
 

 1 

Flexibility Index of Black-Box Models with Parameter Uncertainty 

through Derivative-Free Optimization 

Fei Zhao, Ignacio E. Grossmann* 

Center for Advanced Process Decision-Making, Department of Chemical Engineering, 

Carnegie Mellon University, Pittsburgh, PA 15213 

Salvador García-Muñoz, Stephen D. Stamatis 

Synthetic Molecule Design and Development, Lilly Research Laboratories, Indianapolis, IN 

46285 

Abstract 

The existing methods of flexibility index are mainly based on mixed-integer linear or nonlinear 

programming methods, making it difficult to readily deal with complex mathematical models. 

In this article, a novel solution strategy is proposed for finding a reliable upper bound of the 

flexibility index where the process model is implemented in a black box that can be directly 

executed by a commercial simulator, and also avoiding the need for calculating derivatives. 

Then, the flexibility index problem is formulated as a sequence of univariate derivative-free 

optimization (DFO) models. An external DFO solver based on trust-region methods can be 

called to solve this model. Finally, after calculating the critical point of the model parameters, 

the vertex enumeration method and two gradient approximation methods are proposed to 

evaluate the impact of process parameters and to evaluate the flexibility index. A reaction 

model is studied to show the efficiency of the proposed algorithm. 
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1. Introduction  

Most chemical plants are subject to uncertainties and variations during operation. Flexibility 

analysis has been proposed as a quantitative framework for measuring the capability of feasible 

operation of a given design over a range of values for the uncertain parameters1. Flexibility has 

been studied over three decades and as an important property that must be incorporated into a 

design, and it has been applied in several industrially inspired case studies2-5, such as process 

synthesis of air separation, heat exchanger network design, and supply chain networks. For 

reviews of previous work on flexibility analysis, see references6-9.  

Ostrovsky et al.10 and Rooney and Biegler11 extended flexibility analysis by grouping the 

parameters into process parameters and model parameters12. Process parameters refer to 

degrees of freedom or manipulated variables in an industrial process. Process variables are 

measured, known and can be set within controller tolerance to a desired value. In typical 

operation, process parameters have two types of defined ranges: (1) The qualification range 

given by the physical constraints in the equipment and safety considerations (e.g. maximum 

volumetric flow an air blower can deliver); (2) The operational range, this is the allowed 

envelope of operation to ensure product quality. The combination of all envelopes of operation 

for all process parameters is defined as the flexibility region. The operational range is always 

contained within the qualification range. On the other hand, a model parameter is an a-priori 

unknown quantity in a mathematical representation of the process. Although the values of these 

parameters for an industrial process model are mostly unknown, their values are typically 

estimated from measurements. The model parameter estimation exercise results in an expected 

value and a confidence interval for each of the model parameters which are typically assumed 

to follow a Gaussian distribution. The size of the confidence interval is reflective of the 

uncertainty in the parameter values.  
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In this work, we aim to identify the operational range for all process parameters (a.k.a. the 

flexibility region) within their qualification range, and subject to a model of the process, the 

expected values for the model parameters and their range of uncertainty, and a set of constraints 

to the product attributes driven by quality needs. Flexibility index13,14 is a concept proposed to 

describe such the operational range for all process parameters, which can represent a maximum 

scaled departure of process parameters from their nominal value, that is, a largest hyper-

rectangle inscribed in the feasible space, inside which, the steady-state operation can be 

attained by adjusting the control variables. The flexibility index problem is commonly 

formulated as a multi-level optimization model with existing approaches relying on the solution 

of mixed integer linear or nonlinear programming solvers. Considering the computational 

complexity, a direct search algorithm by enumerating all vertices of the hyper-rectangle, that 

is, the vertex direction search method13, was proposed. Since the computational effort of the 

vertex search method is generally proportional to the number of the uncertain parameters, an 

implicit enumeration scheme with a branch-and-bound procedure was developed to accelerate 

the search process14 for cases with convex feasible spaces where the critical points always 

correspond to the vertices. For nonconvex regions the vertex searches are not guaranteed to 

provide rigorous solutions. In order to avoid the convexity assumption, Grossmann and 

Floudas15 developed an active constraint strategy, where the flexibility index problem can be 

reformulated as a mixed-integer linear programming (MILP) model or mixed-integer 

nonlinear programming (MINLP) model by applying the Karush-Kuhn-Tucker (KKT) 

conditions. However, for a large-scale or complex design problem, it is often hard to solve the 

corresponding MINLP model and finding the global optimum cannot be guaranteed for the 

nonconvex cases. Li et al.4 developed a direction matrix to search the critical points. Through 

incorporating a simulated annealing algorithm and a decoupling strategy, the flexibility index 

of a large-scale system can also be obtained.  
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The surrogate-based and sampling-based methods16,17 can provide optional ways to ease the 

complexity of large-scale or complex problems. Banerjee and Ierapetritou18 proposed a high 

dimensional model representation (HDMR) approach based on the input-output mapping 

strategy to determine the flexibility space. Next, Boukouvala and Ierapetritou19 applied a 

Kriging-based approach to substitute a surrogate model for the original flexibility function. 

Laky et al.20 developed two algorithms to extend the flexibility test and index formulation to 

identify the probabilistic design space and replace the simulation-based analysis. García Muñoz 

et al.21 defined the probabilistic design space through creating a grid of sample points for the 

process parameters, and Kucherenko et al.22 proposed the acceptance-rejection method that 

outperformed the exhaustive sampling achieving a two orders of magnitude speed-up by using 

metamodeling and adaptive sampling in the design space determination. Zheng et al.23 created 

a surrogate model to simplify the system, and then applied a symbolic computation method to 

approximate the design space. An iterative procedure, including surrogate modeling, model 

updating, sampling points, boundary checking, is used to describe the final design space. 

In summary, however, the existing approaches to evaluate the flexibility index mainly rely on 

solving MILP or MINLP problems, which makes it difficult to handle large-scale or complex 

problems. Moreover, the realistic industrial processes, e.g., chemical manufacturing, are often 

operated in the presence of complex and uncertain dynamics which complicate the application 

of traditional flexibility analysis. The complexity of the design model and the existence of 

dynamics can increase the difficulty of solving the flexibility index problems. Based on the 

steady-state flexibility analysis framework, Dimitriadis and Pistikopoulos24 proposed a unified 

approach for the quantification of feasibility and flexibility of systems that operate dynamically 

under time-varying uncertainty. If the uncertainty profiles are given, the problem can be 

reduced such that traditional flexibility analysis methods can be used; if not given, a 

discretization scheme for the differential equations is used to transform it into a mixed-integer 
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nonlinear programming problem. Adi and Chang25 dealt with flexibility analysis for a system 

described by a set of differential algebraic equations (DAEs). By adopting a differential 

quadrature technique to approximate the DAEs with equality constraints, any solution strategy 

for the conventional steady-state flexibility analysis is applicable. For integrated process and 

control systems design, Mohideen et al.26 proposed a framework for addressing the optimal 

design problem of dynamic systems under uncertainty in which the flexibility aspects were 

formally incorporated in a multiperiod design subproblem coupled with feasibility analysis of 

time-varying systems. The mixed-integer dynamic optimization algorithm was implemented in 

GAMS. Thus, besides the issue of model size, the uncertain dynamics also create another 

obstacle to solve the flexibility index problems. 

