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Abstract  

In this paper, we address the optimal scheduling of continuous air separation processes with electricity purchased 

from the day-ahead market, for which we propose a generalized framework to represent different operating states. 

Specifically, a discrete-time mixed-integer linear programming (MILP) model is developed based on this representation 

for operating states, which has proven to provide a tight LP relaxation for handling industrial-scale instances. The 

computational efficiency of the model is demonstrated with data from real industrial production. The response of the 

scheduling and production level is also tested with various interval lengths for the electricity pricing and length of the 

time horizon.  

 

1. Introduction 

The profitability of energy-intensive process industries is being greatly influenced by the electricity market 

deregulation that introduces new pricing strategies. Therefore, it is critical for these industries to schedule the 

production of the plant in order to take advantage of the fluctuations in electricity prices, which is the major part of 

production costs.  

The intelligent management of electricity demand is referred to as demand side management (DSM)1. Particularly 

in the process industry, DSM has recently shown to be a useful tool for industries to efficiently integrate production 

and energy management. Demand side management technology at the production scheduling and planning level has 

the advantage of potentially low investment cost, because in general it does not require the purchase of new 

equipment2. It can be categorized as either reducing energy consumption, or rescheduling and shifting energy 
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demand to off-peak hours. Specifically large-scale, energy intensive processes may play an important role in this 

context.  

In industrial demand side management (iDSM), the electricity supplier provides economic incentives to the 

industry to modify their electricity consumption by a price-based program and an incentive-based program. In the 

first one, customers respond to the electricity price structure with voluntary changes in their timing of electricity 

consumption, taking advantage of low-priced periods and reducing production in high-priced periods. In the latter, 

customers can obtain electricity at a reduced cost, if the electricity consumption is contracted ahead of time. The 

consumption curve must then be followed as closely as possible to avoid penalties for over- and under-consumption 

of electricity3. 

Industrial gases production is an important sector in the chemical industry, and it is a good example of energy-

intensive process. Compressor systems consume large amounts of electricity to raise the pressure high enough to 

achieve cryogenic temperatures for distillation. Due to the recent volatility in energy markets, there is a significant 

opportunity to reduce costs by taking advantage of lower electricity price periods4-7. As shown in many recent works 

on industrial demand side management (DSM), considering time-sensitive electricity prices can have a significant 

impact on the load profiles of power-intensive industrial processes. For more details on industrial DSM, a 

comprehensive literature review can be found in Zhang and Grossmann1, where air separation works are listed with 

their main model features. 

During the last two decades, a large number of optimization models have been developed to tackle challenging 

scheduling industrial problems. Floudas and Lin8, Mendez et al.9, Maravelias 10 and Harjunkoski et al.11 provide 

detailed reviews of this area. Specifically, there have been several relevant contributions in the area of detailed 

production scheduling taking into account energy management. Among them, Mitra et al. 4 described a discrete-time, 

deterministic MILP model for optimal production planning of continuous power-intensive processes, emphasizing 

the systematic modeling of operational transitions with logic constraints. Despite the large size of the MILP models, 

the required solution times were small due to the effective modeling of transitions. However, only limited number 

of transitions were taken into account. Subsequently, Mitra et al.12 proposed a generalized model on a component 

basis that addressed the operational optimization of industrial combined heat and power (CHP) plants. These authors 
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described the relation between production level and the operating state of units with a linear representation of the 

projected feasible region. This feasible region was modeled with disjunctions with each term corresponding to linear 

constraints of a given mode of operation. The linear constraints were generated from offline simulations or from 

production data. An MILP model was then developed with these constraints and other related to the mass balance 

and transition modes. Some of the constraints were reformulated with the use of logic, yielding tighter constraints 

resulting in an improved performance of the model. 

Recently, a general discrete-time model was proposed for the scheduling of power-intensive process networks 

with various power contracts consisting of a network of processes represented by Convex Region Surrogate models 

that were incorporated in a mode-based scheduling formulation, and allowed modeling a large variety of commonly 

used power contracts5. The resulting MILP model was tested in a real-world industrial test case. Next, Zhang et al.6 

developed an integrated stochastic mixed-integer linear programming model considering two sources of uncertainty: 

spot electricity prices and product demands. In addition, Zhang et al.13 simultaneously optimized long-term 

electricity procurement and production planning, while considering uncertainty in product demand. They proposed 

a multiscale multistage stochastic programming MILP model. Recently, Basán et al.7 proposed a novel, efficient and 

robust formulation, based on a new concept to model the transitions between alternative operating modes called the 

Process State Transition Network (PSTN). The model was also used to efficiently solve a real-world industrial case 

study, providing optimal solutions with modest computational effort when considering directed transitions and it 

only covered the external liquefier of an air separation plant. Another popular representation is the Resource Task 

Network (RTN), which has been used to provide a generic modeling framework for production scheduling under 

energy constraints. Castro et al.3,14,15 and Zhang et al.16 proposed scheduling models based on RTN formulations for 

demand side management. 

