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Abstract 

Design space definition is one of the key parts in pharmaceutical research and development. 

Flexibility index and design centering are two complementary ways to estimate a candidate 

design space. In this study, we first propose a novel formulation of flexibility index based on a 

direction search method, which is applied to any shape of feasible region. Then, we propose 

two methods for design centering problems. The vertex direction search method is developed 

as a single-level optimization model, which is applicable for convex regions. A derivative-free 

optimization (DFO) method is developed based on the proposed flexibility index model, which 

is applicable to convex and nonconvex problems. In order to find near global solutions, Latin 

Hypercube Sampling (LHS) is used to generate multiple starting points for the DFO solver. 

The optimal nominal point is the candidate point with the largest flexibility index. Several cases 

demonstrate the efficiency of the proposed methods. 
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1. Introduction 

In order to increase manufacturing flexibility in the pharmaceutical industry, Quality by Design 

(QbD)1 was launched by the US Food and Drug Administration (FDA). The design space is 

defined as “the multidimensional combination and interaction of input variables and process 

parameters that have been demonstrated to provide assurance of quality”2. The applicant must 

demonstrate that the product quality meets specifications as long as the process parameters 

vary within the proposed design space. Process parameters3 correspond to degrees of freedom 

or variables that can be manipulated in the operation of a manufacturing process, and which 

can be measured and set within the controller tolerance for a desired value. Design spaces are 

defined using predictions from a model (either empirical or deterministic). Thus, the 

uncertainty in the model parameters plays an important role. The values of the model 

parameters are estimated from data, and commonly assumed to follow a Gaussian distribution 

from which confidence intervals can be defined.  

Early approaches to identify the design space were solely based on experiments and empirical 

functions. By performing extensive experiments, the relationships of process parameters and 

critical quality attributes (CQAs) can be established through regression, and the process 

parameters that have medium/high impacts on the CQAs can be determined. The design space 

can be depicted by response surface modeling and further be verified by additional 

experiments4. This method requires performing extensive experiments, and it is generally very 

time-consuming and expensive. To lower the cost of developing design spaces, mechanistic 

models that contain relationships of process parameters and CQAs can be formulated in 

advance and parametrized with less data. Regarding the use of mechanistic models for design 

space identification, Goyal and Ierapetritou 5  proposed an approach based on outer 

approximation to identify the operating envelopes where process operation is feasible, safe and 

profitable. García Muñoz et al.4 defined the probabilistic design space by creating a grid of 
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sample points for the process parameters and a Monte Carlo simulation to propagate the 

uncertainty of the model parameters (exhaustive sampling). Kucherenko et al.6 proposed an 

acceptance-rejection method that outperforms exhaustive sampling by achieving a two-order 

of magnitude speed-up with metamodeling and adaptive sampling in the design space 

determination. Apart from using numerical computation methods to estimate the contour of the 

design space, Zhao and Chen 7  proposed representing the design model as an existential 

quantifier formula, and then applied a symbolic computation method to accurately describe the 

design space and explicitly express the functional relationships between uncertain parameters. 

Due to the heavy computational burden incurred by symbolic computation, the method is only 

applicable to relatively small‐scale problems.  

Moreover, the optimization approaches based on models have been intensively studied to 

describe the design space 8 . Characterizing a design space for a process design model is 

analogous to the flexibility analysis problem in the chemical process industry9. Two classical 

flexibility analysis problems are flexibility test and flexibility index10,11. The former can verify 

if feasible operation can be obtained for a given range of uncertainty scenarios. The latter can 

be used to describe an operational range, which represents a maximum scaled departure of all 

process parameters from the given nominal conditions, such as a largest rectangle inscribed in 

the feasible space within which steady-state operation can be attained by adjusting control 

variables. Since the design space is limited by the qualification ranges for process parameters, 

the result of flexibility index can be used to approximate the design space as an inscribed largest 

feasible region, which may be a rectangle, ellipse or other appropriate and acceptable shapes. 

Moreover, if the nominal conditions of the process parameters are unknown, the flexibility 

index problem can be extended to a design centering problem, which focuses on determining 

the optimal nominal conditions while maximizing the feasible operating region. Notably, while 

the center of the design is key to identify the flexibility region, this center point may not always 
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represent the best nominal conditions to operate the process (i.e. the chosen nominal condition 

is not necessarily the center of the design space). 

Flexibility index and design centering are two important problems in the design space 

definition. In this work, we propose novel formulations to efficiently deal with these two 

problems. The rest of this article is organized as follows. Sections 2 and 3 provide problem 

statements and reviews of previous methods for flexibility index and design centering. Section 

4 describes the formulation of flexibility index based on the direction search method, and the 

shapes of feasible region are discussed. Section 5 proposes two methods for design centering, 

including vertex direction search method and derivative-free optimization method. Several 

numerical examples and cases are provided in Section 6 to illustrate the proposed methods. 

Section 7 concludes the paper. 

2. Problem statements 

Flexibility index problems are commonly formulated as multi-level optimization models with 

existing approaches relying on mixed-integer linear or nonlinear programming solvers12, and 

all the model constraints will be complied with. Before solving the optimization problems, the 

nominal conditions of the process parameters should be given. In this work, for the flexibility 

index problem we will not consider recourse decisions as this is not common in the 

pharmaceutical industry, and in order to simplify the multi-level optimization formulation, the 

model parameters will be fixed at their mean values of the Gaussian distribution. 

For a given plant design, the flexibility constraint with no recourse can be described as a logic 

expression as follows9:  

∀𝜽 ∈ 𝑇𝑃{∀𝑗 ∈ 𝐽[𝑔𝑗(𝜽, 𝒙) ≤ 0], ∀𝑖 ∈ 𝐼[ℎ𝑖(𝜽, 𝒙) = 0]} (1) 

where 𝜽 and 𝒙 represent process parameters and state variables, respectively. Eq. (1) states that 

for any possible realization of the process parameters in 𝑇𝑃, all of the individual constraints 
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should be satisfied. Eq. (1) can be equivalently reformulated by the use of global max operator, 

leading to Eq. (2).  

𝜒 = max
𝜽∈𝑇𝑝

max
𝑗∈𝐽

𝑔𝑗(𝜽, 𝒙) ≤ 0

𝑠. 𝑡.  ℎ𝑖(𝜽, 𝒙) = 0,   ∀𝑖 ∈ 𝐼
(2) 

where the maximization problem in 𝜒 determines the worst constraint violation. The flexibility 

index problem with no recourse can be described by the following model10.  