An additional challenge for large scale and/or noisy systems is that the derivatives required to 

solve the optimization problem are neither symbolically nor numerically available. If the 

derivative information is unavailable, the active set method based on the KKT conditions 

cannot be used to find the flexibility index. The complexity of mechanistic models in industrial 

practice is such that it becomes difficult to calculate or derive algebraic derivatives of those 

process models. The restrictions of commercial simulation software are another barrier to 

having the algebraic model and its derivatives explicitly available to the practitioner.  

Reimplementing process models in multiple platforms to apply different analyses is an effort 

and time intensive activity often prohibitive by the tight timelines in a live project. Hence, it is 

desirable to use process models as black boxes, because they can be directly simulated on their 

original commercial software, explicit derivatives however are still not available. Derivative-

Free Optimization (DFO) methods were designed to solve such the black-box models with no 

need to compute the derivatives numerically or algorithmically. Specific to the pharmaceutical 

industry, Boukouvala and Ierapetritou27 have reported the use of surrogate models as a way to 

creating approximate models that can be handled by MINLP algorithms. The direct use of black 
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box models coupled with DFO algorithms has be reported by Boukouvala et al.28 and 

Boukouvala et al.29, the latter for pressure swing adsorption. The use of black box models has 

also been reported in other areas. For instance, Peaceman30 applied black-box simulation 

method to deal with the petroleum reservoir model, while Shiehnejadhesar et al.31 and Nagy et 

al.32 used CFD to analyze furnace models.  

While the application of DFO for black box models has been considered in a number of areas 

as described above, to our knowledge they have not been applied to the area of flexibility 

analysis. DFO method is an area with a long history and current rapid growth33-36. Rios and 

Sahinidis37 present a review of derivative-free algorithms, followed by a systematic 

comparison of 22 related DFO solvers. Note that DFO methods are sometimes employed for 

convenience rather than by necessity, because the decision to use a DFO method typically can 

limit the performance (as measured by accuracy, computational expense, or problem size), one 

might expect from gradient-based optimization methods38. In addition, as the dimension of the 

model increases, the reliability of the DFO methods decreases. Theoretically, the DFO methods 

can achieve the best performance for the univariate or bivariate models. If the optimization 

object is a low-dimensional model, the DFO methods can be applicable. 

Motivated by the convenience of DFO methods, we propose in this work to apply these 

techniques to process models that are treated as a black box; thus, any existing models using 

commercial simulators can be used, and also avoiding the need for calculating derivatives. The 

input and output information of the black-box model can be used for an external DFO solver 

developed by trust-region methods. First, before solving the flexibility index, the critical point 

of the model parameters is determined by calculating the worst constraint violations. Three 

different methods, i.e., vertex enumeration method and two gradient approximation methods, 

are proposed to evaluate the upper bound of flexibility index. In order to implement the 
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proposed algorithm, the performance of the DFO methods and DFO solvers is analyzed in 

advance, and the entire procedure has been programmed and can be executed automatically.  

The remainder of this paper is organized as follows. Section 2 proposes to calculate the critical 

point of model parameters by finding the worst constraint violations. Section 3 describes the 

DFO model of flexibility index and provides geometric interpretations; Section 4 introduces 

the DFO methods and analyzes the properties of the DFO solvers. Section 5 proposes three 

different methods to find the flexibility index. A reaction model is given in Section 6. Section 

7 concludes the paper. 

2. Critical point of model parameters 

For the flexibility analysis we will not consider recourse decisions1 as this is the current practice 

in the pharma industry. For a given plant design d, the flexibility constraint with no recourse 

can be described as a logic expression as follows12: 

∀𝜃 ∈ 𝑇%{∀𝜂 ∈ 𝑇(, ∀𝑗 ∈ 𝐽[𝑔.(𝜃, 𝜂) ≤ 0]}                                   (1) 

where 	𝜃  and 𝜂  represent process and model parameters, respectively. Process parameters 

include for instance feed flow rates, pressures, temperatures, and concentrations. Model 

parameters include for instance activation barriers, preexponential factors, heats of reaction, 

solubility, Henry’s law constants, and analytical response factors. Eq. (1) states that for any 

possible realization of the process parameters in 𝑇% and any realization of the model parameters 

in 𝑇(, all of the individual constraints 𝑔., 𝑗 ∈ 𝐽, should be satisfied. To evaluate the flexibility 

index, Eq. (1) can be equivalently reformulated by the use of global max operator1, leading to 

Eq. (2). 

𝜒 = max
8∈9:

max
;∈9<

max
.∈=

𝑔.(𝜃, 𝜂) ≤ 0                                        (2) 

𝜒 is defined as flexibility function. Through the following property of max operators, 

max
?
max
@
𝑓(𝑥, 𝑦) ⟺ max

@
max
?
𝑓(𝑥, 𝑦)                                       (3) 
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which means that the order of the maximization problems of Eq. (3) is interchangeable. 

Therefore, the problem in Eq. (2) can be equivalently reformulated as follows. 

max
8∈9:

max
;∈9<

max
.∈=

𝑔.(𝜃, 𝜂) ⟺ max
8∈9:

max
.∈=

max
;∈9<

𝑔.(𝜃, 𝜂)                             (4) 

The flexibility index F can be defined as the largest value of 𝛿 for the uncertainty set of process 

parameters, as shown in Eq. (5),  

𝑇%(𝜃) = {𝜃: 𝜃G − 𝛿 ∙ 𝛥𝜃K ≤ 𝜃 ≤ 𝜃G + 𝛿 ∙ 𝛥𝜃M}                               (5) 

where 𝜃G  are the nominal values of the process parameters, and the range [𝛥𝜃K, 𝛥𝜃M] 

represents the allowable range of operation for each. At 𝛿 = 𝐹, 𝑇%(𝜃) can describe the largest 

hyperrectangle which is inscribed within the feasible range of the process parameters. 𝑇((𝜂) 

represents the variability of the model parameters, which is commonly described by the 

hyperrectangle but not restricted to any specific type of set. For simplicity, in this work, we 

assume that the model parameters are independent and not correlated. Hence, we assume that 

they are simply described by upper and lower bounds. 