In order to take into account the dynamic characteristics and performance of the process, some authors have 

considered its control system at the production scheduling stage. For example, Cao et al.17-19 presented initial results 

on dynamic modeling and optimization of ASU operations using a large-scale, first principles, detailed dynamic 

process model. Patisson et al.20 proposed a novel scheduling approach based on scheduling-oriented low-order 

dynamic models identified from historical process operating data, leading to a dynamic optimization problem aimed 
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at maximizing profit over the scheduling time horizon. They applied the optimal scheduling method to air separation 

unit (ASU) producing nitrogen. More recently, Dias et al.21 extended this work by proposing a novel framework for 

the integration of scheduling and model predictive control (MPC). The framework consisted on identifying 

scheduling-relevant process variables, building low-order dynamic models to capture their evolution, and integrating 

scheduling and MPC. They achieved significant cost reductions with reasonable computational times when applying 

the methodology to an ASU. 

Apart from the air separation industry, demand side management has been applied to other energy intensive 

processes. Nolde and Morari22 presented a continuous time scheduling model that was successfully applied for the 

electrical load tracking scheduling of a steel plan. The formulation uses six different binary variables to capture the 

relation of a production task to its placement within a grid of uniform time intervals. An improvement was proposed 

by Hait and Artigues23 resulting in fewer constraints and binary variables. The same approach was adopted by Hadera 

et al.2, where they addressed the scheduling of the melt shop section of a stainless steel production plant using a two-

binary variable concept instead of six-binary variable concept, and extended the formulation to account for multiple 

purchase contracts. Recently, Hadera et al.24 presented an improvement concerning the modeling of the coupling 

between the scheduling problem and the computation of the energy bill. Castro et al.25 applied Nolde and Morari’s 

concept of the six cases of task-time interval relations to optimize the maintenance of a gas-fired power plant. Using 

Generalized Disjunctive Programming, the authors found a tighter formulation that considers the electricity 

consumption. Later, Zhao et al.26 applied and modified the GDP constraints in Castro et al.25 to a continuous time 

MILP model with variable number of time slots for the scheduling problem of steel production. A brief overview of 

enterprise-wide optimization, and challenges in multiscale temporal modeling and integration of different models 

for planning, scheduling and control is presented in Castro et al.27, where GDP is reviewed and illustrated with the 

STN and RTN representations. 

As one of the major challenges in the area of scheduling is to effectively solve large-scale models27, the main 

contribution of this paper is the following. We propose a new representation to handle operating states and transitions, 

and formulate the corresponding mixed-integer linear programming model whose LP relaxation is tight, making it 

suitable for industrial applications. Specifically, we consider air separation processes that involve multiple units and 
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multiple products. The framework is flexible and can be applied not only to air separation production, but also other 

continuous processes with similar production features. 

The remaining paper is organized as follows. In section 2, a brief description of air separation production and 

electricity pricing strategy are presented to help understand the scheduling problem. In Section 3, we present the 

problem statement of optimal scheduling with demand side management for air separation production. In section 4, 

the Advanced Process State Transition Network (APSTN) is proposed to represent the scheduling problem addressed 

in this paper. Applying the new framework previously presented in section 4, an MILP model is developed in section 

5 in which some constraints are reformulated as tighter formulations in section 6. In section 7, two alternative 

formulations of similar problems are presented and compared to our model in section 8. Finally, the conclusions of 

this paper are discussed in section 9.  

2. Background 

Air separation process 

The air is approximately composed of 78% nitrogen, 21% oxygen and 0.9% argon. The purified components of 

air are raw materials for many manufacturing processes. Oxygen is widely used among different industries, such as 

metal manufacturing mainly for steel production; chemical, pharmaceutical and petroleum use it in many oxidation 

processes; glass and ceramic industry; pulp and paper manufacturing; health care uses; etc. Moreover, gaseous 

nitrogen is commonly used as an inert replacement for air in several industries.  

The main task of air separation production is to separate its components by cryogenic distillation conducted in 

Air Separation Units (ASUs)20. As shown in Figure 1, an ASU generally consists of an air compressor system and a 

rectifying unit. The production process can be described as follows. The air at ambient temperature is compressed 

by a main air compressor. After removing air impurities in the front-end-purification systems, the compressed air is 

either sold directly or sent to rectifying units, where various liquid products and gas products are separated from the 

liquefied air according to their different boiling points.  

The production of air separation is a continuous process, where the production levels are achieved by properly 

adjusting the operation of the ASUs to meet various production constraints, mainly to satisfy the different product 

demands and inventory levels. This can be interpreted as the transition of operation states of the production system. 
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It is important to note that there is a correlation of the production level between the different liquid products during 

the production. 

 

Figure 1. Typical Large ASU arrangement (https://www.engineering-airliquide.com/large-air-separation-unit) 

Electricity market 

The available amount of electrical energy and the electricity price are defined by purchasing contracts, including: 

(i) long-term contract (base contract or base load) with constant price and constant amount of electricity delivered 

over time; (ii) short-term contract (Time-of-Use or TOU) with two price levels (on-and off-peak); (ii) spot market 

(day-ahead) where prices vary hourly, assumed to be known 24 h ahead; and (iv) onsite generation with constant 

price with additional start-up costs. 

In this paper, we assume that the electricity is purchased from the day-ahead market, which lies inside the 

category of spot market. In this market, power produced by all generators is pooled on its way to the consumers 

creating a desirable economy of scale. The auction-based trading is managed by the independent system operator 

(ISO). First, power generation companies submit their bids, and then consumers submit their offers. The market is 

cleared at the price where the supply and demand curves intersect. All generators with bid prices below or at the 
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clearing price have to provide the amount of power corresponding to their accepted bids, and all consumers with 

offer prices above or at the clearing price are allowed to draw the corresponding amount of energy from the system1. 