𝐹 = max
𝛿∈ℝ+

𝛿

𝑠. 𝑡.  𝜒 = max
𝜽∈𝑇𝑃

max
𝑗∈𝐽

𝑔𝑗(𝜽, 𝒙) ≤ 0

        ℎ𝑖(𝜽, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

        𝑇𝑃(𝜽) = {𝜽:𝜽
𝑁 − 𝛿𝛥𝜽− ≤ 𝜽 ≤ 𝜽𝑁 + 𝛿𝛥𝜽+}

(3) 

The flexibility index F is defined as the largest value of 𝛿 for the set of process parameters, 

and in Eq. (3), the set 𝑇𝑃(𝜽) is described as a rectangle. Note that, 𝜒 requires that all of the 

process parameters in 𝑇𝑃(𝜽) should satisfy the model constraints 𝑔𝑗  and ℎ𝑖, which is a semi-

infinite programming problem. To solve Eq. (3), the complementarity conditions with mixed-

integer constraints are commonly used, and Haar condition13 is assumed to hold, i.e., the no 

recourse case states that the number of active constraints is equal to one. This condition ensures 

that the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient. Geometrically, 𝜒 

in Eq. (3) represents a bi-level optimization model to define a rectangle inscribed within the 

feasible region. Generally, for the flexibility index problem there is only one vertex (for a 

convex feasible region) or side (for a nonconvex feasible region) of that rectangle that lies on 

the boundary. In a design centering problem, the nominal point, 𝜽𝑁, with the greatest flexibility 

index is sought by the optimizer. The generic formulation of design centering can be described 

as follows.  
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𝐹 = max
𝜽𝑁
𝛿

𝑠. 𝑡.  𝑔𝑗(𝜽
𝑁 , 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

        ℎ𝑖(𝜽
𝑁, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

        

max
𝛿∈ℝ+

𝛿

𝑠. 𝑡.  𝜒 = max
𝜽∈𝑇𝑃

max
𝑗∈𝐽

𝑔𝑗(𝜽, 𝒙) ≤ 0

        ℎ𝑖(𝜽, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

        𝑇𝑃(𝜽) = {𝜽: 𝜽
𝑁 − 𝛿𝛥𝜽− ≤ 𝜽 ≤ 𝜽𝑁 + 𝛿𝛥𝜽+}

 

The flexibility index model is applied for each candidate nominal point. Various optimization 

methods can be employed to solve the design centering problem. We review several candidates 

in the next section and demonstrate reformulations of MINLP and DFO in Sections 4 and 5 

respectively. 

3. Review of previous methods 

If the shape of the feasible operating region is specified as a rectangle, the computationally 

expensive vertex direction search method10 can be employed as a straightforward brute force 

search tactic that is guaranteed to be rigorous for convex regions, though it cannot guarantee a 

rigorous solution for nonconvex regions. However, for nonconvex design spaces, the vertex 

search method cannot guarantee to provide rigorous solutions. In order to avoid the convexity 

assumption, Grossmann and Floudas 14  developed an active constraint strategy, where the 

flexibility index problem can be reformulated as a mixed-integer linear or nonlinear 

programming model by applying the KKT conditions. However, for a large-scale problem, it 

is often challenging to solve the corresponding MINLP model to global optimality. Li et al.15 

developed a direction matrix to search the critical points. By incorporating a simulated 

annealing algorithm and a decoupling strategy, the flexibility index of a large-scale system can 

be obtained. 

A number of approaches have been proposed to quantify system flexibility, and an extensive 

review is provided by Grossmann et al.12. Apart from the rectangular uncertainty set, Pulsipher 

and Zavala16 proposed to use of multivariate Gaussian random variables, i.e., applying an 
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ellipsoidal set to capture correlations of process parameters. The flexibility index can be 

computed by solving a mixed-integer conic programming (MICP) problem. This method also 

can be generalized to capture different shapes of uncertainty sets. Pulsipher et al.17 presented a 

computational framework for analyzing and quantifying system flexibility, which can 

generalize the uncertainty sets to consider compositions of sets, compute a suitable nominal 

point, and identify and rank limiting constraints. Since the rectangle representations of the 

uncertainty set cannot adequately capture correlations of the parameters18, the ellipsoid shapes 

may have a larger potential for application. 

Director and Hachtel19 addressed the design centering problem of choosing a nominal design 

point to maximize the number of circuits that satisfy performance tolerances. The authors 

proposed the simplicial approximation approach, based on the explicit approximation of the 

boundary of an n-parameter design space by a polyhedron made up of n-dimensional simplices. 

Optimization approaches based on models can also be applied to solve design centering 

problems. From a mathematical view, the design centering problem is a classical generalized 

semi-infinite programming (GSIP) problem20,21. A GSIP problem is characterized by a finite 

number of decision variables and an infinite number of inequality constraints. Since the 

nominal point is not given, the location of the feasible region is unknown. All of the points 

within the feasible region must satisfy all the model constraints, which means that feasibility 

must be guaranteed for an infinite number of constraints. Stein22 showed that the Reduction 

Ansatz of semi-infinite programming generically holds at each solution of the reformulated 

design centering problem and proved a new first order necessary optimality condition for 

design centering model. Hardwood and Barton23 formulated the design centering problem as a 

GSIP model and discussed reformulations to simpler problems that lead to finite nonlinear 

programs (NLPs) or standard semi-infinite programs (SIP). Following the GSIP methods, the 

obvious drawback for design centering is that they give rise to complex mathematical programs 
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with either semi-infinite or chance constraints that are computationally hard to tackle 

rigorously. 

In order to avoid solving the complex GSIP problems, in this work, we propose to use the 

flexibility index formulation to address the design centering problem with a DFO method. First, 

a novel bi-level optimization model of flexibility index based on direction search method is 

proposed, which can be extended to any description of uncertainty set. By applying the KKT 

conditions, the flexibility index can be transformed into a single-level formulation. Based on 

this, a DFO method using multiple starting points is adopted to search for the nominal point 

within the design space with the largest feasible region. 

4. New formulations for flexibility index 

In order to circumvent the semi-infinite programming problem for flexibility index, we propose 

a new and simpler formulation based on the following direction search formulation. 

𝜽 = 𝜽𝑁 + 𝛿𝜽̃ (4) 

where the vector 𝜽̃ represents a direction from the nominal point10. Along this direction, if 𝜽 

can satisfy all the constraints and make at least one inequality constraint active, i.e., 

{
𝑔𝑗(𝜽) ≤ 0,   ∀𝑗 ∈ 𝐽

𝑔𝑠(𝜽) = 0,   ∃𝑠 ∈ 𝐽
(5) 

𝛿 is the largest value along this direction. Figure 1 shows two directions from 𝜽𝑁, i.e., 𝜽̃1 and 

𝜽̃2. 𝜽1 and 𝜽2 are farthest feasible points along the directions. 

𝜽1 = 𝜽
𝑁 + 𝛿1𝜽̃1

𝜽2 = 𝜽
𝑁 + 𝛿2𝜽̃2

   and   
𝑔(𝜽1) ≤ 0

𝑔(𝜽2) ≤ 0
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Figure 1. Geometric interpretation of direction search. 

The optimization model Eq. (6) is presented, which can be used to calculate the largest 𝛿 for 

each direction 𝜽̃ from the nominal point 𝜽𝑁. 

𝐹(𝜃𝑝
𝑁 , 𝜃̃𝑝) = max

𝛿,𝜃𝑝
𝛿

𝑠. 𝑡.  𝑔𝑗(𝜽, 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

         ℎ𝑖(𝜽, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

         𝜃𝑝 = 𝜃𝑝
𝑁 + 𝛿𝜃̃𝑝,   ∀𝑝 ∈ 𝑃

         𝛿 ≥ 0

(6) 

4.1. Shapes of feasible region 

Compared with 𝑇𝑝(𝜽) in Eq. (3), the rectangle that is used for direction search can be simply 

defined by Eq. (7), which is not relevant to 𝛿; thus, we can extend the shape from rectangle to 

any other shape so long as the shape can be explicitly formulated. For instance, a rectangle is 

formulated as follows. 

rectangle:  − ∆𝜃𝑝
− ≤ 𝜃̃𝑝 ≤ ∆𝜃𝑝

+,   ∀𝑝 ∈ 𝑃 (7) 

A standard ellipse is formulated as Eq. (8). 

ellipse:   ∑ (
𝜃̃𝑝
Δ𝜃𝑝

)

2

= 1
𝑃

𝑝=1
(8) 

where Δ𝜃𝑝 represents the given radius for each parameter p, which determines the shape of the 

ellipse. If all the Δ𝜃𝑝 ∀𝑝 ∈ 𝑃 are the same, say equal to Δ𝜃∗, the ellipse becomes a circle. 
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Circle:   ∑ (
𝜃̃𝑝

Δ𝜃∗2
)

2

=
𝑃

𝑝=1
1 (9) 

Since the circle is a special case of ellipse, only rectangle and ellipse are considered further in 

this work.  

