastern University, Shenyang 110819, China
e Institute of Industrial and Systems Engineering, Northeastern University, Shenyang 110819, China

\section*{Abstract}

Due to increasing load and penetration of renewable, the electric grid is using time-of-use pricing for industrial customers. Involving energy-intensive processes, steel companies can reduce their production cost by accounting for changes in electricity pricing. In particular, steel companies can take advantage of processing flexibility to make better use of electric power, and thus reduce the energy cost. In this paper, we address a new integrated scheduling problem of multi-stage production derived from the rolling sector of steel production, with consideration of campaign decisions and demand-side management. The problem is formulated as a continuous time mixed-integer nonlinear programming (MINLP) model with generalized disjunctive programming (GDP) constraints, which is then reformulated as a mixed-integer linear programming (MILP) model. Numerical results are presented to demonstrate that the model is computationally efficient and compact.

\textbf{Keyword:} Integrated scheduling, continuous time modeling, MINLP, GDP

* Corresponding author. E-mail: qhjytlx@mail.neu.edu.cn
1. Introduction

Nomenclature

Indices
\(i, j\) Coils
\(s, s'\) Units
\(k\) Slots
\(t_s\) The last slot of unit \(s\)
\(t_p\) Constant electricity price period

Sets and Parameters
\(S\) Set of total units, \(S = \{1,2,...,|S|\}\)
\(AC\) Set of units in acid rolling section
\(S'\) Set of units that have downstream units
\(L_s\) Set of units that are downstream units of \(s\)
\(N\) Set of total coils
\(N_s\) Set of coils that need to be processed at unit \(s\), \(N_s = \{1,2,...,n_s\}, s \in S \setminus AC\)
\(N_{ac}^i\) Set of coils that need to be processed in acid rolling section, \(N_{ac} = \{1,2,...,ac\}\)
\(N_{s,s'}\) Set of coils that released from unit \(s\) to unit \(s'\)
\(T_s\) Set of slots at unit \(s\), \(T_s = \{1,2,...,t_s\}\)
\(TP\) Set of electricity pricing periods, \(TP = \{1,2,...,t_{p_{max}}\}\)
\(\tau_i\) Processing time of coil \(i\) at unit \(s\)
\(m_1\) Coefficient of total changeover costs in objective function
\(m_2\) Coefficient of total costs of rolling facilities in objective function
\(m_3\) Coefficient of total costs of electricity consumption in objective function
\(F_{i,j}^s\) Changeover cost if coil \(i\) is processed followed by coil \(j\) at unit \(s\)
\(mc_{i}^s\) Minimum changeover cost of coil \(i\) with adjacent coil at unit \(s\)
\(T_{p}\) Length of time period \(tp\)
\(pwh\) Electricity amount that unit \(s\) will consume per hour
\(setup\) Setup time between campaigns at unit \(s\)
\(nB_{\text{max}}\) Maximum capacity of each campaign
\(c_{\text{roller}}\) A constant cost of each rolling facility (roller) in acid rolling production
\(ce_{tp}^{\text{buy}}\) The price of electricity during time period \(tp\)
\(cp_{tp}^{l}\) Lower bound of time period \(tp\)
\(cp_{tp}^{u}\) Upper bound of time period \(tp\)
\[UB_s \] Upper bound of timing variables of unit \(s \)

Discrete variable

\[\text{nbatch}_{s,k} \] Capacity of slot (campaign) \(k \) at unit \(s \)

Binary variables

\[y^s_{i,k} \] If coil \(i \) is assigned to slot \(k \) at unit \(s \)

\[z^s_{i,j,k} \] If coil \(i \) is assigned to slot \(k \) and coil \(j \) is assigned to slot \(k+1 \) at unit \(s \)

\[r^s_{s,k} \] If slot \(k \) at unit \(s \) is selected (\(k \) is not idle)

Continuous variables

\[\bar{t}_b^s \] Beginning time of coil \(i \) at unit \(s \)

\[\bar{t}_f^s \] Completion time of coil \(i \) at unit \(s \)

\[\bar{t}_b^s \] Beginning time of slot \(k \) at unit \(s \)

\[\bar{t}_f^s \] Completion time of slot \(k \) at unit \(s \)

\[\bar{b}^s_{i,k} \] Beginning time of coil \(i \) in slot \(k \) at unit \(s \)

\[\bar{f}^s_{i,k} \] Completion time of coil \(i \) in slot \(k \) at unit \(s \)

\[\bar{c}d^s_{i,k} \] Processing time of coil \(i \) in slot \(k \) at unit \(s, s \in S \setminus AC \)

\[\bar{s}d^s_i \] Processing time of slot \(k \) at unit \(s, s \in AC \)

\[p_{tp} \] Amount of electricity that is consumed during time period \(tp \)

\[\Delta T^s_{s,k,tp} \] Time fractions of a selected slot \(k \) during a constant time period \(tp \) at unit \(s \)

The rolling sector is the major and most profitable sector in steel production, where semi-finished coils are further processed to various types of highly individualized finished products with high added-value. The average sale price of galvanized product (one of main products in rolling sector) during December 12-15, 2017 in China was 5409 CNY/ton, which is 19.77% higher compared to 4516 CNY/ton, the price of hot rolled product (data from China Iron & Steel Association). It is becoming increasingly important to the steel enterprise, especially when facing supply-front reform which aims at promoting lean production. Nowadays, many steel enterprises are encountering decreasing profit margins due to the rising prices of electric power and raw material, which makes it critical to control costs to remain competitive. From the various methods to reduce production costs, optimizing production management is an effective approach, for which no additional investment is required.
Usually, a rolling sector consists of acid rolling, annealing, rewinding and a series of metal coating sections. Fig. 1 shows a simplified distribution of the rolling sector, which includes some typical sections. Each section uses its own criterion for scheduling the production and most of time they organize the production independently without coordination with other sections. Usually, this mode leads to some undesired situations such as unbalanced material flow, shortage of feedstock at downstream section and losses in production efficiency, which often yields extra production cost and decreased profit. This implies the need for proper integrated scheduling over all sections in the rolling sector to guarantee optimal production and to reduce production costs.