Different markets are cleared at different frequencies. For example, the day-ahead market is cleared once every day. 

Therefore, the price follows regional fluctuations of electricity availability varying on an hourly basis. The exact 

prices of the day-ahead contract depend on the market the plant enters and contractual commitments with the local 

operator.  

3. Problem statement 

In this paper, we consider the production of an air separation plant, which produces various liquid products including 

liquid nitrogen (LIN), liquid oxygen (LOX) and liquid argon (LAR), as well as gaseous products, including high-

pressure gaseous oxygen (HPGOX) and compressed air (CA). The production is performed at parallel heterogeneous 

ASUs. The site has operational flexibility. Production is modulated by adjusting the operating state of the units to meet 

customer demand at the lowest cost. Gaseous products are delivered directly to customers through pipelines, while liquid 

products can be stored in tanks at the site. The electricity is assumed to be purchased from the day-ahead market. This 

market is cleared the day before the energy is consumed, so prices are known one day in advance. It is assumed that 

there is an electricity price forecast available for the remaining days of the week (D+2 to D+7).  

In general, the operating states are characterized by the following features:  

1) Some specific operating states have corresponding minimum operating time before transitioning to another state, 

imposed by operability and equipment requirements;  

2) There are pre-defined directions for several state transitions. In other words, the transitions can only occur from 

the current state to a set of specified states;  

3) There are start-up costs of some specific state transitions. As already mentioned, the large-scale equipment of air 

separation production is mainly driven by electricity. When turning on or shutting down equipment, there are significant 

costs that are involved. Normally, frequent on-off transitions should be avoided. However, the optimal schedule of 

operating states may be influenced by the fluctuation of electricity prices. The start-up cost is therefore considered in 

the objective of the scheduling problem. 
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The goal of the scheduling problem is to select the operating point for each of the ASUs to minimize the total 

production costs that include electricity consumption, transition between operating states and backup of products, while 

satisfying the different product demands. The following information is assumed to be given: 

• The length  of the scheduling time horizon 

• The set of ASUs with different configurations 

• The set of products to be produced, including liquid products {LOX, LIN, LAR} and gaseous products 

{HPGOX, CA} 

• A set of operating states of each ASU and the parameters that defined the operation state  

• The initial inventory of liquid products, feasible inventory levels during production, and final inventory levels 

by the end of the production horizon 

• The demand of products on an hourly basis 

• The forecast of electricity prices within the scheduling time horizon 

• The fixed cost of each allowed state transition 

In order to optimize the production of air separation, the following decisions are made for each time period: 

• The operating state for each ASU  

• The load of each plant (i.e. the air flow through the main air compressors) 

• The production level of each product  

• The transition of operating states 

4. New Representation: Advanced Process State Transition Network  

 In order to address the scheduling problem, the continuous operating region of the air separation process is 

discretized into several operating states according to the production tasks. Generally, the tasks to be scheduled in a 

sequential environment can be represented by either precedence based or time-grid-based models11. Known for being 

concise and easy to implement, the precedence based representation is widely used, especially when accounting for 

setups between tasks. Time-grid-based representations tend to be tighter and computationally superior than the 

precedence based representation, despite generating larger models that are less intuitive11. Especially for air 

separation process, a new framework, namely process state transition network (PSTN), was recently proposed by 
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Basán et al.7 to address the scheduling of nitrogen production in an external liquefier, whose basis is a time-grid-

based representation. 

 
(a) 

(b) 
 

(c) 

 
(d) 

Figure 2. Description of the evolution of the PSTN (a) Operation described by three states with minimum 

operating time; (b) PSTN representation, and (c) modified PSTN representation where the sub-indices i, n-1 and n 

stand for initial, intermediate and final sub-states, respectively. (d) APSTN representation, where sub-indices ti and 

a stand for transition indicator and actual. 

The basic idea of PSTN is to disaggregate the states that have minimum operating time into three sub-states: 

initial sub-state, intermediate sub-state and final sub-state. An illustrative example can be found in Fig 2. With the 

disaggregated sub-states, the whole transition network (Fig. 2(a)) is represented as a directed graph, as can be seen 

in Fig. 2(b). This framework for representing the transitions is especially efficient when many of the transitions are 

restricted, and there is a limited number of states with minimum operating time. 

In this paper, we propose an extension of the PSTN, namely the Advanced PSTN (APSTN). We first notice that 

the intermediate sub-state of the PSTN can be eliminated by considering that the plant has to operate one hour in the 
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initial state and the minimum operating time minus one hour in the final state as shown in Fig. 2 (c). This first 

modification results in a 30% reduction of the number of binary variables. 

Based on the concept of the PSTN, we now disaggregate the states with minimum operating time into two items: 

transition indicator sub-states and actual sub-states. The objective of the transition indicator sub-state is merely to 

point out if there is a transition between the different states, in order to account for the minimum operating time once 

the transition is detected. With this objective in mind, we only relate the state transitions constraints (details in 

Section 5) to this indicator. As a result, the number of constraints is significantly reduced. On the other hand, the 

actual sub-states are involved in all model constraints: the state transition constraints and the production constraints. 

The actual sub-states are linked to each other as shown in Fig. 2 (d), as the transition indicator sub-state is considered 

as a “dummy” state that only registers transitions.  