4.2. Single-level formulation of flexibility index 

Once the shape of feasible region is specified, the optimization problem shown in Eq. (6) can 

be executed to calculate the largest 𝛿 for each direction from the given nominal point, and the 

directions are along the boundary of the shape. Based on the above, a new flexibility index 

formulation with no recourse is proposed as follows.  

𝐹(𝜃𝑝
𝑁) = min

𝜃̃𝑝
max
𝛿,𝜃𝑝

𝛿

𝑠. 𝑡.  𝑔𝑗(𝜽, 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

        ℎ𝑖(𝜽, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

        𝜃𝑝 = 𝜃𝑝
𝑁 + 𝛿𝜃̃𝑝,   ∀𝑝 ∈ 𝑃

        𝑠ℎ𝑎𝑝𝑒(𝜽̃) ∈ 𝑄

        𝛿 ≥ 0

(10) 

where 𝑠ℎ𝑎𝑝𝑒(𝜽̃) represents the formulation of a specified shape of the feasible region, Q = 

{Eq. (7), Eq. (8), and any other shapes}; 𝛿 represents a scale factor of the shape. The flexibility 

index F is defined as the minimum value of 𝛿 for all of the directions along the shape of the 

feasible region. Eq. (10) can be equivalently expressed as the following bi-level optimization 

model. 

𝐹(𝜃𝑝
𝑁) = min

𝜃̃𝑝
 𝛿

𝑠. 𝑡.  𝑠ℎ𝑎𝑝𝑒(𝜽̃) ∈ 𝑄

         max
𝛿,𝜃𝑝

𝛿

         𝑠. 𝑡.  𝑔𝑗(𝜽, 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

                  ℎ𝑖(𝜽, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

                  𝜃𝑝 = 𝜃𝑝
𝑁 + 𝛿𝜃̃𝑝,   ∀𝑝 ∈ 𝑃

                 −𝛿 ≤ 0

(11) 
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To solve this bi-level optimization model, the inner problem can be replaced by the KKT 

conditions and complementarity conditions. The Lagrange function is 

ℒ = −𝛿 +∑𝜆1,𝑗 ∙ 𝑔𝑗(𝜽, 𝒙)

𝑗

− 𝜆2𝛿 +∑ 𝜇1,𝑖 ∙ ℎ𝑖(𝜽, 𝒙)
𝑖

+∑ 𝜇2,𝑝[𝜃𝑝 − 𝜃𝑝
𝑁 − 𝛿𝜃̃𝑝]

𝑝
(12) 

The stationary conditions of the Lagrange function with respect to 𝛿, process parameters 𝜃𝑝 

and state variables 𝑥𝑘 are as follows: 

𝜕ℒ

𝜕𝛿
= −1 − 𝜆2 −∑𝜇2,𝑝

𝑝

𝜃̃𝑝 = 0

𝜕ℒ

𝜕𝜃𝑝
=∑𝜆1,𝑗 ∙

𝜕𝑔𝑗
𝜕𝜃𝑝

𝑗

+∑𝜇1,𝑖 ∙
𝜕ℎ𝑖
𝜕𝜃𝑝

𝑖

+ 𝜇2,𝑝 = 0,   ∀𝑝 ∈ 𝑃

𝜕ℒ

𝜕𝑥𝑘
=∑𝜆1,𝑗 ∙

𝜕𝑔𝑗
𝜕𝑥𝑘

𝑗

+∑𝜇1,𝑖 ∙
𝜕ℎ𝑖
𝜕𝑥𝑘

𝑖

= 0,   ∀𝑘 ∈ 𝐾

(13) 

The complementarity conditions are 

𝜆1,𝑗 ∙ 𝑔𝑗(𝜽, 𝒙) = 0,   𝑗 ∈ 𝐽

𝜆2 ∙ 𝛿 = 0
𝜆1,𝑗 ≥ 0,   𝑗 ∈ 𝐽

𝜆2 ≥ 0

(14) 

which can be expressed with mixed-integer constraints. M corresponds to a big-M value, s are 

slack variables and y are binary variables to indicate if the corresponding constraints are active. 

Thus, a single-level MINLP model can be obtained, as shown in Eq. (15). 
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𝐹(𝜃𝑝
𝑁) = min 𝛿

𝑠. 𝑡.  𝑠ℎ𝑎𝑝𝑒(𝜽̃) ∈ 𝑄

         −1 − 𝜆2 −∑𝜇2,𝑝
𝑝

𝜃̃𝑝 = 0

         ∑𝜆1,𝑗 ∙
𝜕𝑔𝑗
𝜕𝜃𝑝

𝑗

+∑𝜇1,𝑖 ∙
𝜕ℎ𝑖
𝜕𝜃𝑝

𝑖

+ 𝜇2,𝑝 = 0,   ∀𝑝 ∈ 𝑃

        ∑𝜆1,𝑗 ∙
𝜕𝑔𝑗
𝜕𝑥𝑘

𝑗

+∑𝜇1,𝑖 ∙
𝜕ℎ𝑖
𝜕𝑥𝑘

𝑖

= 0,   ∀𝑘 ∈ 𝐾

         𝑔𝑗 + 𝑠1,𝑗 = 0,   ∀𝑗 ∈ 𝐽

         −𝛿 + 𝑠2 = 0

         𝜃𝑝 = 𝜃𝑝
𝑁 + 𝛿𝜃̃𝑝,   ∀𝑝 ∈ 𝑃

         𝑠1,𝑗 ≤ 𝑀(1 − 𝑦1,𝑗),    ∀𝑗 ∈ 𝐽

         𝜆1,𝑗 − 𝑦1,𝑗 ≤ 0,    ∀𝑗 ∈ 𝐽

         𝑠2 ≤ 𝑀(1 − 𝑦2)

         𝜆2 − 𝑦2 ≤ 0
         −𝛿 ≤ 0
         𝜆1,𝑗 ≥ 0

         𝜆2 ≥ 0
         𝑠1,𝑗 ≥ 0

         𝑠2 ≥ 0

         𝑦1,𝑗 ∈ {0,1}

         𝑦2 ∈ {0,1}

(15) 

Compared with the traditional flexibility index model shown in Eq. (3), the proposed model 

has three characteristics:  

(1) Compared with Eq. (3), the proposed Eq. (10) is a bi-level model. Although it involves new 

bilinear terms, the corresponding MINLP model will be simpler because it only needs KKT 

reformulation once. 

(2) The Haar condition is not required. In Eq. (3), a rectangle is usually defined as an 

expression of 𝜽, 𝜽𝑁 and 𝛿. Since Eq. (3) requires all the process parameters in the whole 

rectangle restricted in the feasible region, it is a semi-infinite programming problem; thus, 

the Haar condition is required for finding the active constraints. By contrast, Eq. (10) has 

ability to find the direction corresponding to the active constraint directly, and Haar 

condition becomes unnecessary. 
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(3) Eq. (10) can be extended to any shape of feasible region, as long as its representation in 

terms of 𝜽̃ can be provided. 