Another factor that represents a rather considerable part of production cost is electricity consumption. Steel production involves several energy-intensive processes, acid rolling for example. In a small to medium size steel company in China with 3.5 to 4 million tons of output, the monthly average electricity consumption in acid rolling sector is 7630 MWh, which consumes nearly 70% of the whole energy consumption of acid rolling. The main production step in acid rolling section is to roll the thick steel strip into a much thinner one. All the rolling mills are driven by electricity and it consumes a large amount of electricity to generate rolling pressure during production. Due to the rapid increase of power demand, the power grid is now using time-of-use pricing strategy on industry customers to improve the utilization of electricity power on the demand side.
and keep stability of the power supply. Pricing of electricity can significantly affect the production mode and profitability of steel production. In this context, the steel enterprise can take advantage of production flexibility and pricing scheme to gain potential benefits, and reduce energy cost by organizing production on proper pricing time period.

Production scheduling has become a major optimization problem of industrial significance. Harjunkoski et al. (2014), Maravelias and Sung (2009), Méndez et al. (2006) reviewed the scope for industrial applications of scheduling models and solution methods. As for the steel industry, most of the literature focuses on the upstream process of steel production involving steel making and casting process. Harjunkoski and Grossmann (2001) addressed a decomposition approach to solve complex scheduling problem in steel making process. Tang et al. (2000) proposed a multiple traveling salesman model for hot rolling scheduling. Pacciarelli and Pranzo (2004) developed a model of steelmaking-continuous casting production based on alternative graph formulation with detailed constraints that are relevant for the scheduling problem. Tang et al. (2001) gave a comprehensive analysis of scheduling of integrated steel production. (Li et al., 2012) addressed a multi-stage scheduling problem of steelmaking process with batching decision at the casting stage. A unit-specific event-based continuous time MILP model is developed and a modified rolling horizon method is proposed to solve the problem. Compared with much research on steelmaking scheduling, not much attention has been paid to the integrated scheduling of the rolling sector, which includes multiple finishing sections of steel production. The rolling sector is characterized by different production structure from steel making and continuous casting process. Production in the rolling sector has features of low-volume and high-variety, and more complex supply networks between the associated sections. Therefore, it is challenging to schedule the processing tasks for all sections in the rolling sector with respect of technological constraints while seeking overall optimal profit.

From the viewpoint of time representation, models can be classified into continuous-time model and discrete-time model. Compared with discrete time, continuous time models can account for timings more
accurately and are closer to the real production (Floudas and Lin, 2004). The approaches to formulate continuous time models include the time-slot concept (Erdirik-Dogan and Grossmann, 2008; Jose M Pinto and Grossmann, 1996a, 1996b; Pinto and Grossmann, 1994), order precedence and event based concept. The slot concept and order precedence methods are suitable for sequential processes, while the event based concept is more suitable for network processes (Floudas and Lin, 2004). According to the characteristics of the considered scheduling problem, the slot concept is adopted in this paper.

The management of power consumption in industrial processes has recently received much attention. Mitra et al. (2012) investigated production planning of continuous process with respect of time-sensitive electricity prices based on discrete time representation. Castro et al. (2011) addressed optimal scheduling of continuous plants with energy constraints based on discrete time representation. Castro et al. (2013) proposed RTN formulations for industrial demand side management of a steel plant based on discrete-time representation. Zhang et al. (2017) proposed scheduling models based on RTN formulations and discrete time representation that incorporate the EAFs’ flexibilities to reduce the electricity cost. For the models with discrete time representation, it is easier to calculate the electricity consumption due to the fixed time interval for both electricity price and processing task. In contrast, for continuous time models, it is more difficult since the relevant times of event points or time slots are variables to be determined. Castro et al. (2009) proposed a new continuous time representation for handling variable electricity cost based on a resource-task network (RTN) representation. Nolde and Morari (2010) addressed the electrical load tracking scheduling of a steel section and proposed a general approach with 6 binary variables to represent task-time interaction relationships for continuous time formulations, which has been used and extended by other researchers. This approach is adopted in (Hadera and Harjunkoski, 2013) and modified by Hadera et al. (2015). Hadera et al. (2015) addressed the scheduling of the melt shop section of a stainless steel production plant, where a 2-binary variable approach was proposed compared with the 6-binary variable approach. Apart from steel production, Castro et al. (2014) applied the concept in Nolde and Morari (2010) to optimize the maintenance
scheduling in a gas engine plant. They formulated the concept as GDP constraints and found a tighter model for accounting for electricity consumption. In this paper, we improve these GDP constraints in Castro et al. (2014) to deal with electricity consumption. While in Castro et al. (2014), the number of time slots is known a-priori, in this paper the number of time slots is a variable to be determined that results from the campaign decisions in the acid rolling section of the steel plant.

In this paper, we address a new practical integrated scheduling problem with demand-side management consideration, which is derived from the rolling sector of steel production. The main contribution of this paper is the first attempt to determine an integrated scheduling of multiple finishing sections in steel production, and to achieve coordination of the scheduling with energy consumption. Due to the new features and distinctions with other scheduling problems in steel production, former formulations cannot be easily adapted to the problem considered in this paper. A new hybrid MINLP/GDP model is proposed in this paper to address the scheduling to the problem based on the continuous time concept. To take advantage of MILP solvers, the MINLP model is transformed into an MILP model by linearization and hull reformulation.

The remaining paper is organized as follows. Section 2 gives a brief description of the production in the rolling sector and the statement of the integrated scheduling problem under consideration. In Section 3, an MINLP model is established with GDP constraints. Section 4 presents the reformulation of the MINLP model, where the non-linear constraints are linearized, and the GDP constraints are reformulated as MILP constraints. Next, in Section 5, numerical tests are conducted and analyses of the results are made. Section 6 draws the conclusion of this paper and describes future work.