In summary, we use the concept of state disaggregation introduced in the PSTN to account for the minimum 

operating time without introducing a new index for the states in the binary variable. Instead of considering a 

sequential disaggregation (initial, intermediate and final sub-states), we consider a parallel disaggregation (transition 

indicator and actual sub-states).  

To illustrate the different formulations, we consider the transition from the shutdown state OFF to a state S1, 

with minimum operating time of 5 hours, and then the transition from state S1 to state OFF. As can be seen in Figure 

3, the PSTN consists of a three sub-state partition: the initial sub-state of S1 at t=3h, the intermediate sub-state of S1 

at t=4h and the final sub-states of S1 from t=5h to t=7h, where all model constraints stand for every sub-state. On 

the other hand, there are only two sub-states in the modified PSTN: initial sub-state at t=3h and final sub-states from 

t=4h to t=7h. Finally, in the APSTN two sub-states can also be distinguished: the transition indicator at time t=3h, 

where the state transition takes place, and the actual sub-state accounting from t=3h to t=7h. In this representation, 

the transition indicator sub-state is regarded as “dummy sub-state” because its purpose is only to indicate if there is 

any transition. Therefore, it is only considered in the state transitions constraints, whereas the actual sub-state is 

considered in both state transition and production constraints.  

Therefore, the two major differences between the PSTN and APSTN representations can be summarized as 

follows: (i) The elimination of the intermediate sub-state, resulting in a reduction of one third of the number of binary 
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variables; and (ii) the reduction of the number of constraints in two ways. First, the transition indicator sub-states 

are not counted in the production related constraints, such as constraints (1)-(18) described in Section 5; second, 

since the intermediate operating state of PSTN is eliminated, the constraints that are related to intermediates sub-

state are consequently eliminated in the APSTN model, which also yields reductions in the number of constraints.  

 

Figure 3. Different state partition for the PSTN, modified PSTN and APTSN formulations. Subscripts i, n-1, n, 

ti, and a stand for initial, intermediate, final, transition indicator, and actual, respectively. 

5. Mathematical Formulation 

Nomenclature Section 

Indices 

c Unit 

s, s’, ss, ss’ Operation state 

i Liquid product 

t Time interval 

Sets 

C The set of units C={c1,c2} 

𝑆𝑆𝑐𝑐 The set of real production states for unit c, 𝑆𝑆𝑐𝑐 = 𝑆𝑆𝑐𝑐𝑎𝑎 ∪ 𝑁𝑁𝑆𝑆𝑐𝑐 

𝑆𝑆𝑐𝑐𝑎𝑎  The set of actual sub-states for unit c 

𝑆𝑆𝑐𝑐,𝑠𝑠
𝑖𝑖  The set of transition indicator sub-states corresponding to unit c and actual sub-state s 

𝐹𝐹𝑆𝑆𝑐𝑐,𝑠𝑠 The set of states from which are forbidden to transit to state s of unit c 

𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠 The set of states from which are allowed to transit to state s of unit c 



12 

 

𝑁𝑁𝑆𝑆𝑐𝑐 The set of states not having minimum operating time 

I The set of liquid products I= {LOX, LIN, LAR} 

T The set of time periods in the scheduling time horizon T={1, 2,…,TL} 

Parameters 

𝛼𝛼1𝑐𝑐,𝑠𝑠,𝛽𝛽1𝑐𝑐,𝑠𝑠 Correlation parameters for compressed air, regarding to state s of unit c 

𝛼𝛼2𝑐𝑐,𝑠𝑠,𝛽𝛽2𝑐𝑐,𝑠𝑠 Correlation parameters for turbine, regarding to state s of unit c 

𝛼𝛼3𝑐𝑐,𝑠𝑠,𝛽𝛽3𝑐𝑐,𝑠𝑠, 𝛾𝛾𝑐𝑐,𝑠𝑠 Correlation parameters of electricity consumption and air inlet to unit, air inlet to turbine and 
constant consumption 

𝑄𝑄𝐴𝐴𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚,𝑄𝑄𝐴𝐴𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 Minimum and maximum amount of air inlet to unit, regarding to state s of unit c 

𝑄𝑄𝐶𝐶𝐶𝐶𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚,𝑄𝑄𝐶𝐶𝐶𝐶𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 Minimum and maximum amount of compressed air to customers, regarding to state s of unit c 

𝑄𝑄𝑇𝑇𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚,𝑄𝑄𝑇𝑇𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 Minimum and maximum amount of air inlet to turbine, regarding to state s of unit c 

𝑄𝑄𝐿𝐿𝑐𝑐,𝑠𝑠,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚,𝑄𝑄𝐿𝐿𝑐𝑐,𝑠𝑠,𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 Minimum and maximum production level of liquid product i, regarding to state s of unit c 

𝑄𝑄𝐺𝐺𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑄𝑄𝐺𝐺𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚  Minimum and maximum production level of HPGOX, regarding to state s of unit c 

𝐷𝐷𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴  The demand of compressed air at time t 

𝐷𝐷𝑡𝑡𝐺𝐺  The demand of HPGOX at time t 

𝐷𝐷𝑖𝑖,𝑡𝑡𝐿𝐿  The demand of liquid i at time t 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐼𝐼𝐼𝐼𝑣𝑣𝑖𝑖  Initial inventory of liquid product i 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  The minimum and maximum amount of inventory of liquid product i 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  The minimum and maximum amount of final inventory of liquid product i 