5. Design centering problem 

Another important aspect of the design space definition is the design centering problem, where 

the objective is to select the nominal conditions of the process parameters while maximizing 

the feasible region of operation. It can be geometrically interpreted as the problem of inscribing 

the largest shape of the uncertainty set of the process parameters within the feasible region of 

operation given by the model constraints. Thus, the difference between the flexibility index 

calculation and the design centering problem is that for the former problem the nominal point 

is given, whereas in the latter the flexibility index is maximized whilst selecting the optimal 

nominal point. The nominal point corresponds to a feasible point, therefore it must satisfy all 

the model constraints, i.e., 

{
𝑔𝑗(𝜽

𝑁 , 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

ℎ𝑖(𝜽
𝑁 , 𝒙) = 0,   ∀𝑖 ∈ 𝐼

(16) 

5.1. Bi-level formulation of design centering 

Based on the flexibility index model shown in Eq. (15), the design centering problem can be 

formulated as the following bi-level optimization model. The inner level is the minimization 

problem of flexibility index, and the outer level is the maximization problem where the nominal 

point is searched within the feasible region. 

max
𝜽𝑁
𝛿

𝑠. 𝑡.  𝑔𝑗(𝜽
𝑁 , 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

        ℎ𝑖(𝜽
𝑁 , 𝒙) = 0,   ∀𝑖 ∈ 𝐼

        Eq. (15)

(17) 

Note that, if directly reformulating Eq. (15) by the KKT conditions and complementarity 

conditions, the obtained single-level optimization model cannot generate a correct result17. The 
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result of a linear case is shown in Appendix, and the final nominal point is placed on the 

boundary of 𝜽. 

Since Eq. (17) is a typical bi-level optimization problem24, the objective of the lower-level 

problem is to calculate the flexibility index for a given nominal point, and the upper-level 

problem is to search the nominal points within the feasible region. Generally, the procedure to 

solve Eq. (17) mainly contains three steps: 

(1) Choose an initial nominal point 𝜽0
𝑁 at the upper level. 

(2) Solve the lower-level problem, and find the global minimum solution of 𝛿. 

(3) Based on the value of 𝛿, apply a search method to generate a new nominal point 𝜽𝑘
𝑁, until 

the stop criterion is attained. 

In this section, two different methods are proposed to solve the design centering problems. The 

first method is vertex direction search, which can be applied for the special case of finding a 

largest rectangle within a convex feasible region, and the method does not require solving the 

flexibility index model; the second method is based on DFO, which is applicable to general 

cases, and a strategy of multiple starts is developed to improve the global optimality. 

5.2. Method 1: Vertex direction search for convex cases 

The vertex direction search method for design centering is based on the theorem by Swaney 

and Grossmann10 that establishes that if the constraint functions are jointly convex in the 

process parameters and control variables, then the solution of the flexibility constraint has its 

global optimal solution at a vertex of the polyhedral region that describes the process parameter 

set. The basic idea of this method is to maximize the flexibility index 𝛿 and to determine the 

nominal condition of the process parameters, 𝜃𝑝
𝑁 , by simultaneously evaluating feasibility over 

all vertex directions, which is formulated as Eq. (18). 



 15 

max 𝛿
𝛿∈ℝ+,𝜃𝑝

𝑁

𝑠. 𝑡.  𝑔𝑗,𝑣(𝜃𝑝,𝑣, 𝒙) ≤ 0,   ∀ 𝑗 ∈ 𝐽,   𝑣 ∈ 𝑉𝐷

         ℎ𝑖,𝑣(𝜃𝑝,𝑣, 𝒙) = 0,   ∀𝑖 ∈ 𝐼,   𝑣 ∈ 𝑉𝐷

         𝜃𝑝,𝑣 = 𝜃𝑝
𝑁 + 𝛿 ⋅ 𝑑𝑒𝑣𝑝,𝑣,   ∀ 𝑝 ∈ 𝑃,   𝑣 ∈ 𝑉𝐷

(18) 

where subscripts 𝑝 and 𝑣 stand for process parameter and vertex directions, respectively; 𝜃𝑝,𝑣 

is the process parameter at each vertex direction. 𝑑𝑒𝑣𝑝,𝑣 is a parameter that contains all vertex 

directions 𝑣 ∈ 𝑉𝐷. 𝛥𝜃𝑝
+ and 𝛥𝜃𝑝

− represent the allowable ranges of operation for each process 

parameter, 𝑝 ∈ 𝑃. For the case of two process parameters, VD = {(Δ𝜃1
+, Δ𝜃2

+), (−Δ𝜃1
−, Δ𝜃2

+), 

(Δ𝜃1
+,−Δ𝜃2

−), (−Δ𝜃1
−,−Δ𝜃2

−)}. As shown in Figure 2, each process parameter at four vertex 

directions will be added to the optimization model; thus, the total number of the constraints is 

(|𝐼| + |𝐽|) ∙ 2𝑃. The limitation of this method is that it only allows finding vertex solutions. 

Furthermore, the size of the LP/NLP problem in Eq. (18) grows exponentially with the number 

of process parameters, i.e., 2𝑃. However, the structure of the problem can be exploited by a 

decomposition scheme when necessary. 

 

Figure 2. Vertex search method for convex feasible regions. 

5.3. Method 2: Derivative-free optimization using multiple starting points 

The goal of a design centering problem is to find an optimal nominal point, which corresponds 

to the largest feasible operating region. Eq. (17) shows that the design centering problem is a 

bi-level optimization model. In the upper-level problem, the nominal point is searched within 
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the feasible region, and in the lower-level problem, an exact flexibility index should be 

calculated for each nominal point. For a general bi-level optimization problem, the most 

important issue is how to guarantee finding the global optimal solution of the lower-level model 

at each iteration. Similarly, for the design centering problem, the key issue is to guarantee 

locating the global optimal flexibility index for each nominal point. 

Since the MINLP model in Eq. (15) can be solved by the GAMS/BARON solver to obtain the 

global optimal solution, we can define Eq. (15) as an implicit function of 𝜽𝑁, i.e., 

𝛿 = 𝐹(𝜽𝑁) (19) 

which indicates that, for an arbitrary nominal point, an exact flexibility index 𝛿 can be obtained. 

Thus, Eq. (17) can be rewritten as Eq. (20). 

max
𝜽𝑁
𝐹(𝜽𝑁)

𝑠. 𝑡.  𝑔𝑗(𝜽
𝑁 , 𝒙) ≤ 0,   ∀𝑗 ∈ 𝐽

         ℎ𝑖(𝜽
𝑁, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

(20) 

which can be viewed as a single-level optimization model with a black-box objective 𝐹(𝜽𝑁). 

Therefore, a DFO method can be applied to solve this model. However, the presence of the 

state variables implies that the feasible region of nominal points is described by a set of 

multivariate functions of 𝜽𝑁 and 𝒙. Thus, the maximum constraint violation (MCV) of all the 

constraints is defined in order to identify the feasible region.  