2. Problem Statement

To explain the considered scheduling problem, a brief description of the production in rolling sector is introduced first. In this paper, a series of typical sections are considered, including acid rolling, continuous annealing, galvanizing, tin plating, and rewinding as shown in Fig. 2. There is intermediate storage between
the associated sections. These sections give rise to a multi-stage process. The acid rolling section is the bottleneck process of the rolling sector, which usually has parallel production units to ensure sufficient supply to downstream sections. Steel coil, the feedstock in rolling sector, starts processing with acid rolling section (C1) and then goes through several of the sections according to the processing route. These include continuous annealing (C2) or galvanizing (C3) and tin plating (C4) or rewinding (C5). The processing route of each coil is predetermined based on its final use and the sequence of processing cannot be changed. The processing mode differs for sections in the rolling sector according to various technical requirements. In general, the processing facility in the acid rolling section uses continuous operations for processing, while the handling unit is a production campaign that is composed from a group of coils. As for the other sections, the production is carried out in discrete coils, which are processed sequentially.

Fig. 2 Considered distribution of rolling sector

In acid rolling production, each campaign consists of several coils that are welded from head to tail. Each campaign will consume a new roller, which has a fixed cost. There is a constant setup time between two adjacent campaigns for adjusting production conditions, such as changing the roller. The production is continuously conducted within a campaign, so the processing time of a campaign is equal to the summation of the processing times of the coils that belonging to the campaign. To simplify the problem, the completion time of a coil in acid rolling production is roughly considered to be the same as the completion time of its campaign. The capacity of each campaign can vary within a maximum volume. The number of campaigns and the capacity of each campaign need to be determined. In general, full utilization of the campaign capacity is the ideal case since the cost of the roller is very expensive. However, it changes when considering the
energy consumption as well. For example, if a campaign is designed too large, and the production is partially conducted during the high electricity price period, then one has to determine whether the campaign should be reduced to a smaller size for the sake of decreased energy cost, while this will lead to insufficient utilization of roller and waste of money. Hence, some trade-offs should be made between energy cost and facility cost. Without loss of generality, we assume that the parallel units of acid rolling section are heterogeneous, with unit-dependent energy consumption and setup time.

In the other sections, coils are characterized by many properties, such as width, thickness, annealing temperature and composition of coating metal. When processing coils that are different in characteristics, the equipment will be adjusted to meet varied processing condition and thus cause a changeover cost. The larger the difference is, the higher the changeover cost will be. Therefore, adjusting the equipment frequently should be avoided to reduce changeover costs. The difference of any adjacent processed coils is represented by sequence-dependent changeover costs in this paper.

The integrated scheduling problem of the rolling sector with consideration of campaign decision and demand-side management can be stated as follows.

Given:

1) A set of units \(s \in AC \) in acid rolling section and a set of units \(s \in S \setminus AC \) in other sections in rolling sector;
2) Processing route of each coil;
3) Set of total coils \(i \in N \), set of coils \(i \in \hat{N}_{ac} \) that are processed at acid rolling section and set of coils \(i \in N_s, s \in S \setminus AC \) that are processed at unit \(s \);
4) A set of time slots \(k \in T_s \) at unit \(s \);
5) A set of units \(s' \in L_s \) that are downstream units of \(s \);
6) A set of coils \(i \in N_{s,s'} \) that are supplied to unit \(s' \) from unit \(s \);
7) Processing time of coil i at unit s, τ_i^s;

8) Setup time between series campaigns at unit s, $setup^s$, $s \in AC$;

9) Maximum capacity of each campaign, nB_{max};

10) A set of electricity pricing periods, $tp \in TP$, with constant electricity price of each period ce_{tp}^{buy};

11) Time boundaries of each price period, cp_{tp}^L and cp_{tp}^U.

Determine:

1) The assignment of the coils in the acid rolling section;

2) Campaign composition, campaign capacity, number of campaigns at each unit of acid rolling section and timetable of campaigns with consideration of electricity pricing;

3) Coil sequence and timetable in the sections after acid rolling;

4) Electricity consumption of each electricity pricing period;

5) Completion time of the entire production.

The objective is to minimize the total weighted production costs that consist of changeover costs, rolling facility costs and energy consumption costs. The following assumptions are made in the optimization problem.

1) There are coils at each intermediate storage at the beginning of the schedule;

2) To simplify the problem, we only observe the electricity consumption in one electricity pricing cycle and we assume that the given coils which need to be processed in the acid rolling section can all be finished within one cycle;

3) To simplify the problem, it is assumed that there are two units in acid rolling section and one unit in each of the other sections, which is also a base case in practical production.

3. **Mathematical Formulation**
The proposed MINLP/GDP formulation addresses a multi-stage process in coil production with consideration of various operational constraints and electricity consumption management. The formulation is a hybrid of the slot-based continuous-time concept (see Fig. 3), the immediate precedence concept and GDP. The immediate precedence formulation is known to represent sequence-dependent relationships, which are used to account for changeover costs in this paper. Since the model is based on the continuous-time concept, one of the challenges is to determine the location of the time slots in the discrete time periods of electricity pricing when calculating the electricity consumption. Inspired by recent work of Castro et al. (2014), we extend the GDP constraints to deal with the electricity consumption calculation in this paper. GDP (Raman and Grossmann, 1994) is a logic-based modeling method which is known for representing complex logic constraints and has been applied to many scheduling problems (Castro and Grossmann, 2012). In the context of the continuous time representation, as for time-slot based model, the number of slots needs to be specified a-priori. For the problem under consideration, the slots can be classified into two categories. For the acid rolling section, the production is campaign oriented. As a consequence of the variable campaign capacity, the number of slots is unknown and needs to be estimated. While for the remaining sections, the production is coil oriented, there is no need to estimate the number of slots since the number of slots is equal to the number of coils at each section, which is given. More details about the estimation of the number of slots are given in Section 3.4.
3.1 Objective function

The objective function of this integrated scheduling problem includes three items. The first one is sequence-dependent changeover cost. The goal is to minimize the costs caused by sharp variation in characteristics of adjacent processed coils and to implicitly ensure production smoothness. The second item is the cost of rolling facilities (rollers), which aims at increasing the utilization of rollers to reduce production costs. The last item is the cost of electricity consumption by acid rolling production. The objective of the model is to minimize the total production costs. These cost items are the typical economic targets in real production.