𝑇((𝜂) = {𝜂: 𝜂Q ≤ 𝜂 ≤ 𝜂R}                                                (6) 

Therefore, the flexibility index problem can be described by the following optimization model. 

𝐹 = max
S∈ℝU

𝛿

𝑠. 𝑡.		𝜒 = max
8∈9:

max
.∈=

max
;∈9<

𝑔.(𝜃, 𝜂) ≤ 0

									𝑇((𝜂) = {𝜂: 𝜂Q ≤ 𝜂 ≤ 𝜂R}
									𝑇%(𝜃) = {𝜃: 𝜃G − 𝛿 ∙ 𝛥𝜃K ≤ 𝜃 ≤ 𝜃G + 𝛿 ∙ 𝛥𝜃M}

                        (7) 

where the maximization problem in 𝜒 determines the worst constraint violation, and the critical 

model parameters can generate the worst constraint violation. Thus, if specifying the process 

parameters as 𝜃G, the worst value of the constraints 𝑔.(𝜃G, 𝜂) can be determined within the 

lower and upper bound of the model parameters.  

For example, if the constraints are monotonic with respect to the model parameters, the worst 

constraint violation will be located at the lower bound or the upper bound. As shown in Figure 
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1, in the range of 𝜂, [𝜂Q, 𝜂R], the maximum values of the constraints 𝑔Y and 𝑔Z are located at 

𝜂R, and the maximum value of 𝑔[ occurs at 𝜂Q. By comparison, the critical point is 𝜂\ = 𝜂R. 

If the constraints are not monotonic with respect to the model parameters, the maximum values 

of the constraints may occur at the peaks. As shown in Figure 2, because 

𝑔Y(𝜂Y) < 𝑔[(𝜂[) < 𝑔Z(𝜂Z) 

the worst constraint violation of {𝑔[, 𝑔Y, 𝑔Z} is the value of 𝑔Z at 𝜂Z, thus, the critical point of 

𝜂 can be defined as 𝜂\ = 𝜂Z.  

If the dimensionality of the model parameters is 𝑝, the critical point will be a vector of the 

critical value of each model parameter, that is, 

𝜂\ = [𝜂[\, … , 𝜂`\], 𝜂`\ ∈ [𝜂`Q, 𝜂`R], 𝑖 = 1,… , 𝑝                                (8) 

After substituting 𝜂\ into the flexibility function 𝜒, the original three-level optimization can be 

simplified as one-level optimization problem. 

max
8∈9:

max
.∈=

max
;∈9<

𝑔.(𝜃, 𝜂) ⟹ max
8∈9:

	𝑔.(𝜃, 𝜂\)                                  (9) 

Note that Eq. (9) can significantly simplify the computational complexity of the flexibility 

index, especially for flexibility models with many model parameters. The detailed algorithm 

to calculate the worst constraint violation and the critical point of model parameters is 

summarized as follows.  

1) Fix all of the process parameters as the nominal values,	𝜃G, and express the constraints 

as 𝑔.(𝜃G, 𝜂); 

2) For each model parameter	𝜂`, the remaining model parameters are specified as the mean 

values of the corresponding ranges; then, by solving the univariate optimization model 

𝑢.` = max
;e∈f;e

g,;e
hi
𝑔.(𝜃G, 𝜂`), the maximum value of each constraint is obtained, e.g., if 

there are two constraints, two values can be obtained, j𝑢[` , 𝑢Y` k; 
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3) The maximum value in j𝑢.`k, i.e., max
.∈=

j𝑢.`k, is the worst value of the constraint j with 

respect to 𝜂`, and the corresponding optimal solution is defined as the critical value, 𝜂`\; 

4) After all the model parameters are processed, the critical point of the model parameters 

can be obtained, 𝜂\ = [𝜂[\, … , 𝜂`\]. 

3. DFO model of flexibility index  

3.1. DFO model of flexibility index based on vertex directions 

Once 𝜂\  is substituted into Eq. (7), 𝜒 can be further simplified to a one-level optimization 

problem and the bound constraints of 𝜂 can be removed. 

𝐹 = max
S∈ℝU

𝛿

𝑠. 𝑡.		𝜒 = max
8∈9:

	𝑔.(𝜃, 𝜂\) ≤ 0

									𝑇%(𝜃) = {𝜃: 𝜃G − 𝛿 ∙ 𝛥𝜃K ≤ 𝜃 ≤ 𝜃G + 𝛿 ∙ 𝛥𝜃M}

                    (10) 

Equation (10) is a simplified optimization model that only relates to 𝛿 and 𝜃. 𝑇%(𝜃) represents 

a hyperrectangle centering on the location of 𝜃G. As 𝛿 increases, the hyperrectangle will be 

gradually larger until it is inscribed within the feasible range of 𝜃. If the dimensionality of the 

process parameters is q, the hyperrectangle has a total of	2m vertices. Assuming that the critical 

point of the process parameters corresponds to some vertex of the hyperrectangle, the vertex 

direction search method15 can further simplify Eq. (10) as: 

𝐹n = max 𝛿
𝑠. 𝑡.		𝜃 = 𝜃G + 𝛿 ∙ ∆n
								𝑔.(𝜃, 𝜂\) ≤ 0
								0 ≤ 𝛿 ≤ 1

                                                     (11) 

where k is the index of vertices, 𝑘 ∈ 𝐾; for convenience, for the flexibility index problems, the 

deviations can be rewritten such that 𝛿 is restricted within 0 and 1; ∆n represents the kth vertex 

direction with the given deviations from the nominal point. Fk is the maximum deviation along 

the kth vertex direction which touches the boundary of the feasible region. The flexibility index 

is then defined as 
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𝐹 = min
n∈t

{𝐹n}                                                          (12) 

Since 𝜃 = 𝜃G + 𝛿 ∙ ∆n, and 𝜂\ has been obtained by calculating the worst constraint violations, 

𝑔. is a univariate function of 𝛿, i.e., 𝑔.(𝛿). In order to convert Eq. (11) to a form that is easily 

handled by general DFO solvers, a penalty coefficient M can be introduced into the objective 

function. Thus, the final flexibility index model is 

𝐹n = min−𝛿 +𝑀 ∙ ∑ wmax w0, 𝑔.(𝛿)xx
=
.