𝑀𝐶𝑉(𝜽𝑁) = min 𝑢

𝑠. 𝑡.  𝑔𝑗(𝜽
𝑁 , 𝒙) ≤ 𝑢,   ∀𝑗 ∈ 𝐽

         ℎ𝑖(𝜽
𝑁, 𝒙) = 0,   ∀𝑖 ∈ 𝐼

(21) 

To make all the constraints feasible, MCV should be less than 0, i.e., 

𝑀𝐶𝑉(𝜽𝑁) ≤ 0 (22) 

Eq. (20) can then be written as 

max
𝜽𝑁
𝐹(𝜽𝑁)

𝑠. 𝑡.  𝑀𝐶𝑉(𝜽𝑁) ≤ 0
(23) 
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Moreover, in order to convert Eq. (23) to a form that is easily handled by general DFO solvers, 

a penalty coefficient M is introduced in the objective function. The penalty coefficient simply 

serves as a way to scale the constraint violation and its value need only be tuned for numerical 

stability. Thus, the final design centering model is 

min
𝜽𝑁
−𝐹(𝜽𝑁) + 𝑀 ∙ max(0,𝑀𝐶𝑉(𝜽𝑁))

𝑠. 𝑡.  𝜃𝑝
𝑁𝐿 ≤ 𝜃𝑝

𝑁 ≤ 𝜃𝑝
𝑁𝑈 ,   𝑝 ∈ 𝑃

(24) 

where the bound constraints of 𝜃𝑝
𝑁 are also given. The objective function in Eq. (24) is a type 

of exact penalty function. Fiacco25 proved that if M is sufficiently large, this penalty function 

will be exact, i.e., it is capable of finding the exact optimal solution. Eq. (24) is a DFO model 

with a black-box objective function and a box constraint, which can be handled by most DFO 

solvers. In the special case of a problem without state variables, we do not need to calculate 

the constraint violations by solving optimization problems. Thus, Eq. (24) can be simplified as  

min
𝜽𝑁
−𝐹(𝜽𝑁) +𝑀 ∙∑ (max (0, 𝑔𝑗(𝜽

𝑁)))
𝐽

𝑗

𝑠. 𝑡.  𝜃𝑝
𝑁𝐿 ≤ 𝜃𝑝

𝑁 ≤ 𝜃𝑝
𝑁𝑈 ,   𝑝 ∈ 𝑃

(25) 

For an initial nominal point, the DFO solution strategy to solve the design centering problem 

is summarized in Figure 3. At the kth iteration, the nominal point 𝜽𝑘
𝑁 is used to solve a MINLP 

model and an NLP model, and the results are used to evaluate the objective function. If it does 

not meet the stopping criteria of the selected DFO solver, e.g., the maximum number of 

objective evaluations, a new nominal point is generated. 
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Figure 3. Flowchart of DFO solution strategy to design centering for an initial nominal point. 

Theoretically, based on search strategies, DFO methods26 can be grouped into two types: direct 

search methods, which determine the search directions directly from the function evaluation 

data, and model-based methods, which typically use a trust-region framework for selecting 

new iterations. In addition, DFO methods27 can be divided into local search methods, which 

start from an initial guess and move within a local trust region, and global search methods, 

which search the entire bounded variable space. However, neither local nor global search 

methods are guaranteed to find the global optimum. 

In this work, a DFO solver, Py-BOBYQA, which is a Python implementation of the BOBYQA 

Fortran solver by Powell28, is employed to solve design centering problems. Py-BOBYQA is 

designed for the optimization models like Eq. (26).  

min
𝑥∈ℝ𝑛

𝑓(𝑥)

𝑠. 𝑡.  𝑎 ≤ 𝑥 ≤ 𝑏
(26) 

Py-BOBYQA is based on the trust-region method, which can find local solutions of nonlinear, 

nonconvex, least-squares minimization problems (with box constraints), without requiring 

derivatives of the objective. Py-BOBYQA approximates the function f(x) using a quadratic 

function, which matches the function value of f(x) at certain interpolation points chosen by the 
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algorithm. The quadratic function is then used in a trust region procedure for updating the 

decision variables. A more detailed description of the algorithm can be found in [29]. 

Since Py-BOBYQA was developed based on the trust-region method, the initial value has great 

influence on the final result of the DFO model. In order to take a more complete assessment of 

the design space, the Latin hypercube sampling (LHS) strategy is applied to generate a set of 

initial points in the process parameter space. Then, a feasibility check is performed through 

evaluating the model constraints at each LHS point. If a point is infeasible, it will be removed. 

To summarize, this method contains four main steps: 

(1) For a given number of sampling points, perform the LHS strategy over the space of process 

parameters, where upper and lower bounds are required. 

(2) Check the feasibility of each sampling point 𝜽𝑠𝑝
𝑁  through solving the following NLP model.  

𝑢𝑠𝑝 = min 𝑢

𝑠. 𝑡. 𝑔𝑗(𝜽𝑠𝑝
𝑁 , 𝒙) ≤ 𝑢,   ∀𝑗 ∈ 𝐽

       ℎ𝑖(𝜽𝑠𝑝
𝑁 , 𝒙) = 0,   ∀𝑖 ∈ 𝐼

(27) 

where 𝑢𝑠𝑝 ≤ 0 indicates that the point is feasible. 

(3) Solve the DFO model of design centering problem for each feasible LHS point by using 

Eq. (24), and the obtained result for each point is stored. 

(4) The optimal nominal point is the one that has the largest value of flexibility index. 

Note that the number of the LHS sampling points needs to be specified in advance, and the 

more LHS feasible points we can obtain, the more rigorous the solution may be. The design 

centering model for each LHS point is actually calculated independently, so the problem can 

be solved in parallel. The pseudocode of the above DFO strategy using multiple starting points 

is described in Algorithm 1. 

Algorithm 1: DFO method with multiple starting points 

1:   Perform LHS method to discretize the process parameter space: 

      𝜽𝑁 = {𝜽𝑠𝑝
𝑁 ,   ∀𝑠𝑝 ∈ 𝑆} 

2:   for each nominal point 𝜽𝑠𝑝
𝑁 , 𝑠𝑝 ∈ 𝑆  
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3:  Check feasibility of the nominal point. (Eq. (27)): 

4:  if nominal point is feasible 𝑢𝑠𝑝 ≤ 0 then 

5:        Conserve point 𝜽𝑠𝑝
𝑁  in the 𝑆′. 

6:  else 

7:        Exclude point 𝜽𝑠𝑝
𝑁  from 𝑆. 

8:  end 

9:   end 

10: for each feasible nominal point 𝜽𝑠𝑝
𝑁 , 𝑠𝑝 ∈ 𝑆′ 

11:  Solve the DFO model at 𝜽𝑠𝑝
𝑁 : 

12:        Set the initial conditions for the DFO solver. 

13:        while the stop criteria of the DFO solver does not meet: 

14:            Calculate the flexibility index: 𝐹(𝜽𝑠𝑝
𝑁 ). (Eq. (15)) 

15:            Calculate the maximum constraint violation: 𝑀𝐶𝑉(𝜽𝑠𝑝
𝑁 ). (Eq. (21)) 

16:            Solve the DFO model and store 𝛿𝑠𝑝. 

17        end 

18: end 

19: The solution of the design centering problem is 𝜽𝑠𝑝
𝑁∗ such that max{𝛿𝑠𝑝,   ∀𝑠𝑝 ∈ 𝑆′}. 

6. Case studies  

Four cases are presented to illustrate the flexibility index and design centering methods. Pyomo 

(Python-based open-source software package)30,31 is applied to define the models. The MINLP 

model can be automatically deduced within the function module. The GAMS solver, BARON, 

is called to solve the MINLP model through the interface of Pyomo and GAMS. Rectangular 

and elliptical sets for the process parameters are considered in each case. 