\[
\text{obj} = m_1 \cdot \sum_{s \in S/AC} \sum_{i \in N_s} \sum_{j \in N_s} \sum_{k \in T_s} F_{s}^{i} z_{i,j,k}^{s} + m_2 \cdot \sum_{s \in AC} \sum_{k \in T_s} c_{\text{roller}} \cdot r_{s,k} + m_3 \cdot \sum_{l \in TP} c_{l}^{\text{buy}} \cdot p_{\text{p}} \tag{1}
\]

3.2 Acid rolling related constraints

Since the production mode in the acid rolling section is different compared to other sections, the constraints related to acid rolling production are listed individually. The production in the acid rolling section is campaign-oriented and one time slot corresponds to one campaign which may include multiple coils. The number of campaigns, the schedule of campaigns and the compositions of each campaign are determined in the model, but the coil sequencing within a given campaign is not considered because in practice it can be
easily determined by the schedulers. Following are the constraints that apply to the production in the acid rolling section.

- Assignment and campaign related constraints:

 Every coil i of set N_{ac} should be exactly assigned to one campaign (slot) k of one unit s in the acid rolling section.

 \[\sum_{r \in AC} \sum_{i \in r} y_{s,k,i} = 1, \forall i \in N_{ac} \quad (2) \]

 As for each slot k at unit s, the campaign capacity $nbatch_{s,k}$ equals to the number of coils that are assigned to slot k.

 \[nbatch_{s,k} = \sum_{i \in N_{ac}} y_{s,k,i}, \forall s \in AC, k \in T_s \quad (3) \]

 For time-slot based models with variable number of slots, there are redundant slots due to the over estimation of the number of slots. In this paper, the binary variable $r_{s,k} = 1$ indicates the slot k at unit s is selected; otherwise the slot is idle. Normally, idle slots are located at the end of the slots sequence. In this paper, due to the characteristics of the problem under consideration, the idle slots are located at the beginning of the slot sequence as defined by the symmetry breaking constraints (4). Therefore, the corresponding timings of idle slots are enforced to be zero by constraints (4), (7) and (8), which satisfy the logic requirements of the disjunctions in the GDP constraints (10).

 \[r_{s,k} \leq r_{s,k+1}, \forall s \in AC, k \in T_s \setminus \{t_s\} \quad (4) \]

 As for the selected slot k of unit s, its campaign capacity $nbatch_{s,k}$ is smaller than the maximum campaign capacity B_{max}. Otherwise, the campaign capacity is equal to zero.

 \[r_{s,k} \leq nbatch_{s,k} \leq nB_{max} \cdot r_{s,k}, \forall s \in AC, k \in T_s \quad (5) \]

- Timing constraints
As for the processing of campaign, the duration of a campaign sd^s_k is equal to the summation of the processing times τ^s_i of the coils that belong to that campaign (see Fig. 3).

$$sd^s_k = \sum_{i \in N_{ac}} \tau^s_i \cdot y_{s,k,i}, \forall s \in AC, k \in T_s$$ \hspace{1cm} (6)

For each slot k at unit s, the relationships of beginning time tb^s_k and completion time tf^s_k are described in constraints (7).

$$tf^s_k = tb^s_k + sd^s_k, \forall s \in AC, k \in T_s$$ \hspace{1cm} (7)

There is a constant setup time setup^s between adjacent campaigns, given by equation (8). Therefore, the beginning time of a slot is greater than or equal to its predecessor’s completion time plus a setup time, as long as its predecessor is a selected slot. There is no setup time between any two idle slots.

$$tf^s_k + \text{setup}^s \cdot r_{s,k} \leq tb^s_{k+1}, \forall s \in AC, k \in T_s \setminus \{t_s\}$$ \hspace{1cm} (8)

It is assumed that the completion time of a coil tf^s_i is equal to its campaign completion time as shown in constraints (9), which introduce non-linearity in the model. The non-linearity is reformulated as a set of linear constraints in Section 4 since it introduces the product of the continuous variable tf^s_k and binary variable $y_{s,k,i}$.

$$\hat{tf}^s_i = \sum_{s \in AC} \sum_{k \in T_s} tf^s_k \cdot y_{s,k,i}, i \in N_{ac}^u, s^u \in AC$$ \hspace{1cm} (9)

- Electricity consumption constraints

Computing the actual electricity consumption, accounting for the interactions between a production campaign and the varying electricity pricing periods is the most challenging part of the model. We extend the method by Castro et al. (2014), who have represented the possible locations of a slot over a constant electricity pricing period as a GDP formulation.
Constraints (10) are the updated GDP formulations representing the interactions. Similar, but not the same as in (Castro et al., 2014), there are seven interaction possibilities of a slot \((s,k)\) with respect of a constant electricity pricing period \(tp\) in this paper as shown in Fig 4. Any idle slot, indicated by the negation of the Boolean variable \(\neg R_{s,k}\), has no interaction with electricity pricing period. As mentioned before, all related timings of idle slots are enforced to be equal to zero. These idle slots will not take part in the computation of energy consumption in the reformulations of constraints (10), which can speed up the convergence of the model. For any selected slot indicated by the Boolean variable \(R_{s,k}\), its location over electricity pricing period falls into the remaining six possibilities, which are indicated by Boolean variables \(A_{s,k,tp}\) to \(F_{s,k,tp}\) in constraints (10). The time factor variable \(\Delta T_{s,k,tp}\) represents time fractions of a selected slot in each pricing period. For example, for any selected slot that falls into case \(A\) (see Fig. 4), its beginning time is greater than or equal to the lower bound of time period \(tp\), and its completion time is less than or equal to the upper bound of time period \(tp\), which means that the duration of the slot is entirely contained by period \(tp\). Therefore, for case \(A\), the fraction \(\Delta T_{s,k,tp}\) is equal to the duration of slot \(s\). As for case \(B\), the beginning time of slot \(s\) is less than or equal to the lower bound of time period \(tp\), and the completion time of slot \(s\) is between the lower bound and upper bound of the time period \(tp\). In this case, the slot \(s\) is partially located at the time period \(tp-1\) and \(tp\), and the fraction \(\Delta T_{s,k,tp}\) is equal to the completion time of slot \(s\) minus the lower bound of time period \(tp\) as shown in Fig 4. All the remaining cases can be formulated in a similar way. Note that in constraints (10) a selected slot can satisfy the conditions for more than one cases, e.g. when the beginning time of slot \(s\) is equal to the lower bound of time period \(tp\) and the completion time of slot \(s\) is equal to the upper bound of time period \(tp\), slot \(s\) can satisfy both the conditions of cases of \(A\) and \(B\). This overlap has no effect on the final result of the model, since the GDP constraint is based on exclusive disjunctions, which means that each slot can fall into only one of the cases in the disjunctions, and the final result will satisfy the real timing logic.
Equation (11) calculates the total amount of electricity that is consumed during time period tp.