𝑠. 𝑡.		0 ≤ 𝛿 ≤ 1
                                (13) 

The objective function in Eq. (13) is a type of exact penalty function, which is capable of 

finding the exact optimal solution. Zangwill39, Fletcher40 and Fiacco41 proved that if M is 

sufficiently large, this penalty function will be exact, but not smooth, which means that it 

generally has a discontinuous first derivative at the local minimum. However, the solution of 

the penalty problem can yield the exact solution to the original problem for a sufficiently large 

finite value of M. Since we apply the DFO method to solve this model, the derivatives do not 

need to be calculated, and therefore the discontinuity is not an issue. The penalty coefficient M 

simply serves as a way to scale the constraint violation and its value need only be tuned for 

numerical stability. The penalty function algorithms generally need to increase the value of M 

sequentially, because we do not know exactly how big M should be. In this work, for 

simplification, M is set as 1000 for all cases. To verify the suitability of this parameter we test 

that M = 1000 yields the same results as for M = 100 and M = 5000. 

If the constraints 𝑔.(𝛿) are restricted within the lower bounds and the upper bounds, i.e., 𝐴.Q ≤

𝑔.(𝛿) ≤ 𝐴.R, the flexibility index model is 

𝐹n = min−𝛿 +𝑀 ∗ ∑ wmax w0, 𝐴.Q − 𝑔.(𝛿)x + max{0, 𝑔.(𝛿) − 𝐴.R|x
=
.

𝑠. 𝑡.		0 ≤ 𝛿 ≤ 1
         (14) 

Eqs. (13) and (14) indicate that the proposed flexibility index model is a univariate model of 

𝛿, including a black-box objective function and a box constraint, and the DFO methods can be 
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applied to solve this flexibility index model.  

3.2. Geometric interpretation for the critical point of model parameters 

Finding the critical point of the model parameters, i.e., 𝜂\, is an important step to calculate the 

flexibility index, because all the model parameters will be fixed as 𝜂\ in the subsequent steps. 

The following linear example provides a geometric interpretation of the critical point. Figure 

3(A) shows the profiles of g1 and g2, the nominal value of 𝜃 is 1, and the range of the model 

parameter 𝜂 is [1.5, 3].  

}
𝑔[:	𝜃 − 𝜂 ≤ 0
𝑔Y :	− 𝜃 −

;
Z
+ ~

Z
≤ 0                                                   (15) 

After fixing 𝜃 = 1, Eq. (15) reduces to Eq. (16). The blue lines in Figure 3(B) represent two 

linear functions of 𝜂 in Eq. (16). Due to the monotonicity, the maximum value of the two 

functions is located at the lower bound of	𝜂, which means that the worst constraint violation of 

g1 and g2 occurs at 𝜂Q. Thus, the critical point of 𝜂 is 𝜂\ = 𝜂Q.  

}
𝑔[:	1 − 𝜂 ≤ 0
𝑔Y :	−

;
Z
+ [

Z
≤ 0                                                     (16) 

At 𝜂\  = 1.5, the maximum deviation of 𝜃  can be found by comparing the up and down 

directions from 𝜃G.  

�
𝑔[:	|𝜃G − (𝜂\)| =

1
2

𝑔Y :	�𝜃G − �−
𝜂\

3
+
4
3�
� =

1
6

 

As shown in Figure 3(C), because 1/6 is less than 1/2, the critical value of 𝜃 is 5/6, and the 

flexibility index with respect to 𝜃 is F = 1/6. Thus, by centring in the nominal point, the feasible 

range of 𝜃 is [5/6, 7/6]. The yellow region shown in Figure 3(D) is the entire feasible region. 

This example shows the important role of 𝜂\ and the relationship between 𝜂\ and F. 
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3.3. Geometric interpretation for the vertex search method of process parameters 

For the case with q process parameters, the hyperrectangle has 2m vertices. The vertex search 

method requires to calculate the maximum deviations of 𝜃 for 2m vertex directions. Figure 4(A) 

illustrates an example with 4 vertex directions. The maximum deviation along each direction 

is different, and the shortest one indicates a largest inscribed rectangle, i.e., the green region 

shown in Figure 4(B), which represents the feasible region of the process parameters.  

4. Analysis of DFO methods and DFO solvers 

We should note that the above proposed algorithm of flexibility index is rigorous for the case 

that the feasible region is convex. However, since this is a sufficient condition, a rigorous 

solution may still be obtained for nonconvex problems. Before introducing the solution strategy 

of the proposed flexibility index model, we discuss the DFO methods and analyze the 

properties of the DFO solvers in detail. 

Based on the search strategies, DFO methods can be grouped into two types: direct search 

methods, which determine the search directions directly from the function evaluation data, and 

model-based methods, which typically use a trust-region framework for selecting new 

iterations. In addition, DFO methods can be divided into local search methods, which start 

from an initial guess and move within a local trust region, and global search methods, which 

search the entire bounded variable space. However, essentially, neither the local search 

methods nor the global search methods can guarantee finding the global optima.  

Rios and Sahinidis37 benchmarked the performance of 22 DFO software packages with 502 

test problems. They found that a series of TOMLAB MATLAB solvers is more powerful to 

solve the DFO problems, and BOBYQA (Bound Optimization BY Quadratic Approximation) 

has superior performance in refining near-optimal solutions. They also pointed out that there 

is no universal solver that is superior to solve all the problems, and the dimensionality and non-

smoothness can increase the complexity of the search process and decrease performance for all 
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the DFO solvers. Gao et al.42 compared three different DFO methods, namely BOBYQA, MCS 

and SNOBFIT, and the case studies showed that BOBYQA requires the fewest number of 

function evaluations. With the development of DFO algorithms, software implementations 

have been developed; however, most of the software packages are based on MATLAB or 

C/C++, and only a few solvers have the Python implementations.  

Moreover, for the optimization models with a black-box objective function and box constraints, 

most of the DFO methods are applicable. In particular, the model-based methods, for example, 

the trust-region based DFO methods, can capture curvature of the objective function well and 

have better performance43. In general, for the DFO solvers, as the size of the problem increases, 

the chances of obtaining better solutions decreases. Eqs. (13) and (14) show that the flexibility 

index model is just a univariate DFO model; thus, all the DFO solvers can in principle be used. 