6.1. Linear case 

Consider the following linear inequalities, 

𝑔1: 𝜃2 − 𝜃1 ≤ 0

𝑔2 : − 𝜃2 −
𝜃1
3
+
4

3
≤ 0

𝑔3: 𝜃2 + 𝜃1 − 4 ≤ 0

 

For the flexibility index problem, 𝜃1 and 𝜃2 are regarded as process parameters. The feasible 

region is shown in yellow, and the nominal point of (𝜃1,𝜃2) is specified as (1.8, 1), as shown 

in Figure 4(a). The rectangle which is used for direction search is defined as 
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−2 ≤ 𝜃̃1 ≤ 2

−1 ≤ 𝜃̃2 ≤ 1
 

The formulation of the ellipse is defined as 

(
𝜃̃1
2
)

2

+ (
𝜃̃2
1
)

2

= 1 

According to Eq. (15), the MINLP model can be implemented in Pyomo and solved by 

BARON. For the rectangle case, the result of flexibility index is F = 0.16, the direction that 

can find the active constraint, i.e., (𝜃̃1,𝜃̃2), is (−2,−1), which corresponds to a vertex of the 

rectangle, and the critical point of (𝜃1,𝜃2) is (1.48, 0.84). For the ellipse case, F = 0.2219, the 

critical point is (1.5538, 0.8153), and the corresponding direction is (−1.11,−0.83). In order 

to further test the proposed flexibility index formulation, the nominal point is specified as (2.2, 

1.2). Through solving the MINLP model, for the rectangle and ellipse cases, the results of 

flexibility index are F = 0.2 and F = 0.2683, respectively. As shown in Figure 4(b), the critical 

points are (2.6, 1.4) and (2.68, 1.32), which are located at 𝑔3. The corresponding directions 

(𝜃̃1,𝜃̃2) are (2, 1) and (1.7888, 0.4472), respectively. 

    

(a)                                                            (b) 

Figure 4. Flexibility index of the linear example. 

For this linear case, both of the proposed design centering methods can be used for solving the 
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design centering problem. Method 1 requires simultaneously evaluating the feasibility over all 

vertex directions, i.e., all four vertices are restricted within the design space. 

max 𝛿
𝛿∈ℝ+,θN

𝑠. 𝑡.  𝑔1
𝐿𝐿: (𝜃2

𝑁 − 𝛿 ∙ Δ𝜃2
−) − (𝜃1

𝑁 − 𝛿 ∙ Δ𝜃1
−) ≤ 0

         𝑔2
𝐿𝐿:−(𝜃2

𝑁 − 𝛿 ∙ Δ𝜃2
−) −

(𝜃1
𝑁 − 𝛿 ∙ Δ𝜃1

−)

3
+
4

3 
≤ 0

         𝑔3
𝐿𝐿: (𝜃2

𝑁 − 𝛿 ∙ Δ𝜃2
−) + (𝜃1

𝑁 − 𝛿 ∙ Δ𝜃1
−) − 4 ≤ 0

        𝑔1
𝐿𝑈: (𝜃2

𝑁 + 𝛿 ∙ Δ𝜃2
+) − (𝜃1

𝑁 − 𝛿 ∙ Δ𝜃1
−) ≤ 0

        𝑔2
𝐿𝑈: −(𝜃2

𝑁 + 𝛿 ∙ Δ𝜃2
+) −

(𝜃1
𝑁 − 𝛿 ∙ Δ𝜃1

−)

3
+
4

3 
≤ 0

        𝑔3
𝐿𝑈: (𝜃2

𝑁 + 𝛿 ∙ Δ𝜃2
+) + (𝜃1

𝑁 − 𝛿 ∙ Δ𝜃1
−) − 4 ≤ 0

        𝑔1
𝑈𝐿: (𝜃2

𝑁 − 𝛿 ∙ Δ𝜃2
−) − (𝜃1

𝑁 + 𝛿 ∙ Δ𝜃1
+) ≤ 0

        𝑔2
𝑈𝐿: −(𝜃2

𝑁 − 𝛿 ∙ Δ𝜃2
−) −

(𝜃1
𝑁 + 𝛿 ∙ Δ𝜃1

+)

3
+
4

3 
≤ 0

        𝑔3
𝑈𝐿: (𝜃2

𝑁 − 𝛿 ∙ Δ𝜃2
−) + (𝜃1

𝑁 + 𝛿 ∙ Δ𝜃1
+) − 4 ≤ 0

        𝑔1
𝑈𝑈: (𝜃2

𝑁 + 𝛿 ∙ Δ𝜃2
+) − (𝜃1

𝑁 + 𝛿 ∙ Δ𝜃1
+) ≤ 0

        𝑔2
𝑈𝑈: −(𝜃2

𝑁 + 𝛿 ∙ Δ𝜃2
+) −

(𝜃1
𝑁 + 𝛿 ∙ Δ𝜃1

+)

3
+
4

3 
≤ 0

        𝑔3
𝑈𝑈: (𝜃2

𝑁 + 𝛿 ∙ Δ𝜃2
+) + (𝜃1

𝑁 + 𝛿 ∙ Δ𝜃1
+) − 4 ≤ 0

 

where Δ𝜃1
∓ and Δ𝜃2

∓ correspond to 2 and 1, respectively. According to Eq. 18, the flexibility 

index, F = 0.2857, can be obtained. Figure 5 shows the result for the selected design center 

𝜃1 = 2, 𝜃2 = 1.1429.  

In order to execute the LHS method for Method 2, the sampling ranges are set as [0, 4] and [0, 

2] for 𝜃1 and 𝜃2, respectively. A total of four points are sampled, and three of them are feasible, 

which are listed in Table 1. The DFO method with multiple starting points is applied to solve 

the design centering problem. Three feasible points are selected as initial values for the DFO 

solver, and three results of design centering are obtained. The results for the rectangle and 

ellipse cases are also listed in Table 1. The result corresponding to the largest flexibility index 

defines the optimal nominal point. Figure 6 indicates the correctness of the results. 
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Figure 5. Linear example of design centering using Method 1. 

  

(a)                                                            (b) 

Figure 6. Linear example of design centering using Method 2. 

6.2. Nonlinear case 

To further test the performance of the proposed method, the following nonlinear and 

nonconvex example is considered: 

𝑔1: (𝜃2 − 2)
2 + (𝜃1 − 2)

3 + (𝜃2 − 2)(𝜃1 − 2) −
1

2
≤ 0

𝑔2: (𝜃2 − 2)
2 + (𝜃1 − 2)

2 − 2 ≤ 0
 

The formulations of the rectangle and ellipse are defined similarly as in the above linear case. 

The nominal points of (𝜃1,𝜃2) are set to two different points (1.5, 1.7) and (2.1, 1.7). Figure 

7(a) shows that, for the nominal point (1.5, 1.7), the results of flexibility index are F = 0.2760 
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and F = 0.2771. The corresponding critical points are (1.5619, 1.4240) and (1.5396, 1.4236), 

and the directions (𝜃̃1,𝜃̃2) are (0.2244,−1) and (0.1428,−0.9974), respectively. Similarly, 

for the second nominal point (2.1, 1.7), as shown in Figure 7(b), the obtained flexibility indices 

are F = 0.2760 and F = 0.3507, the critical points are (1.5622, 1.4240) and (1.7513,1.3958), 

and the corresponding directions are(−1.9489,−1) and (−0.9945,−0.8676), respectively. 

Figure 7 indicates that the proposed method is also effective for the nonconvex cases. The 

proposed flexibility index model does not require the Haar condition, because the directions 

are searched along the boundary of the given rectangle or ellipse, which means that it finds the 

active constraints directly. 

    

(a)                                                            (b) 

Figure 7. Flexibility index of the nonlinear example. 

Similarly, for the design centering problem, the sampling ranges are set to [0.5, 3.5] and [0.5, 

3.5] for 𝜃1 and 𝜃2, respectively. A total of six points are sampled, and three of them are feasible, 

which are listed in Table 1. After setting each feasible point as the initial values for the DFO 

solver, the results of the design centering problem can be obtained. The results for the rectangle 

and ellipse corresponding to the largest flexibility index are shown in Table 1. Figure 8 can 

verify the correctness of the results. Table 1 lists the the computational times of these two 
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examples for Method 2. The results of the flexibility index and design centering problems show 

that the flexibility index of ellipse region is larger than the one of rectangle region.  

    

(a)                                                            (b) 

Figure 8. Nonlinear example of design centering using Method 2. 