𝑃𝑃𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚,𝑃𝑃𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 The minimum and maximum amount of available electricity, regarding to state s of unit c 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝐸𝐸𝑃𝑃𝑡𝑡 The electricity price of time t 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑄𝑄𝑄𝑄𝑄𝑄 The cost of backup oxygen 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠′ Transition cost from state s to state s’ of unit c 

𝑚𝑚𝑠𝑠𝑠𝑠 The minimum consecutive operating time of state s 

𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄,𝑀𝑀𝑐𝑐,𝑠𝑠

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄  Sufficient large number for air inflow related constraints (Eq. (1), Eq.(2)), regarding to c and s 

𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄𝑄𝑄  Sufficient large number for compressed ????related constraint Eq. (3) 

𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄  Sufficient large number for air to turbine related constraint Eq.(5)  

𝑀𝑀𝑐𝑐,𝑠𝑠
𝐿𝐿𝐿𝐿𝐿𝐿_𝑈𝑈𝑈𝑈, 𝑀𝑀𝑐𝑐,𝑠𝑠

𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿 Upper and lower bound for LOX correlation 

𝑀𝑀𝑐𝑐,𝑠𝑠
𝐿𝐿𝐿𝐿𝐿𝐿_𝑈𝑈𝑈𝑈,𝑀𝑀𝑐𝑐,𝑠𝑠

𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿  Upper and lower bound for LAR correlation 

𝑀𝑀𝑐𝑐,𝑖𝑖
𝑄𝑄𝑄𝑄  Sufficient large number of liquid production constraint Eq.(8) 

𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄  Sufficient large number of HPGOX production constraint Eq. (9) 

𝑀𝑀𝑐𝑐
𝑃𝑃  Sufficient large number of power consumption constraint Eq.(18) 

Binary variables 
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𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 Equals to 1 if unit c is operated at s state during time t 

Continuous variables 

𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 Inlet flowrate of Air to unit c during time t 

𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡 Inlet flowrate of Air to turbine from unit c 

𝑄𝑄𝐿𝐿𝑐𝑐,𝑖𝑖,𝑡𝑡 Liquid component i production in unit c during time t 

𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 High pressure gaseous oxygen production in unit c during time t 

𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 Compressed air production in column c during time t to costumers 

𝑄𝑄𝑄𝑄𝐾𝐾𝑡𝑡 Backup oxygen during time t 

𝑃𝑃𝑐𝑐,𝑡𝑡 Total power consumption by column c during time t 

𝑇𝑇𝑇𝑇 Total production costs 

 

Using the APSTN representation as the basis, we formulate the MILP model for the scheduling problem 

addressed in this paper. The formulation is based on discrete time representation, where the time horizon T is divided 

into time intervals t of equal length, over which the electricity pricing is given. The continuous variables in the model 

are restricted to be positive. The notation of indices, sets, parameters and variables can be found in the Nomenclature 

section. The mathematical formulation is presented below.  

5.1 Capacity constraints  

 The capacity constraints restrict the air flow in the ASU. The relationship of air inflow to unit c at time t, 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡, 

and the compressed air to costumers, 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡, that is produced in unit c during time t is represented by constraint (1), 

where C is the set of units, 𝑆𝑆𝑐𝑐 is the set of operating states that are related to unit c, and 𝛽𝛽1𝑐𝑐,𝑠𝑠 is the fixed volume of 

air that needs to be delivered to the unit c when c is operating in state s. 

 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ≤ 𝛼𝛼1𝑐𝑐,𝑠𝑠 ⋅ 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 + 𝛽𝛽1𝑐𝑐,𝑠𝑠 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 + 𝑀𝑀𝑐𝑐,𝑠𝑠
𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (1) 

The amount of the air inflow is restricted by the unit capacity, described by constraint (2). The maximum and 

minimum flow rate parameters in the model, such as 𝑄𝑄𝐴𝐴𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑄𝑄𝐴𝐴𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 in constraint (2), correspond to the unit c 

and state s. When the unit c is operated with state s at time t, e.g. 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 = 1, then the bounding constraint is activated, 

where 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡  varies between the minimum and maximum flow-rate; otherwise, the constraint is relaxed. It is 

important to note that the values of the parameter M in this paper are selected with respect to the bounding values of 
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the variables in the constraints. Therefore, we use different values of parameter M in different constraints, in order 

to obtain a better LP relaxation of the model. Besides, other representation of bounding constraints has been tried, 

e.g. generalized disjunctive programming and the hull reformulation. However, there is no obvious improvement of 

the model performance in this case. 

 Likewise, the maximum and minimum amount of compressed air to customer is represented in constraint (3).  

𝑄𝑄𝐴𝐴𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ≤ 𝑄𝑄𝐴𝐴𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (2) 

𝑄𝑄𝐶𝐶𝐶𝐶𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ≤ 𝑄𝑄𝐶𝐶𝐶𝐶𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄𝑄𝑄 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (3) 

As shown in Fig.4, there is a turbine in unit 2 to increase the liquid production out of distillation column. 

Regarding the turbine, the correlation of the total air inflow to unit 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡  and the air inflow to turbine 𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡  is 

represented by constraint (4). Constraint (5) represents the upper and lower bounds of 𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡. 

𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡 ≤ 𝛼𝛼2𝑐𝑐,𝑠𝑠 ⋅ 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 + 𝛽𝛽2𝑐𝑐,𝑠𝑠 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ,∀𝑐𝑐 = 𝑐𝑐2, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (4) 

𝑄𝑄𝑇𝑇𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡 ≤ 𝑄𝑄𝑇𝑇𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 = 𝑐𝑐2, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (5) 

5.2 Production level constraints  

Due to confidentiality reasons, the explicit formulations of part of the models are not given below but only the 

general forms of the constraints are shown. The correlation of different liquid products during the production is 

formulated with inequalities. As represented by constraints (6), the production amount of LOX is subject to an affine 

function of the operating state and associated air inflow to unit, air inflow to turbine (if there is one) and production 

of LIN and HPGOX. Similarly, the affine inequalities (7) describe the correlations associated with the production of 

LAR. 

𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡 ≤ 𝑓𝑓�𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡,𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡� + 𝑀𝑀𝑐𝑐,𝑠𝑠
𝐿𝐿𝐿𝐿𝐿𝐿_𝑈𝑈𝑈𝑈 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (6a) 

𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡 ≥ 𝑓𝑓�𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡,𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡� − 𝑀𝑀𝑐𝑐,𝑠𝑠
𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (6b) 

𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡 ≤ 𝑔𝑔�𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡 ,𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡� + 𝑀𝑀𝑐𝑐,𝑠𝑠
𝐿𝐿𝐿𝐿𝐿𝐿_𝑈𝑈𝑈𝑈 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇  (7a) 

𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡 ≥ 𝑔𝑔�𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡 ,𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡� − 𝑀𝑀𝑐𝑐,𝑠𝑠
𝐿𝐿𝐿𝐿𝐿𝐿_𝐿𝐿𝐿𝐿 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇  (7b) 

Following are the boundary constraints for various products. The production level of each product is restricted 

to vary within a feasible range given by constraints (8)-(9).  
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𝑄𝑄𝐿𝐿𝑐𝑐,𝑠𝑠,𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑄𝑄𝐿𝐿𝑐𝑐,𝑖𝑖,𝑡𝑡 ≤ 𝑄𝑄𝐿𝐿𝑐𝑐,𝑠𝑠,𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐,𝑖𝑖
𝑄𝑄𝑄𝑄 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇 (8) 

𝑄𝑄𝐺𝐺𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 ≤ 𝑄𝑄𝐺𝐺𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐
𝑄𝑄𝑄𝑄 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (9) 

The oxygen balance of the production in the units can be formulated as affine inequalities as represented with 

constraints (10). 

ℎ�𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 ,𝑄𝑄𝑇𝑇𝑐𝑐,𝑡𝑡,𝑄𝑄𝐿𝐿𝑐𝑐,𝐿𝐿𝐿𝐿𝐿𝐿,𝑡𝑡,𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 ,𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡� ≥ 0,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 (10) 

5.3 Demand constraints 

The production of gaseous products, which are CA and HPGOX, are subject to the demand requirements 

regarding to each time period, as represented by constraints (11) and (12), respectively. As for liquid products, since 

they are temporally stored in tanks and delivered to customers periodically, the related demand constraint is given 

through the inventory level constraints in the following section.  

�𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡
𝑐𝑐

≥ 𝐷𝐷𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (11) 

�𝑄𝑄𝐺𝐺𝑐𝑐,𝑡𝑡 + 𝑄𝑄𝑄𝑄𝐾𝐾𝑡𝑡
𝑐𝑐

≥ 𝐷𝐷𝑡𝑡𝐻𝐻𝐻𝐻𝐻𝐻 ,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (12) 

5.4 Inventory level constraints 

As mentioned before, the liquid products are delivered to customers periodically via trucks and trailers.  The 

surplus of a product is stored in tanks, which leads to the constraints for inventory levels. For each product, the 

amount of cumulative production over a time period plus the initial inventory and minus the demand, has to lie within 

the feasible range of inventory level, as represented by constraints (13)-(14). The inequality for the inventory 

constraint of LOX in (14) is distinguished from (13), for other liquid products, because LOX can be vaporized and 

used as backup to supply the gas customer. By the end of the time horizon, the inventory level is subject to final 

inventory requirements, as shown with (15)-(16). 

𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 + ��𝑄𝑄𝑄𝑄𝑐𝑐,𝑖𝑖,𝑡𝑡𝑡𝑡 −�𝐷𝐷𝑖𝑖,𝑡𝑡𝑡𝑡𝐿𝐿 ≤ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,∀𝑖𝑖 ∈ 𝐼𝐼\{𝐿𝐿𝐿𝐿𝐿𝐿}, 𝑡𝑡 ∈ 𝑇𝑇
𝑡𝑡𝑡𝑡≤𝑡𝑡𝑡𝑡𝑡𝑡≤𝑡𝑡𝑐𝑐∈𝐶𝐶

 (13) 

𝐼𝐼𝐼𝐼𝑣𝑣𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 +��𝑄𝑄𝐿𝐿𝑐𝑐,𝑖𝑖,𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡≤𝑡𝑡𝑐𝑐∈𝐶𝐶

−�𝐷𝐷𝑖𝑖,𝑡𝑡𝑡𝑡𝐿𝐿 −�𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡≤𝑡𝑡

≤ 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,∀𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿, 𝑡𝑡 ∈ 𝑇𝑇
𝑡𝑡𝑡𝑡≤𝑡𝑡