\[p_{wp} = \sum_{s \in AC} \sum_{k \in T_s} pwh_s \cdot \Delta T_{s,k,tp}, \quad tp \in TP \]

\[\text{Fig. 4 Possible interactions of a slot with a constant time period} \]
The summation of the time factors over all pricing periods is equal to the duration of the slot, given by constraints (12). It is a constraint that is obtained from the production point of view. Although redundant, it can help to reduce the integrality gap of the reformulation of constraints (10). The detailed motivation of developing equation (12) can be seen in Section 3.

\[sd_{s,k} = \sum_{tp \in TP} \Delta T_{s,k,tp}, \forall s \in AC, k \in T_s \]

(12)

3.3 General constraints

Following are some general constraints that apply to the processing tasks in the sections after the acid rolling section (see Fig. 3).

• Allocation constraints

Each coil should be exactly assigned to one slot of a corresponding unit.

\[\sum_{k \in T_s} y_{s,k,i} = 1, \forall s \in S \setminus AC, i \in N_s \]

(13)

Each slot should be exactly assigned to one coil.

\[\sum_{i \in N_s} y_{s,k,i} = 1, \forall s \in S \setminus AC, k \in T_s \]

(14)

• Timing constraints

In this paper, we need to calculate the beginning and completion times of both slots (\(\bar{t}b_{i,k} \) and \(\bar{t}f_{i,k} \)) and coils (\(\bar{t}t_{k,i} \) and \(\bar{t}j_{k,i} \)). To link up the timings of slots with the timings of coils, two set of disaggregated variables \(tb_{i,k}^{s} \) and \(tf_{i,k}^{s} \) are introduced in the model. \(tb_{i,k}^{s} \) and \(tf_{i,k}^{s} \) are the beginning time and completion time of coil \(i \) in slot \(k \) at unit \(s \), respectively. As shown in constraints (15)-(16), \(tb_{i,k}^{s} \) and \(tf_{i,k}^{s} \) will make sense only when coil \(i \) is exactly assigned to slot \(k \) at unit \(s \); otherwise, they will be equal to zero due to constraints (13) and (14).

\[tb_{i,k}^{s} \leq UB_s \cdot y_{s,k,i}, \forall s \in S \setminus AC, k \in T_s, i \in N_s \]

(15)
\[t_{f,i,k}^s \leq UB_s \cdot y_{s,k,i}, \forall s \in S \setminus AC, k \in T_s, i \in N_s \]

(16)

As for slot \(k \) of unit \(s \) that is assigned to coil \(i \), the slot duration \(cd_{i,k}^s \) is equal to the processing time of \(i \); otherwise, \(cd_{i,k}^s \) is zero.

\[cd_{i,k}^s = \tau_i^s \cdot y_{s,k,i}, \forall s \in S \setminus AC, k \in T_s, i \in N_s \]

(17)

Equation (18) states the relationships of the disaggregated variables \(tb_{i,k}^s \) and \(tf_{i,k}^s \).

\[tf_{i,k}^s = tb_{i,k}^s + cd_{i,k}^s, \forall s \in S \setminus AC, k \in T_s, i \in N_s \]

(18)

Constraints (19) and (20) are to calculate the beginning and completion time of slot \(k \) at unit \(s \), respectively.

\[\bar{tb}_s^k = \sum_{i \in N_s} tb_{i,k}^s, \forall s \in S \setminus AC, k \in T_s \]

(19)

\[\bar{tf}_s^k = \sum_{i \in N_s} tf_{i,k}^s, \forall s \in S \setminus AC, k \in T_s \]

(20)

Constraints (21) state that there is no crossover between adjacent slots.

\[\bar{tf}_{k}^s \leq \bar{tb}_{k+1}^s, \forall s \in S \setminus AC, k \in T_s \setminus \{t_j\}, i \in N_s \]

(21)

Beginning and completion time of coils are calculated by constraints (22) and (23).

\[\hat{tb}_i = \sum_{k \in T_s} tb_{i,k}^s, \forall s \in S \setminus AC, i \in N_s \]

(22)

\[\hat{tf}_i = \sum_{k \in T_s} tf_{i,k}^s, \forall s \in S \setminus AC, i \in N_s \]

(23)

Constraints (24) ensure that any coil can begin processing at downstream section only when it has been finished at upstream section.

\[\hat{tf}_{i}^s \leq \hat{tb}_i, \forall s \in S', s' \in L_s, i \in N_s \]

(24)

• Immediate precedence constraints
In this paper, we apply the compact constraints proposed by Erdirik-Dogan and Grossmann (2008) to account for immediate precedence relationships of coils. For any coil i that is located at slot k of unit s, as long as k is not the last one in the slot sequence, there must be a coil j that is located at slot $k+1$. Similarly, for any coil j that is located at slot $k+1$ of unit s, there must be a coil i that is located at slot k of unit s.

$$y_{s,k,i} = \sum_{j \in N_s} z^i_{s,j,k}, \forall s \in S \setminus AC, i \in N_s, k \in T_s \setminus \{t_s\} \quad (25)$$

$$y_{s,k+1,j} = \sum_{i \in N_s} z^s_{i,j,k}, \forall s \in S \setminus AC, j \in N_s, k \in T_s \setminus \{t_s\} \quad (26)$$