Table 1. Results of design centering for Method 2. 

 

3 feasible starting 

points for DFO solver 

(in 10 LHS points) 

Rectangle Ellipse 

Flexibility index Nominal point Flexibility index Nominal point 

Linear 

example 

1 (3.4952, 0.3313) 0.2857 (2, 1.1429) 0.3878 (2, 1.1328) 

2 (2.0344, 1.6559) 0.2857 (2, 1.1429) 0.3878 (2, 1.1328) 

3 (1.9093, 0.7600) 0.2857 (2, 1.1429) 0.3878 (2, 1.1326) 

Time (s) 88.41 69.77 

Nonlinear 

example 

1 (2.6784, 1.9934) 0.2169 (2.2730, 1.9511) 0.5459 (1.6813, 1.9771) 

2 (2.1405, 1.3861) 0.3057 (2.1614, 1.7413) 0.5477 (1.6817, 1.9693) 

3 (0.7713, 2.0994) 0.4631 (1.6316, 1.8938) 0.5477 (1.6815, 1.9703) 

Time (s) 50.85 74.46 

6.3.CSTR reaction 

This case is a 2-step consecutive reaction. The process is described by the mechanism of 

reaction provided by Chen et al.8,32  
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𝐴+𝐵
𝑘1
→ 𝐶, 𝑟1 = 𝑘1 ∙ 𝑐𝐴 ∙ 𝑐𝑏

𝐶
𝑘2
→ 𝐷+𝐸, 𝑟2 = 𝑘2 ∙ 𝑐𝑐

 

where 𝑟𝑗 are the reaction rates. Two process parameters are residence time, 𝜏, and the ratio of 

the concentration of B to A, 𝑅. 𝑘𝑗 are model parameters, which are fixed as their mean value 

{0.31051, 0.026650}. The feasible range of 𝜏 and 𝑅 are described as follows. 

0 ≤ 𝜏 ≤ 550
0 ≤ 𝑅 ≤ 6

 

The mass balance of the CSTR is given by the following set of equations. 

𝑐𝐴
0 − 𝑐𝐴 + 𝜏 ∙ (−𝑟1) = 0

𝑐𝐵
0 − 𝑐𝐵 + 𝜏 ∙ (−𝑟1) = 0

𝑐𝐶
0 − 𝑐𝐶 + 𝜏 ∙ (𝑟1 − 𝑟2) = 0

𝑐𝐷
0 − 𝑐𝐷 + 𝜏 ∙ 𝑟2 = 0

𝑐𝐸
0 − 𝑐𝐸 + 𝜏 ∙ 𝑟2 = 0

 

where 𝑐𝑖
0  are the initial concentrations {𝑐𝐴

0 = 0.53, 𝑐𝐵
0 = 0.53 ∙ 𝑅, 𝑐𝐶

0 = 0, 𝑐𝐷
0 = 0, 𝑐𝐸

0 = 0} . 

The quality specifications are minimum yield of product D and minimum ratio of D to 

unreacted species, that is, 

𝑐𝐷

𝑐𝐴
0 − 𝑐𝐴

≥ 0.9

𝑐𝐷
𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶

≥ 0.2
 

Before calculating the feasible operating region over the process parameters, the formulations 

of the rectangle and ellipse are defined by using the entire given ranges. 

−275 ≤ 𝜏̃ ≤ 275
−3 ≤ 𝑅̃ ≤ 3

 

(
𝜏̃

275
)
2

+ (
𝑅̃

3
)

2

= 1 

Table 2. Results of flexibility index for CSTR reaction.  

Nominal points 
Flexibility index 

Rectangle Ellipse 

1 (527, 2.4) 0.7366 0.7395 
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2 (444, 3.8) 0.5246 0.5683 

3 (350, 4.2) 0.3913  0.3938 

 

Table 3. Results of design centering of multiple starting points for CSTR reaction. 

7 feasible starting 

points for DFO solver 

Rectangle Ellipse 

Flexibility index Nominal point Flexibility index Nominal point 

1 (526.9448, 2.4281) 0.8639579303 (543.7643, 2.7819) 0.8998934294 (530.4755, 2.8811) 

2 (382.2102, 1.3103) 0.8639492781 (414.0928, 2.7819) 0.8828508761 (428.8189, 2.8335) 

3 (495.1392, 2.3676) 0.8639579283 (479.5287, 2.7819) 0.8946968608 (494.9951, 2.8671) 

4 (444.4222, 3.7893) 0.8639579263 (430.0968, 2.7819) 0.8732584496 (388.0840, 2.8068) 

5 (482.5902, 3.5384) 0.8639579333 (448.9690, 2.7819) 0.8880814238 (455.3512, 2.8481) 

6 (419.0243, 0.2167) 0.8639579423 (437.0818, 2.7819) 0.8856877694 (442.7762, 2.8415) 

7 (350.5285, 4.2073) 0.8639579370 (368.1792, 2.7819) 0.8674989006 (368.8375, 2.7936) 

 

Table 4. Final results of design centering for CSTR reaction. 

 Rectangle Ellipse 

Flexibility index 0.8639579423 0.8998934294 

Nominal point (437.0818, 2.7819) (530.4755, 2.8811) 

Critical point (337.7111, 5.3738) (512.9353, 5.5740) 

Critical direction (-115.0181, 3.0) (-19.4914, 2.9925) 

Feasible region 
𝜏: [199.4934, 674.6703] 

𝑅: [0.1901, 5.3738] 

((𝜏-530.4755)/275)2 + 

((𝑅-2.8811)/3)2 ≤ 0.89989342942 

Time (s) 168.17 187.2 

 

In order to test the flexibility index problem, as shown in Table 2, three different feasible points 

are chosen as nominal points. The results show that, for the same nominal point, the flexibility 

index of ellipse feasible region is larger than the one of rectangle feasible region. For the design 

centering problem, the sampling ranges are set as [0, 550] and [0, 6], respectively. With the 

LHS method, 20 points are sampled, which 7 of them correspond to feasible operating points, 

listed in Table 3. Each feasible point is set as an initial value for the DFO solver, and the results 
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of the rectangle and ellipse cases for design centering problem can be obtained. The result 

corresponding to the largest flexibility index is the final optimal nominal point. The final 

critical point, critical direction, feasible region and computational time are also summarized in 

Table 4. Moreover, note that the given ranges of 𝜏 and 𝑅 are [0, 550] and [0, 6], respectively, 

which are used to formulate the rectangle and ellipse for direction search. The obtained feasible 

regions shown in Table 4 indicate that, for the feasible range of 𝜏, [199.4934, 674.6703], the 

upper bound is above 550, which means that range of 𝜏 should be updated, and it can be feasible 

in a larger scope.  

6.4. Michael Addition Reaction  

This case is a Michael Addition Reaction with kinetics8 described in the following equations. 

𝐴𝐻 + 𝐵
𝑘1
→ 𝐴− + 𝐵𝐻+, 𝑟1 = 𝑘1 ∙ 𝑐𝐴𝐻 ∙  𝑐𝐵 

𝐴− + 𝐶
𝑘2
→𝐴𝐶−, 𝑟2 = 𝑘2 ∙ 𝑐𝐴− ∙ 𝑐𝐶 

𝐴𝐶−
𝑘3
→ 𝐴− + 𝐶, 𝑟3 = 𝑘3 ∙ 𝑐𝐴𝐶−  

𝐴𝐶− + 𝐴𝐻
𝑘4
→ 𝐴− + 𝑃, 𝑟4 = 𝑘4 ∙ 𝑐𝐴𝐶− ∙ 𝑐𝐴𝐻 

𝐴𝐶− + 𝐵𝐻+
𝑘5
→ 𝑃 + 𝐵, 𝑟5 = 𝑘5 ∙ 𝑐𝐴𝐶− ∙ 𝑐𝐵𝐻+ 

where 𝑟𝑖 are reaction rates; AH (Michael donor) and C (Michael acceptor) are starting materials; 

B is a base; BH+, 𝐴− and 𝐴𝐶− are reaction intermediates; P is the product; the rate constants 

𝑘𝑖  are model parameters, fixed at their mean value: [49.7796, 8.9316, 1.3177, 0.3109, 3.8781].  