In this work, a DFO solver, Py-BOBYQA, which is a Python implementation of the BOBYQA 

Fortran solver by Powell44, is introduced to solve flexibility index problems. Py-BOBYQA is 

designed for the optimization models like Eq. (17).  

min
?∈ℝ�

𝑓(𝑥)

𝑠. 𝑡.		𝑎 ≤ 𝑥 ≤ 𝑏
                                                     (17) 

Py-BOBYQA is based on the trust-region method, which can find local solutions of nonlinear, 

nonconvex, least-squares minimization problems (with box constraints), without requiring 

derivatives of the objective. Py-BOBYQA approximates the function f(x) using a quadratic 

function, which matches the function value of f(x) at certain interpolation points chosen by the 

algorithm. The quadratic function is then used in a trust region procedure for updating the 

decision variables. One interpolation point is changed in each iteration. The trust region radius 

is cautiously reduced, making sure that the interpolation points span a reasonable range. More 

detailed description of the algorithm can be found in [45]. It is worth noting that Py-BOBYQA 

has an optional heuristic method for global search mode. This heuristic method is a multiple 

restart mechanism, which repeatedly re-initializes Py-BOBYQA from the best point found so 
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far, and a larger trust region radius is used each time. Py-BOBYQA uses the final iterate of a 

run as the starting point for the restarted run, and the new restart sets up to help to escape from 

local minima45. Thus, as it is a heuristic, there is no guarantee that it will find a global minimum. 

However, it is likely to escape local minima if there are better values nearby. 

In order to test the performance of Py-BOBYQA and compare its local and global search modes, 

four numerical examples are designed, including one univariate optimization problem and three 

bivariate optimization problems. All of the models, initializations and results are summarized 

in the Supporting Information file. The function evaluations and CPU time are also considered. 

From the comparison results, we can conclude that 

1) The optimization results are largely to do with the initial values, regardless of the local 

or global search mode. A good guess can help to converge to the global optima. 

2) The global search mode of Py-BOBYQA has the ability to escape local minima, but the 

global optimal solutions also cannot guarantee to be found.  

3) In general, the global search mode has better performance than the local search mode, 

but the global search takes many more function evaluations. If the black-box model is 

too complex, the computational cost of the solution process will be very large. 

4) When solving a large-scale black-box optimization problem, before determining to use 

the local search mode or global search mode, it is necessary to make a tradeoff between 

the accuracy of the solution and the time cost.  

5) If the dimensionality of the model is low, the local search mode may be a better option. 

Since the DFO model of flexibility index is a univariate model, theoretically, the local search 

also can have good performance. Before determining to apply the local or global search mode, 

it is necessary to test and compare the solutions through some demonstration cases. 
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5. Solution strategy of the flexibility index model 

In this section, three different methods, the vertex enumeration method and two gradient 

approaximation methods, are proposed to evaluate the flexibility index. For the case with q 

process parameters, the vertex enumeration method requires to performing optimization over 

2m vertices to determine the smallest scaled deviation. The first gradient approximation method 

can significantly reduce the number of vertices to be tested and optimized by approximating 

the gradients of the constraints. The second gradient approximation method assumes that the 

constraints are monotonic with respect to the process parametrs, which avoids the 

computational burden of approximating the gradients through optimiztion calculations. 

However, since the vertex enumeration method is a sufficient condition, it is more rigorous 

than these two gradient approximation methods. 

5.1. Vertex enumeration method 

Figure 5 shows the solution strategy of the DFO model of flexibility index based on the vertex 

enumeration method, which is implemented in Python. If the number of the process parameters 

is 𝑞, a total of 2m vertex directions will be tested and optmized successively to determine the 

smallest scaled deviation. Since the critical point of the model paraqmeters, 𝜂\, is obtained, 

after substituing 𝜂\ into the DFO model, the entire solution procedure only includes one loop 

that enumerates all of the vertex directions.  

The detailed algorithm is as follows. 

1) An initial value of 𝛿 and the vertex direction ∆n are subsititued into 𝜃 = 𝜃G + 𝛿 ∙ ∆n. 

The obtained 𝜃 and 𝜂\ are combined as an input value of the black-box model. 

2) Simulate the black-box model. If the simulation fails at the current initialization, the 

iterative information including the largest feasible solution of 𝛿 will be recorded, and 

go to step 5; otherwise go to step 3; 
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3) The values of process parameters at the final time are output to evaluate the objective 

function of the DFO model. If not converged yet, go to step 4; otherwise, Record the 

candidate flexibility index Fk and go to step 5. 

4) The DFO solver maximizes a new value of the scaled deviation 𝛿 within the range of 

𝛿, go back to step 1;  

5) k = k + 1; if k is not beyond 2%, go back to step 1; otherwise, go to step 6; 

6) For the obtained candidate values, the smallest one is the final flexibililty index.  

5.2. Gradient approximation method 

In order to avoid enumerating all the vertices, while generating quickly a good upper bound of 

the flexibility, two methods are proposed to approximate the gradients of the constraints with 

respect to the process parameters. Based on this strategy, if there are c constraints, only c 

vertices need to be calculated, which is commonly much less than 2m.  

For general constraints, the gradient of the constraint 𝑔` with respect to 𝜃. can be approximated 

by Eq. (18), where max𝑔`{𝜃.| and min𝑔`{𝜃.| implies finding the maximum and minimum 

values of 𝑔` within the bound of 𝜃.. Figure 6 illustrates the geometric interpretation of Eq. (18). 
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Assuming that 𝑔` is monotonic with respect to 𝜃., the gradient can be approximated by only 

evaluating the function values of the constraint at the lower and upper bound. 
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For each constraint 𝑔`, q gradients need to be approximated, and the corresponding q signs can 

form a vertex direction, as shown in Eq. (20). Since the problem has c constrains, a total of c 

vertex directions needs to be calculated.  

vertex	direction = [sign w��e
�8 
x , … , sign ���e

�8¡
�]                              (20) 



 

 18 

Instead of evaluating all the vertex directions, the proposed gradient approximation methods 

can approximate the flexibility index at a specific vertex direction. This vertex direction is 

given by the sign of the derivatives of the constraints with respect to the process parameters. A 

negative value of the derivative suggests the evaluation of the feasibility in the lower bound 

direction, whereas a positive value suggests the upper bound direction. This method will be 

very clear for a monotonic constraint. As shown in Table 1, for a monotonic constraint with 

two process parameters, there are four vertex directions. We can determine them by computing 

the signs of the derivatives. Each combination of signs corresponds to a vertex direction. For 

nonmonotonic cases, we can apply Eq. (18) or the simplified Eq. (19) to approximate the 

derivative with respect to each process parameter. The final derivative signs in Eq. (20) 

correspond to a vertex direction that indicates a potential critical vertex direction. 

If the number of the constraints is c, the above three methods to evaluate the upper bound of 

the flexibility index can be compared as follows: 

1) The vertex enumeration method requires to solve 2m DFO problems; 

2) The gradient approximation method requires to solve 2𝑐𝑞 + 𝑐 DFO problems; 

3) The gradient approximation method with assumption of monotonic constraints requires to 

solve 𝑐 DFO problems; 

The computational costs of three methods are different. The gradient approximation method 

has higher efficiency because of solving less DFO problems; however, the vertex enumeration 

method can obtain more reliable upper bound of the flexibility index. 