3.4 Slot estimation and variable bounding

- **Estimation of the number of slots**

For continuous time models with slot-based representation, one of the issues is the estimation of the number of slots (Floudas and Lin, 2004). On one hand, under-estimation of slots will lead to sub-optimal or even infeasibility of the model; on the other hand, over-estimation of slots will increase the difficulty in solving model. So it is very important to make a proper estimation of the number of slots. As mentioned before, only the slots that are associated with acid rolling section need to be estimated. In this paper, we use a simple rule to estimate the number of slots, as given by equation (27). The number of slots s_n is equal to NB_{least}, which is the minimum number of campaigns that can process all the ac coils at a single unit of acid rolling. NB_{least} is calculated as equation (27). Therefore, even for the extreme case where all coils are processed at the same unit, it also guarantees that the number of slots is enough to process all the coils and the production is feasible. For general cases where coils are processed at both units, the slots are also adequate and provide certain flexibility. Although we cannot guarantee that the proposed rule to estimate the number of slots will lead to the optimal solution, it still makes sense for real production.

$$s_n = NB_{\text{least}} = \left\lceil \frac{ac}{nB_{\text{max}}} \right\rceil \quad (27)$$
• Variable bounding

The timing related constraints such as (15)-(16), (33), (43), (45), (48)-(49) need information from upper bounds of the timing variables. As mentioned before, we only observe the electricity consumption in one cycle of the electricity pricing. Therefore, the upper bound of timing variables corresponding to acid rolling section is set to be the same as the length of the cycle time cp_{up}. The upper bounds of timing variables in the remaining sections are calculated by equation (28).

$$UB_{s'} = UB_s + \sum_{i \in N_s} \tau_{ij}, s \in S', s' \in L_s$$ \hspace{1cm} (28)

• Lower bound of total changeover costs

To obtain a tighter relaxation of the scheduling model, we specify a lower bound of the total sequence-dependent changeover costs in the objective function (1) by the underlying cost structure. The lower bound of the total changeover costs is calculated by equations (29)-(30).

$$mc_i^s = \min_{j \neq i} \{F_{i,j}^s\}, s \in S \setminus AC, i \in N_s$$ \hspace{1cm} (29)

$$\sum_{s \in S \setminus AC} \sum_{i \in N_s} \sum_{j \in N_s} \sum_{k \in T_s} F_{i,j,k}^s z_{i,j,k}^s \geq BestC = \sum_{s \in S \setminus AC} \left(\sum_{i \in N_s} mc_i^s - \max_{i \in N_s} \{mc_i^s\} \right)$$ \hspace{1cm} (30)

The sequence-dependent costs are represented by a two dimensional matrix as shown in Fig. 5. We can see that each coil i has a potential minimum changeover cost mc_i^s with other coils, which is highlighted in red color in Fig.5. In the best case all the coils can be processed adjacently with the coil that has the minimum changeover cost. Let $BestC$ be the total changeover costs for the best case which is calculated by equation (30). Hence, the total changeover costs must be greater than or equal to $BestC$ as given by equation (30).
4. Reformulation

The scheduling model given by equations (1)-(26), (29)-(30) includes non-linear constraints and GDP constraints. We reformulate the model as an MILP by the following steps.

- Linearization

To linearize equation (9), a set of auxiliary continuous variables $\lambda^\ast_{i,k}$ (Glover, 1975) are introduced in this paper. Let $\lambda^\ast_{i,k} = \overline{t}_f^\prime_k \cdot y_{s,k,i}$, $s \in AC, k \in T_s, i \in N^\ast_{ac}$, then we obtain equations (31)-(35). When binary variable $y_{s,k,i} = 0$, then equations (32)-(33) are activated and enforce $\lambda^\ast_{i,k} = 0$, which is consistent with $\overline{t}_f^\prime_k \cdot y_{s,k,i} = 0$. Equations (34)-(35) are relaxed in this case. When $y_{s,k,i} = 1$, equations (34)-(35) are activated and enforce $\lambda^\ast_{i,k} = \overline{t}_f^\prime_k$. Equations (32)-(33) are relaxed in this case. In this way, equation (9) is reformulated as a set of MILP constraints.

$$\overline{t}_f^\prime_i = \sum_{s \in AC} \sum_{k \in T_s} \lambda^\ast_{i,k}, \forall i \in I, s^\ast \in AC$$ (31)

$$\lambda^\ast_{i,k} \geq 0$$ (32)

$$\lambda^\ast_{i,k} \leq UB_k \cdot y_{s,k,i}$$ (33)

$$\lambda^\ast_{i,k} \geq \overline{t}_f^\prime_k - UB_k \cdot (1 - y_{s,k,i})$$ (34)
\[\lambda_{s,k}^f \leq \bar{f}_{k}^f \] \hspace{1cm} (35)

- Hull reformulation of GDP constraints

The GDP constraints can be reformulated as MILP constraints in different ways, including the alternative big-M reformulation and the hull reformulation (Grossmann and Lee, 2003). The relaxed feasible region of the hull reformulation is proven to be at least as tight, if not tighter, than the one from big-M reformulation (Grossmann and Lee, 2003), although the size of hull reformulation is larger than the big-M reformulation. In this paper, the hull reformulation is adopted for reformulating the GDP constraints (10) of the model. In the reformulation, the logic variables \(A_{s,k,ip} \) to \(F_{s,k,ip} \) are replaced by the binary variables \(a_{s,k,ip} \) to \(f_{k,ip} \), respectively. To obtain the hull reformulation of equation (10), the timing variables of slot \((s,k)\) in the disjunctions are disaggregated by equations (36)-(37).