The CSTR mass balance over the reactions are described as follows. 

𝑐𝐴𝐻
0 − 𝑐𝐴𝐻 + 𝜏 ∙ (−𝑟1 − 𝑟4) = 0 

𝑐𝐵
0 − 𝑐𝐵 + 𝜏 ∙ (−𝑟1 + 𝑟5) = 0 

𝑐𝐶
0 − 𝑐𝐶 + 𝜏 ∙ (−𝑟2 + 𝑟3) = 0 

𝑐𝐴−
0 − 𝑐𝐴− + 𝜏 ∙ (𝑟1 − 𝑟2 + 𝑟3 + 𝑟4) = 0 

𝑐𝐴𝐶−
0 − 𝑐𝐴𝐶− + 𝜏 ∙ (𝑟2 − 𝑟3 − 𝑟4 − 𝑟5) = 0 
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𝑐𝐵𝐻+
0 − 𝑐𝐵𝐻+ + 𝜏 ∙ (𝑟1 − 𝑟5) = 0 

𝑐𝑃
0 − 𝑐𝑃 + 𝜏 ∙ (𝑟4 + 𝑟5) = 0 

Two quality constraints are the conversion of C must be greater than 90%, the concentration 

of 𝐴𝐶− in the outlet must be less than 0.002. 

𝑐𝐶
0 − 𝑐𝐶 − 𝑐𝐴𝐶−

𝑐𝐶
0 ≥ 0.9 

𝑐𝐴𝐶− ≤ 0.002 

The initial concentrations {𝑐𝐴𝐻
0 , 𝑐𝐵

0, 𝑐𝐶
0, 𝑐𝐴−

0 , 𝑐𝐴𝐶−
0 , 𝑐𝐵𝐻+

0 , 𝑐𝑃
0} are set to be {0.3955, 0.3955/R, 

0.25, 0, 0, 0, 0}. The process parameters are the residence time 𝜏 and the molar ratio R, and the 

feasible range of 𝜏 and R are described as follows. 

400 ≤ 𝜏 ≤ 1400
10 ≤ 𝑅 ≤ 30

 

The formulations of the rectangle and ellipse are defined by using the entire given ranges.  

−500 ≤ 𝜏̃ ≤ 500
−10 ≤ 𝑅̃ ≤ 10

 

(
𝜏̃

500
)
2

+ (
𝑅̃

10
)

2

= 1 

Table 5. Results of flexibility index for Michael addition reaction.  

Nominal points 
Flexibility index 

Rectangle Ellipse 

1 (1300, 12) 0.7409177641 0.9915670609 

2 (800,15) 0.9835211248 1.0816141062 

3 (1000, 20) 0.0823404880 0.4861080749 

 

Table 6. Results of design centering of multiple starting points for Michael addition reaction. 

7 feasible starting 

points for DFO solver 

Rectangle Ellipse 

Flexibility index Nominal point Flexibility index Nominal point 

1 (1358.0814, 18.0937) 1.0588514558 (1400.0, 14.2467) 1.0604982864 (1400.0, 17.3367) 

2 (1094.9277, 14.3677) 0.9409177641 (1400.0, 10.0) 1.2632318763 (1400.0, 10.0) 
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3 (1300.2531, 17.8920) 0.9409177641 (1400.0, 10.0) 1.0727437634 (1400.0, 17.1645) 

4 (1208.0404, 22.6311) 0.5927054415 (1321.3945, 22.6464) 1.1071006470 (1310.0050, 10.0) 

5 (1277.4367, 21.7948) 0.9409177641 (1400.0, 10.0) 1.2632318763 (1400.0, 10.0) 

6 (1161.8625, 10.7225) 0.9409177641 (1400.0, 10.0) 1.2632318763 (1400.0, 10.0) 

7 (1037.3246, 24.0243) 0.0842832149 (1037.4618, 22.0136) 0.5184748470 (942.7930, 19.9183) 

 

Table 7. Final results of design centering for CSTR reaction. 

 Rectangle Ellipse 

Flexibility index 1.0588514558 1.2632318763 

Nominal point (1400.0, 14.2467) (1400.0, 10.0) 

Critical point (1025.0418, 24.8352) (849.2243, 16.1834) 

Critical direction (-354.1178, 10.0) (-436.0052, 4.8949) 

Feasible region 
𝜏: [870.5742, 1929.4257] 

𝑅: [3.6582, 24.8352] 

((𝜏-1400)/500)2 + 

((𝑅-10)/10)2 ≤ 1.26323187632 

Time (s) 2443.6 695.92 

 

As shown in Table 5, three different feasible points are chosen as nominal points. The results 

of flexibility index also indicate show that, for the same nominal point, the flexibility index of 

ellipse is larger than the one of rectangle. For the design centering problem, the sampling ranges 

are set as [400, 1400] and [10, 30], respectively. 20 sampling points are generated, and 7 of 

them are feasible, which are listed in Table 6. The result corresponding to the largest flexibility 

index for all the feasible points is the final optimal nominal point. All the results are also 

summarized in Table 7. Similarly, the obtained feasible rectangle region shown in Table 7 

indicates that, for the feasible range of 𝜏, [870.5742, 1929.4257], the upper bound is above the 

given bound of 1400, for the feasible range of 𝑅, [3.6582, 24.8352], the lower bound is below 

the given one of 10. which means that the feasible region actually has a larger scope. 
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7. Conclusions 

In this study, we propose a novel bi-level optimization formulation of flexibility index based 

on a direction search method, which can be applied to any shape of feasible operating region. 

For simplicity, only rectangle and ellipse representations of the process parameter set were 

illustrated. Through the KKT conditions, the flexibility index problem can be transformed into 

a single-level optimization model. For design centering problems, we propose two methods 

with different levels of complexity. The vertex direction search method is developed as a 

single-level optimization model, which can be applicable to a rectangle feasible region for 

convex models. The DFO method is developed based on the proposed flexibility index model. 

In order to improve the quality of the solution, the LHS method is used to generate multiple 

starting points for the DFO solver. The optimal nominal point corresponding to the largest 

flexibility index can be then determined. The results of the various case studies show that the 

proposed method is applicable to both convex and nonconvex cases. 
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Appendix 

For each feasible nominal point, Eq. (15) can give an exact result of flexibility index. A possible 

strategy to solve Eq. (17) is to reformulate the bi-level optimization problem into a single-level 

model by applying the KKT conditions to transform Eq. (15) into a MINLP model. Applying 

this single-level formulation to a linear case, as shown in Figure 9, the final result of flexibility 

index is F = 1.7778, and the obtained nominal point is (4, 0), which is placed on the boundary. 

It is obvious that this result is incorrect, because the rectangle lies beyond the feasible region. 

The reason is that KKT is a necessary rather than a sufficient condition. Eq. (15) is nonconvex, 
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and its KKT condition is not guaranteed to provide a global minimum of 𝛿 for each nominal 

point. Consequently, the outer maximization is operating on an incorrect system. 

 

Figure 9. Result of design centering based on KKT reformulation. 
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