6. Example: A reaction model 

In this section, a reaction model with 8 process parameters and 12 model parameters is studied. 

For this example, gPROMS and Python are combined to handle the black-box model and the 

flexibility index problem. The entire model is treated as a black box, which is simulated by 

gPROMS ModelBuilder 6.0.4. The flexibility index model is developed in Python 3.7.1, and 
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Py-BOBYQA 1.2 is chosen as the DFO solver. The detailed connecting way between gPROMS 

and Python is described in the Supporting Information file. The entire model is implemented 

on a 64-bit Windows 10 desktop system with a 3.60 GHz Intel i7-7700 processor and 16 GB 

of RAM. The specifications of the process and model parameters are listed in Table 2 and Table 

3, and 𝜃£ is one of the products. This reaction model has two quality constraints; that is, the 

final concentration of 𝜃Z and 𝜃~ should be less then 250 ppm. As the values of the constraints 

may be very small, in order to ensure the accuracy of the calculation, coef is introduced to 

change the order of magnitude. 

0 ≤ 𝑔[ ≤ 𝑐𝑜𝑒𝑓 ∗ 250 ∗ 10K§	
0 ≤ 𝑔Y ≤ 𝑐𝑜𝑒𝑓 ∗ 250 ∗ 10K§	

                                       (21) 

𝑔[ = 𝑐𝑜𝑒𝑓 ∗
final_𝜃Z

final_𝜃Z + final_𝜃~ + final_𝜃£

𝑔Y = 𝑐𝑜𝑒𝑓 ∗
final_𝜃~

final_𝜃Z + final_𝜃~ + final_𝜃£

 

In order to solve the flexibility index, the worst violation of g1 and g2 for each model parameter 

should be calculated first. The formulations are shown in Eq. (22).  

𝑢[` = max
;e∈[;e

g,;e
h]
𝑔[(𝜃G, 𝜂`)

𝑢Y` = max
;e∈[;e

g,;e
h]
𝑔Y(𝜃G, 𝜂`)

                                            (22) 

where 8 process parameters are specified as their nominal values, 𝜃G; for the calculation of 

each model parameter 𝜂`, the other 11 model parameters are specified as the corresponding 

mean values shown in Table 3; thus, the maximum values of g1 and g2 can be calculated within 

the feasible range of 𝜂`. For the accuracy of optimization calculation, coef is set to 104 in g1 

and g2. Thus, the range of the quality constraints changes to [0, 2.5]. In addition, in order to 

capture the maximum values as far as possible, the global search mode of Py-BOBYQA is 

chosen. The worst values of g1 and g2 are summarized in Table 4. Two blue columns show the 

maximum values of two constraints with respect to each model parameter. Obviously, the worst 
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constraint violations always occur in g2, because 𝑢Y` > 𝑢[` , 𝑖 = 1,… ,12. Therefore, the critical 

point of the model parameters, 𝜂\, just corresponds to the solutions of maximizing g2, i.e., 

𝜂\ = ¬
1062.57337, 1034.35395, 1015.29997, 0.13496,
0.0004459, 11359.69258, 264.79870, 2.28422,

1.19793e − 09, 1.16878e − 09, 2.93385e − 10, 6.66969e − 10
°          (23) 

In addition, in order to compare the reliability of the global search mode, the local search mode 

is also tested, and the results are summarized in Table 5. We can find that all of the maximum 

values of g1 and g2 in Table 4 are larger than the corresponding values in Table 5, which 

indicates that the global search is more suitable than the local search when calculating the worst 

constraint violations. Thus, Eq. (23) can be defined as the critical point of the model parameters. 

After substituting 𝜂\ into the flexibility index model, we can focus on dealing with the issue of 

process parameters. 

1) Vertex enumeration method 

Since there are 8 process parameters, the vertex enumeration method requires to calculate 28 = 

256 vertex directions. According to Eq. (14), the penalty coefficient M is set to 1000, and the 

range of the constraints is [0, 2.5]. The DFO model of flexibility index for this case is  

𝐹n = min−𝛿 + 1000 ∗ ∑ �max
(0, −𝑔[) + max(0, 𝑔[ − 2.5) +

max(0, −𝑔Y) + max(0, 𝑔Y − 2.5)
�=

.

𝑠. 𝑡.		0 ≤ 𝛿 ≤ 1
         (24) 

Each vertex direction corresponds a kind of deviation ∆n from 𝜃G, and the process parameters 

are calculated by Eq. (25). Then, 𝜃 and 𝜂\ can be used to simulate the black-box model. The 

final values of the process parameters are output to evaluate the objective function of Eq. (24). 

𝜃 = 𝜃G + 𝛿 ∙ ∆n                                                     (25) 

Before solving the flexibility index, it is necessary to pretest the model to compare some 

information. For example, the local search and global search modes need to be compared in 

advance to determine which one is applied. Table 6 lists the comparison results at five different 

vertices. It shows that the obtained flexibility indices are the same for the local and global 
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search modes; however, the computational efforts are very different as the local search mode 

requires much less time. Since the DFO model of flexibility index has only one variable, both 

search methods have the similar performance; thus, the local search method is chosen to deal 

with the vertex enumeration process. In addition, for simplification, we assign the initial value 

of 𝛿 as 0.1 for all of the vertices. The identical results of the local and global search modes in 

Table 6 indicate that this initial value is acceptable.  

By enumerating all of the vertex directions, 256 candidate flexibility indices can be obtained, 

and the partial results are listed in Table 7. The final flexibility index is the smallest value, i.e., 

0.54565, which is located at the #130 direction. Note that the DFO solver cannot converge at 

five vertices, i.e., #52, #55, #61, #118 and #124, and the reason is gPROMS simulation cannot 

be executed at some initialization. The recorded largest feasible 𝛿  is 0.7 in the iterative 

procedure. Since 0.7 is greater than 0.54565, these vertices that cannot be converged have no 

effect on the final result.  

For this case, at most of the vertices, the result is equal to 1. If extracting all of the converged 

vertex directions that the result is not equal to 1, we can find that the critical direction of 𝜃Z 

and 𝜃±  remain the same, i.e., “+” and “-”, respectively, which indicates that these two 

components have a large impact on the flexibility index. The final results are summarized in 

Table 8. All the quality constraints are satisfied. The feasible range of the process parameters 

are listed in Table 9.  