\[
\begin{align*}
\bar{t}_{s,k,ip} &= \bar{t}_{A_{s,k,ip}} + \bar{t}_{B_{s,k,ip}} + \bar{t}_{C_{s,k,ip}} + \bar{t}_{D_{s,k,ip}} + \bar{t}_{E_{s,k,ip}}, \forall s \in AC, k \in T_s, tp \in TP \hspace{1cm} (36) \\
\bar{f}_{k,ip} &= \bar{f}_{A_{s,k,ip}} + \bar{f}_{B_{s,k,ip}} + \bar{f}_{C_{s,k,ip}} + \bar{f}_{D_{s,k,ip}} + \bar{f}_{E_{s,k,ip}}, \forall s \in AC, k \in T_s, tp \in TP \hspace{1cm} (37)
\end{align*}
\]

The inequalities in the disjunctions are rewritten as equations (38)-(49) in terms of disaggregated variables and the new binary variables with respect of the logical expressions in the disjunctions. Take case \(A \) as an example which is given by equations (38)-(39). The disaggregated variables of beginning time and completion time of a slot are between the lower bound and upper bound of the time period \(tp \) when \(a_{s,k,ip} = 1 \); otherwise they are equal to zero. Other cases can be treated in a similar way.

\[
\begin{align*}
&cp_{ip}^L \cdot a_{s,k,ip} \leq \bar{t}_{A_{s,k,ip}} \leq cp_{ip}^U \cdot a_{s,k,ip}, \forall s \in AC, k \in T_s, tp \in TP \hspace{1cm} (38) \\
&cp_{ip}^L \cdot a_{s,k,ip} \leq \bar{f}_{A_{s,k,ip}} \leq cp_{ip}^U \cdot a_{s,k,ip}, \forall s \in AC, k \in T_s, tp \in TP \hspace{1cm} (39) \\
&0 \leq \bar{t}_{B_{s,k,ip}} \leq cp_{ip}^L \cdot b_{s,k,ip}, \forall s \in AC, k \in T_s, tp \in TP \hspace{1cm} (40) \\
&cp_{ip}^L \cdot b_{s,k,ip} \leq \bar{f}_{B_{s,k,ip}} \leq cp_{ip}^U \cdot b_{s,k,ip}, \forall s \in AC, k \in T_s, tp \in TP \hspace{1cm} (41)
\end{align*}
\]
The logic proposition in (10) is transformed into a linear constraint as in (50), stating that exactly only one of the possible locations can happen when the corresponding slot is selected.

\[
a_{s,k,ip} + b_{s,k,ip} + c_{s,k,ip} + d_{s,k,ip} + e_{s,k,ip} + f_{s,k,ip} = r_{s,k} \quad \forall s \in AC, k \in T_s, tp \in TP
\]

(50)

The time factor \(\Delta T_{s,k,ip} \) is equal to the summation of the potential time fractions over all cases, as given by equation (51). An observation from the solving process of model is that, when the binary variables \(a_{s,k,ip} \) to \(d_{s,k,ip} \) in equation (51) are relaxed as continuous variables in the range of \([0, 1]\), each term in equation (51) takes a value of zero. Therefore, the value of variable \(\Delta T_{s,k,ip} \) is zero, which results in poor relaxation of the model. Constraints (12) ensure that the summation of \(\Delta T_{s,k,ip} \) is equal to the duration of slot \((s,k)\), and therefore the fraction variables \(\Delta T_{s,k,ip} \) will not be all zero. Hence, constraints (12) help to improve the LP relaxation, and hence speed up the computation of the model.
\[
\Delta T_{s,k,tp} = s d_k \cdot a_{s,k,tp} + (\overline{t f}_{s,k,tp} - c p_{ip}^L \cdot b_{s,k,tp}) + (c p_{ip}^U \cdot c_{s,k,tp} - \overline{t b}_{s,k,tp}) \\
+ (c p_{ip}^U - c p_{ip}^L) \cdot d_{s,k,tp}, \forall s \in AC, k \in T_s, tp \in TP
\] (51)

In summary, the proposed MILP model is given by equations (1)-(8), (11)-(26) and (29)-(51).

5. Case study and numerical experiments

To test the performance of the integrated scheduling model, numerical experiments are carried out on instances based on typical data of practical production. The models resulting from linearization and hull reformulations of the GDP constraints were implemented in GAMS 24.7.3 and solved with CPLEX 12.6.3 solver with four threads, and default options up to relative optimality tolerance = 0.0001 and 0.01, respectively. The hardware consisted on a laptop with an Intel i7-6500U (@2.50GHz) with 8GB of RAM running Windows 10 system.

A number of different-scaled instances are considered that resulted from combination of various numbers of coils in each section and the number of electricity pricing periods. The settings of coefficients and parameters are listed in Table 1. We tested the model on two scenarios of electricity pricing period with \(tp_{\text{max}} = 4\) and \(tp_{\text{max}} = 7\), respectively. The cycle time of electricity pricing is set to be 24 hours. The detailed data of electricity price is provided in Tables 2 and 3. Four groups of coils are used in the test problems with the number of coils being gradually increased.

The computational statistics of the 8 instances are given in Table 4. The size of the model has clearly a great impact on the solution time. With larger sizes of the instances, the solution time increases, especially for instance 7 and instance 8. The optimal solutions of all the instances were obtained within 3600 CPU times with a relative optimality tolerance of 0.01. Especially for instances 1 to instance 6, all optimal solutions are obtained within one minute, which can be viewed as a quick solution in practical production environment. Reducing the optimality tolerance to 0.0001, the optimal solutions for all the instances except instance 8 were
obtained within 3600 CPU times. The integrality gaps in Table 4 show that the proposed model has a fairly tight relaxation.

As an illustrative example, Fig. 6 presents the Gantt chart of the optimal solution of Instance 1 obtained by CPLEX. In Instance 1, there are 4 time periods t_1 to t_4 in a cycle of electricity pricing. In the acid rolling section, there are two campaigns at unit 1 with 2 coils and 4 coils, respectively, and one campaign at unit 2 with 4 coils. We can see that all these campaigns are processed in t_1 and t_2, the periods with relatively lower electricity price. These coils are then released to downstream sections and continue further processing. The completion time of the entire schedule is 47.7 hour. In actual practice, the scheduling plan of each section in the rolling sector is manually made by schedulers with some kind of simple heuristics. Usually for the production in the acid rolling section, the coils are grouped with the goal of maximizing the roller utilization. The cost of energy consumption is rarely considered. As for the other sections, the coils are sequenced with a greedy-based strategy to achieve the minimum changeover costs. For Instance 1, the total production cost obtained by the practical solution method is 153.36 (10^3 CNY), which is 34% higher compared with the result of 114.4 (10^3 CNY) from our model. Not only that, the solution time is also significantly reduced with our model.