2) Gradient approximation method 

The first gradient approximation method has to solve the maximization and minimization 

problems of g1 and g2 through Eq. (18). Table 10 lists the optimization results. For constraint 

g1 and g2, the signs of the gradients can form a vertex direction. For example, the approximated 

gradients of g1 and g2 are #234 and #142 vertices, respectively; thus, we only need to calculate 

these two vertices to evaluate the flexibility index. The results show that F = 0.546. 
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Similarly, assuming that g1 and g2 are monotonic with respect to each process parameter, the 

second gradient approximation method only requires the function evaluations of g1 and g2 at 

the lower and upper bounds. Table 10 shows the signs of the approximated gradients and two 

corresponding vertices, i.e., #252 and #206, and the final flexibility index F is also 0.546. 

Moreover, Table 11 summarizes the times required for all the parts in the proposed method. 

Choosing the global search to calculate the critical point of the model parameters and choosing 

the local search mode to execute the vertex calculations, the total wall time of the vertex 

enumeration method is 13,671 seconds, while applying the gradient approximation methods, 

the computational expense can be reduced to 10,607 seconds. In summary, two gradient 

approximation methods have higher efficiency because of solving fewer DFO problems, and 

the vertex enumeration method can obtain more reliable upper bound of the flexibility index. 

Therefore, if the user wants to obtain a better solution, the vertex enumeration method can be 

chosen; if the user is more concerned with computational efficiency, either of the two gradient 

approximation methods can be used. 

7. Conclusions 

In this study, a novel solution strategy is proposed to find a reliable upper bound of the 

flexibility index for black box models. Univariate DFO calculations for flexibility index are 

determined of the scaled deviations for different vertices. The input and output information of 

the black box model is integrated with an external DFO solver based on trust-region methods. 

After finding the critical point of the model parameters by calculating the worst constraint 

violations, a reliable upper bound of the flexibility index can be obtained either by enumerating 

all the vertex directions related to the process parameters, or by approximating the gradients of 

the constraints. Although the proposed method cannot guarantee to find the optimum solution, 

i.e., the exact result of flexibility index, the result provides a reliable upper bound of flexibility 

index as has been shown by the numerical examples. 



 

 23 

In summary, the proposed method provides a new approach to deal with flexibility index 

problems that involve general process models. The contributions of this work can be 

summarized as follows. 

1) The process model is implemented in a black box that can be directly executed by its 

original commercial simulator, and we can avoid calculating derivatives because of the 

DFO model of flexibility index. Thus, the proposed method can deal with general types 

of process models, regardless of convex or nonconvex, steady-state or dynamic models. 

2) In the pharmaceutical industry, complex differential equations are very common, and 

they can result in huge nonlinear optimization problems if discretized by finite 

differences or by orthogonal collocation. DFO based on black box models is a much 

simpler way to handle complex process models.  

3) Viewing process models as black boxes and creating the interface between the black-

box models and Python provides a new way to deal with the flexibility analysis problem 

of complex process models. 

Nomenclature 

d Design variables 

𝜃  Process parameters 

𝜃G  Nominal value of process parameters 

𝜃Q, 𝜃R  Lower and upper bound of process parameters 

𝛥𝜃K, 𝛥𝜃M  Deviations of process parameters in the negative and positive directions 

𝜂  Model parameters 

𝜂\  Critical point of model parameters 

𝜂Q, 𝜂R  Lower and upper bound of model parameters 

𝜒  Flexibility function  

𝑇%  Feasible range of process parameters 

𝑇(  Feasible range of model parameters 

g Quality constraints 
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𝐴Q, 𝐴R  Lower and upper bound of quality constraints 

M Penalty coefficient  

F Flexibility index 

Fk Candidate flexibility index in the kth vertex direction 
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Table 1. Derivative signs and vertex directions for a monotonic constraint. 

No. Derivative sign Vertex direction 

1 
𝜕𝑔[
𝜕𝜃[

< 0,
𝜕𝑔[
𝜕𝜃Y

> 0 𝜃[Q³, 𝜃YR³ 

2 
𝜕𝑔[
𝜕𝜃[

< 0,
𝜕𝑔[
𝜕𝜃Y

< 0 𝜃[Q³, 𝜃YQ³ 

3 
𝜕𝑔[
𝜕𝜃[

> 0,
𝜕𝑔[
𝜕𝜃Y

> 0 𝜃[R³, 𝜃YR³ 

4 
𝜕𝑔[
𝜕𝜃[

> 0,
𝜕𝑔[
𝜕𝜃Y

< 0 𝜃[R³, 𝜃YQ³ 
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Table 2. Specifications of process parameters. 

No. Process parameter  Nominal value [kg] Range 

1 𝜃[ 1.0 [0.94, 1.06] 

2 𝜃Y 5.2 [4.888, 5.512] 

3 𝜃Z 253 [237.82, 268.18] 

4 𝜃~ 2.5 [0, 10] 

5 𝜃´ 2254 [1983.52, 2524.48] 

6 𝜃§ 185.0 [173.9, 196.1] 

7 𝜃± 172.0 [161.68, 182.32] 

8 𝜃µ 16.3 [14.344, 18.256] 
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Table 3. Specifications of model parameters. 

No. Model parameter  Mean value Range 

1 𝜂[ 1000 [910, 1090] 

2 𝜂Y 1000 [910, 1090] 

3 𝜂Z 1000 [910, 1090] 

4 𝜂~ 0.14 [0.1274, 0.1526] 

5 𝜂´ 4.9e-4 [4.459e-4, 5.341e-4] 

6 𝜂§ 12000 [10920, 13080] 

7 𝜂± 250 [227.5, 272.5] 

8 𝜂µ 2.3 [2.093, 2.507] 

9 𝜂£ 1.199e-9 [1.09109e-9, 1.30691e-9] 

10 𝜂[¶ 1.102e-9 [1.00282e-9, 1.20118e-9] 

11 𝜂[[ 3.224e-10 [2.93384e-10, 3.51416e10] 

12 𝜂[Y 6.839e-10 [6.22349e-10, 7.45451e-10] 
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Table 4. Worst values of g1 and g2 with respect to each model parameter (global search). 

No. 
Maximum of g1 

𝑢[`  
Solution of 𝜂` 

Maximum of g2 

𝑢Y`  
Solution of 𝜂` 

Function evaluations of 

g1 g2 

1 2.48858 e-22 1004.32217 1.55693 e-17 1062.57337 568 382 

2 2.37935 e-22 1010.62212 1.45094 e-17 1034.35395 542 569 

3 2.62789 e-22 1082.42786 1.53990 e-17 1015.29997 656 579 

4 3.26773 e-22 0.15167 1.62858 e-17 0.13496 571 541 

5 2.62380 e-22 0.0005341 1.47474 e-16 0.0004459 502 446 

6 2.59350 e-22 10968.41075 1.48153 e-17 11359.69258 628 595 

7 2.60830 e-22 266.58804 1.53343 e-17 264.79870 668 554 

8 2.73007 e-22 2.11658 1.65911 e-17 2.28422 659 641 

9 2.41287 e-22 1.30691 e-09 1.46375 e-17 1.19793 e-09 596 614 

10 2.64698 e-22 1.05507 e-09 1.86188 e-17 1.16878 e-09 633 579 

11 2.17501 e-22 3.44730 e-10 1.83921 e-17 2.93385 e-10 572 506 

12 1.85513 e-22 6.83923 e-10 1.62106 e-17 6.66969 e-10 101 535 
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Table 5. Worst values of g1 and g2 with respect to each model parameter (local search). 

No. 
Maximum of g1 

𝑢[`  
Solution of 𝜂` 

Maximum of g2 

𝑢Y`  
Solution of 𝜂` 

Function evaluations of 

g1 g2 

1 2.48858 e-22 1004.32217 6.81711 e-18 980.41574 19 22 

2 1.89046 e-22 1018.0 6.24371 e-18 1021.01874 21 20 

3 1.47025 e-22 1021.80780 1.12013 e-17 1015.3 22 18 

4 1.42346 e-22 0.13978 1.40561 e-17 0.13496 20 22 

5 1.66158 e-22 0.0004961 1.47352 e-16 0.0004459 25 21 

6 1.58130 e-22 11784.054 1.00410 e-17 12056.44450 22 24 

7 1.72443 e-22 245.87533 1.40846 e-17 245.5 22 19 

8 2.26167 e-22 2.25939 7.49379 e-18 2.38280 25 21 

9 1.66437 e-22 1.19684 e-09 7.38624 e-18 1.19853 e-09 20 21 

10 1.70733 e-22 1.07345 e-09 6.17231 e-18 1.11904 e-09 21 22 

11 1.43325 e-22 3.28246 e-10 1.25757 e-17 3.16597 e-10 21 21 

12 1.85513 e-22 6.83923 e-10 8.69789 e-18 6.97010 e-10 22 21 
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Table 6. Comparison of the local and global search modes at five vertices. 

Vertex # 
Flexibility index Function evaluations CPU time (sec) Wall time (sec) 

local global local global local global local global 

2 0.546 0.546 28 254 0.063 0.547 24.906 223.741 

18 0.768 0.768 27 193 0.047 0.641 24.189 169.390 

100 1.0 1.0 10 39 0.047 0.125 8.510 31.762 

150 0.768 0.768 25 647 0.031 1.688 22.031 574.107 

200 1.0 1.0 10 39 0.031 0.063 8.510 31.698 
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Table 7. Partial results of vertex enumeration method. 

Index of the vertex directions Results 
0 1.0 
1 1.0 
2 0.546 
3 0.546 
… … 
17 1.0 
18 0.768 
19 0.768 
… … 
124 0.7 
125 1.0 
126 1.0 
127 1.0 
128 1.0 
129 1.0 
130 0.545649974002829 
131 0.546 
132 1.0 
133 1.0 
134 0.545649974002854 
135 0.546 
136 1.0 
137 1.0 
138 0.546 
139 0.546 
140 1.0 
… … 
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Table 8. Final results of the reaction example. 

 Result  

Flexibility index 0.54565 

Two quality constraints [1.83459e-17, 1.60134] 

Critical vertex direction [-1, 1, 1, 1, 1, 1, -1, 1] (130th vertex direction) 

Critical process parameters 
[0.96726, 5.37024, 261.28297, 6.59237, 2401.5874, 

191.05671, 166.36889, 17.36729] 

Critical model parameters 

[1062.57337, 1034.35395, 1015.29997, 0.13496, 

0.0004459, 11359.69258, 264.79870, 2.28422, 

1.19793e-09, 1.16878e-09, 2.93385e-10, 6.66969e-10] 

CPU time (sec) 34.67 

Total time (sec) 13671.08 (3.8 hr) 
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Table 9. Feasible range of process parameters (F = 0.54565) 

No. Process parameter Feasible range 

1 𝜃[ 0.96726* 1.03274 

2 𝜃Y 5.02976 5.37024* 

3 𝜃Z 244.71703 261.28297* 

4 𝜃~ 1.13588 6.59237* 

5 𝜃´ 2106.41260 2401.58740* 

6 𝜃§ 178.94329 191.05671* 

7 𝜃± 166.36889* 177.63111 

8 𝜃µ 15.23271 17.36729* 

* Critical bound for the process parameter 
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Table 10. Results of two gradient approximation methods. 

Gradient 

approximation 

method 

Constraint 

Signs of the 

approximated gradients 

for process parameters 

Corresponding 

index of vertex 

direction 

Candidate 

flexibility 

index 

1 
g1 [-1, -1, -1, 1, -1, 1, -1, 1] #234 1 

g2 [-1, 1, 1, 1, -1, -1, -1, 1] #142 0.546 

2 
g1 [-1, -1, -1, -1, -1, -1, 1, 1] #252 1 

g2 [-1, -1, 1, 1, -1, -1, -1, 1] #206 0.546 

1: Gradient approximation with general constraints 

2: Gradient approximation with monotonic constraints 
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Table 11. Summary of computational expense. 

Type 
CPU time 

(sec) 

Wall time 

(sec) 

1: Calculation of the critical point of the model parameters (local search) 1.55 414.64 

2: Calculation of the critical point of the model parameters (global search) 24.28 10560.27 

3: Vertex enumeration method (local search) 10.39 3110.81 

4: Gradient approximation method (local search) 1.77 581.26 

5: Gradient approximation method with monotonic assumptions (local search) 0.095 46.75 

Total time of Method 1 (2+3) 34.67 13671.08 

Total time of Method 2 (2+4) 26.05 11141.53 

Total time of Method 3 (2+5) 24.38 10607.02 
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List of Figure Captions: 

Figure 1. Worst value analysis of the monotonic constraints. 

Figure 2. Worst value analysis of the non-monotonic constraints. 

Figure 3. Geometric interpretation of the critical point. 

Figure 4. Geometric interpretation of the vertex search method. 

Figure 5. Solution framework of the flexibility index model based on vertex enumeration. 

Figure 6. Gradient approximation. 
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Figure 1. Worst value analysis of the monotonic constraints. 
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Figure 2. Worst value analysis of the non-monotonic constraints. 
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(A)                                                              (B) 

    

(C)                                                               (D) 

Figure 3. Geometric interpretation of the critical point. 
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(A)                                                                   (B) 

Figure 4. Geometric interpretation of the vertex search method. 
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Figure 5. Solution framework of the flexibility index model based on vertex enumeration.  
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Figure 6. Gradient approximation. 
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