<table>
<thead>
<tr>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>C_{roller} (10^3 CNY)</th>
<th>B_{max} (hour)</th>
<th>setup^1 (hour)</th>
<th>setup^2 (hour)</th>
<th>pwh_1 (MW.h)</th>
<th>pwh_2 (MW.h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>0.2</td>
<td>0.5</td>
<td>50</td>
<td>4</td>
<td>0.8</td>
<td>1.2</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tp</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load type</td>
<td>Valley-load</td>
<td>Flat-load</td>
<td>Peak-load</td>
<td>Flat-load</td>
</tr>
<tr>
<td>cp_{v}^i (hour)</td>
<td>0</td>
<td>8</td>
<td>14</td>
<td>19</td>
</tr>
<tr>
<td>cp_{v}^f (hour)</td>
<td>8</td>
<td>14</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>c_{wv} (CNY/KW.h)</td>
<td>0.338</td>
<td>0.659</td>
<td>1.112</td>
<td>0.659</td>
</tr>
</tbody>
</table>
Table 3. Electricity price data of $t_p^{\text{max}} = 7$

<table>
<thead>
<tr>
<th>t_p</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load type</td>
<td>Valley-load</td>
<td>Flat-load</td>
<td>Peak-load</td>
<td>Flat-load</td>
<td>Peak-load</td>
<td>Flat-load</td>
<td>Valley-load</td>
</tr>
<tr>
<td>$c_{\text{L}}^{t_p}$ (hour)</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>18</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>$c_{\text{U}}^{t_p}$ (hour)</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>$c^\text{buy}_{t_p}$ (CNY/KW.h)</td>
<td>0.338</td>
<td>0.659</td>
<td>1.112</td>
<td>0.659</td>
<td>1.112</td>
<td>0.659</td>
<td>0.338</td>
</tr>
</tbody>
</table>

Table 4. Computational statistics of the instances

<table>
<thead>
<tr>
<th>Instance</th>
<th>Coil number</th>
<th>Period</th>
<th>Model size</th>
<th>Cost (10^3 CNY)</th>
<th>Integrality gap (%)</th>
<th>CPUs *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1 C2 C3 C4 C5</td>
<td></td>
<td>Discrete variable</td>
<td>Continuous variable</td>
<td>Constraints</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 7 4 6 5</td>
<td>4</td>
<td>860</td>
<td>1,944</td>
<td>1,716</td>
<td>114.14</td>
</tr>
<tr>
<td>2</td>
<td>10 7 4 6 5</td>
<td>7</td>
<td>970</td>
<td>2,289</td>
<td>2,151</td>
<td>112.80</td>
</tr>
<tr>
<td>3</td>
<td>15 10 10 10 5</td>
<td>4</td>
<td>3,163</td>
<td>5,440</td>
<td>3,381</td>
<td>116.46</td>
</tr>
<tr>
<td>4</td>
<td>15 10 10 10 5</td>
<td>7</td>
<td>3,307</td>
<td>5,899</td>
<td>3,960</td>
<td>118.11</td>
</tr>
<tr>
<td>5</td>
<td>20 15 15 13 6</td>
<td>4</td>
<td>9,132</td>
<td>13,350</td>
<td>5,984</td>
<td>157.28</td>
</tr>
<tr>
<td>6</td>
<td>20 15 15 13 6</td>
<td>7</td>
<td>9,312</td>
<td>13,923</td>
<td>6,707</td>
<td>158.78</td>
</tr>
<tr>
<td>7</td>
<td>25 20 20 20 10</td>
<td>4</td>
<td>24,484</td>
<td>32,277</td>
<td>10,766</td>
<td>210.18</td>
</tr>
<tr>
<td>8</td>
<td>25 20 20 20 10</td>
<td>7</td>
<td>24,736</td>
<td>33,078</td>
<td>11,777</td>
<td>208.52</td>
</tr>
</tbody>
</table>

*: CPU seconds for 10^{-4} and 10^{-2} optimality tolerance, respectively.
6. Conclusion

In this paper, we have considered the production in the multiple finishing sections of steel industry, where the target is to obtain schedules of all these sections under various technical constraints. Especially for the energy intensive sections, electricity consumption is also optimized based on demand-side management techniques. The integrated scheduling problem of the rolling sector with consideration of energy consumption under time-of-use electricity prices was proposed to optimize the coordination of production and electricity consumption, and minimize the typical production costs.

Based on a continuous time representation, the MINLP/GDP model was formulated with nonlinear and disjunctive constraints, and then reformulated as a tight MILP model through hull reformulation and exact linearization. Also, a lower bound for the objective was specified for the model. The results of the numerical experiments demonstrated the effectiveness and tightness of the model.

The rolling sector is a multi-stage process with parallel sections at each stage. This is a typical structure in industrial production, so the proposed model can also be extended to the integrated scheduling in other similar processes, such as aluminium production, which mainly consists of two stages (electrolysis and casting) with parallel lines. The production in the rolling sector is complicated with consumption of not only
electricity but also other energy and resources such as coal and water. As for future research, to achieve more efficient production, these resources should also be considered explicitly, which will make the scheduling problem more complex.

- **Acknowledgments**

 The authors gratefully acknowledge the financial support from National Key Research and Development Program of China (2016YFB0901900), the Major International Joint Research Project of the National Natural Science Foundation of China (Grant No. 71520107004), the Fund for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 71621061), the Fund for the National Natural Science Foundation of China (Grant No. 61374203), the 111 Project (B16009), the Center for Advanced Process Decision-making at Carnegie Mellon University and the China Scholarship Council.

- **References**