 (14) 
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 + ��𝑄𝑄𝑄𝑄𝑐𝑐,𝑖𝑖,𝑡𝑡 −�𝐷𝐷𝑖𝑖,𝑡𝑡𝐿𝐿 ≤ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,∀𝑖𝑖 ∈ 𝐼𝐼\{𝐿𝐿𝐿𝐿𝐿𝐿}
𝑡𝑡≤𝑇𝑇𝑡𝑡≤𝑇𝑇𝑐𝑐∈𝐶𝐶

 (15) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 + ��𝑄𝑄𝐿𝐿𝑐𝑐,𝑖𝑖,𝑡𝑡
𝑡𝑡≤𝑇𝑇𝑐𝑐∈𝐶𝐶

−�𝐷𝐷𝑖𝑖,𝑡𝑡𝐿𝐿 −�𝑄𝑄𝑄𝑄𝑄𝑄𝑡𝑡
𝑡𝑡≤𝑇𝑇

≤ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚,∀𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿
𝑡𝑡≤𝑇𝑇

 (16) 

5.5 Energy consumption calculation 

The electricity consumption 𝑃𝑃𝑐𝑐,𝑡𝑡 is the sum of the power consumed by the main air compressors according to 

the operating state of the equipment. The calculation of electricity consumption is represented by constraints (17). 

This is a general formulation, which can be extended to any operation states. With respect to the case study in this 

paper, the inequality (17) is reformulated as equation (29), detailed in section 6, by removing the big-M.  

𝑃𝑃𝑐𝑐,𝑡𝑡 ≥ 𝛼𝛼3𝑐𝑐,𝑠𝑠 ⋅ 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 + 𝛽𝛽3𝑐𝑐,𝑠𝑠 ⋅ 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 + 𝛾𝛾𝑐𝑐,𝑠𝑠 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 − 𝑀𝑀 ⋅ (1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡),∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇 (17) 

Constraint (18) restricts the availability of electricity consumption. 

𝑃𝑃𝑐𝑐,𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑃𝑃𝑐𝑐,𝑡𝑡 ≤ 𝑃𝑃𝑐𝑐,𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑀𝑀𝑐𝑐
𝑃𝑃 ⋅ �1 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡�,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑠𝑠, 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇 (18) 

5.6 State transitions constraints 

In this section, the constraints related to the APSTN framework are presented. Logic constraints are developed 

to condition the transitions between operating states. As mentioned before, the transition indicator sub-state and 

actual sub-state are two different states: Transition indicator sub-states are dummy states, which indicate when a 

transition occurs, while the actual sub-states are real production states. As stated in equation (19), for each time 

period t, the unit c can only be in one of the production states 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐, where 𝑆𝑆𝑐𝑐 = 𝑁𝑁𝑆𝑆𝑐𝑐 ∪ 𝑆𝑆𝑐𝑐𝑎𝑎 ,𝑁𝑁𝑆𝑆𝑐𝑐 is the set of states 

that are not disaggregated and 𝑆𝑆𝑐𝑐𝑎𝑎 is the set of actual sub-states corresponding to c. 

�𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 = 1  
𝑠𝑠∈𝑆𝑆𝑐𝑐

,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (19) 

The state pair (𝑠𝑠, 𝑠𝑠′), 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠′
𝑖𝑖 , 𝑠𝑠′ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎 in constraints (20)-(23) and (26) refers to the associated transition indicator 

and actual sub-states regarding unit c, where 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠′
𝑖𝑖  is the transition indicator sub-state linked to actual sub-state s’. If 

a transition indicator sub-state s is activated at time t, then the corresponding actual sub-state s’ will be activated in the 

same time period t, as shown by constraint (20). 
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𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠ʹ
𝑖𝑖 , 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎 (20) 

As stated by (21), if an actual sub-state s’ is active in time period t+1, then there are only two possibilities: either 

s’ is also active in previous time period t, or there is a transition occurring from other state to state s’ in time t+1. 

𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1 ≤ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡+1 + 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠ʹ
𝑖𝑖 , 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎 (21) 

Constraint (22) defines a state transition that occurs at time t, when t-1 and t are operated in different states. 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠′ is the 

set of states from which are allowed to transit to state s’ of unit c. 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≥ 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡 + � 𝑦𝑦𝑐𝑐,𝑠𝑠𝑠𝑠,𝑡𝑡−1 − 1
𝑠𝑠𝑠𝑠∈𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ

,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠ʹ
𝑖𝑖 , 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎 (22) 

Constraint (23) states that if the transition indicator sub-state is activated at time t, then it implies that the associated 

actual sub-state should not be operated at time t-1. 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 + 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡−1 ≤ 1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠ʹ
𝑖𝑖 , 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎 (23) 

Equation (24) represent that at most one state transition occurs in each time period t.  

�𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡

𝑠𝑠∈𝑆𝑆𝑐𝑐𝑖𝑖
≤ 1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇 (24) 

Since the APSTN has some predefined sequence of operation states, the state transition cannot occur between arbitrary 

two states. Constraint (25) guarantees that forbidden transitions will not occur. 𝐹𝐹𝑆𝑆𝑐𝑐,𝑠𝑠 is the set of states from which are 

forbidden to transit to state s of unit c. 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 + 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡−1 + 𝑦𝑦𝑐𝑐,𝑠𝑠𝑠𝑠,𝑡𝑡 + 𝑦𝑦𝑐𝑐,𝑠𝑠𝑠𝑠ʹ,𝑡𝑡−1 ≤ 1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠ʹ
𝑖𝑖 , 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎, 𝑠𝑠𝑠𝑠 ∈ 𝐹𝐹𝑆𝑆𝑐𝑐,𝑠𝑠, 𝑠𝑠𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠𝑠𝑠

𝑖𝑖  (25) 

Constraint (26) requires that when the actual state s’ is first operated, it has to be operated consecutively for 𝑚𝑚𝑠𝑠𝑠𝑠′ time 

intervals. 𝑚𝑚𝑠𝑠𝑠𝑠′ is the minimum operating time of state s’. 

𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡 ≥ � 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡−𝑘𝑘 ,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐,𝑠𝑠ʹ
𝑖𝑖 , 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐𝑎𝑎

𝑚𝑚𝑚𝑚𝑠𝑠ʹ−1

𝑘𝑘=0

 (26) 

In order to account for the transition costs, the logic proposition 𝑌𝑌𝑐𝑐,𝑠𝑠,𝑡𝑡 ∧ 𝑌𝑌𝑐𝑐,𝑠𝑠′,𝑡𝑡+1 ⇒ 𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 =

𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠′ represents the transition costs between operating states: if there is transition from state s to state s’ at time 

t+1, then the transition cost 𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠′ ; otherwise 𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 is equal to zero. This logic proposition is 
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formulated with constraint (27), which is reformulated to tighter formulations in section 6.2 with a set of constraints by 

introducing auxiliary continuous variables. 

𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 ≥ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ⋅ (𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 + 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1 − 1),∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇}, 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐 , 𝑠𝑠 ∈ 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ≠ 0 (27) 

It is important to note that the transition indicator sub-states are only involved in the state transition constraints. 

The reason for applying this modeling strategy is as follows. In the addressed scheduling problem, we consider a 

relatively detailed level of production, and therefore, the proposed model involves many production constraints. 

Considering that the sub-states are the replications of their aggregated states, which means the sub-states share the same 

production features, it is enough to choose either the transition indicator sub-state or the actual sub-state involved in the 

production related constraints. By applying this constraint reduction strategy, the model becomes more compact and the 

solution time can be reduced significantly, which will be demonstrated in section 8. 

5.7 Objective function 

The objective function given by (28) minimizes the total production costs TC, including power consumption cost, 

state transition cost and cost of oxygen backup. The transition cost is essentially the cost of additional electricity 

consumption during transition periods. 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝐸𝐸𝑃𝑃𝑡𝑡 is the electricity price forecast in time t. 

𝑇𝑇𝑇𝑇 = ��𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝐸𝐸𝑃𝑃𝑡𝑡 ⋅ (𝑃𝑃𝑐𝑐,𝑡𝑡 + 𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡)
𝑡𝑡∈𝑇𝑇

+ �𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑄𝑄𝑄𝑄𝑄𝑄 ⋅ 𝑄𝑄𝑄𝑄𝐾𝐾𝑡𝑡
𝑡𝑡∈𝑇𝑇𝑐𝑐∈𝐶𝐶

 (28) 

In summary, the original MILP model is given by minimizing objective in (28) subject to constraints (1) – (27). 

However, we can actually improve the formulations by reformulating some of the constraints to get a tighter LP 

relaxation of the model, as will be shown in the next section.  

6. Constraint reformulation  

6.1 Reformulation of power consumption constraint 

 As formulated with (17), except for a state dependent fixed cost 𝛾𝛾𝑐𝑐,𝑠𝑠 , the power consumption 𝑃𝑃𝑐𝑐,𝑡𝑡  is also 

dependent on the amount of air inflow  𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡  and compressed air 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 . Analyzing the cases of industrial 

application, an observation is that when the ASUs are set in shutdown states, the fixed cost 𝛾𝛾𝑐𝑐,𝑠𝑠, the air inflow 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 

and the compressed air 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 all equal to zero. Consequentially, the power consumption of shutdown states should 

be zero, which implies that 𝑃𝑃𝑐𝑐,𝑡𝑡 only need to account for the production states. By excluding the shutdown state, we 
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are able to reformulate (17) as constraint (29), where the big-M is removed. The tightness of LP relaxation of the 

formulations with big-M constraints greatly depends on the value of the big-M. In addition, the power consumption 

𝑃𝑃𝑐𝑐,𝑡𝑡  is an important term of the objective functions in this paper. Therefore, the performance of the model is 

significantly improved with constraint (29). 

𝑃𝑃𝑐𝑐,𝑡𝑡 ≥ 𝛼𝛼3𝑐𝑐,𝑠𝑠 ⋅ 𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 + 𝛽𝛽3𝑐𝑐,𝑠𝑠 ⋅ 𝑄𝑄𝑄𝑄𝐴𝐴𝑐𝑐,𝑡𝑡 + 𝛾𝛾𝑐𝑐,𝑠𝑠 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐\{𝑆𝑆ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢}, 𝑖𝑖 ∈ 𝐼𝐼, 𝑡𝑡 ∈ 𝑇𝑇 (29) 

6.2 Reformulation of transition cost constraint  

 Constraint (27) is the most common way to interpret the logical proposition 𝑌𝑌𝑐𝑐,𝑠𝑠,𝑡𝑡 ∧ 𝑌𝑌𝑐𝑐,𝑠𝑠′,𝑡𝑡+1 ⇒ 𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 =

𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠′. Here, we develop another formulation corresponding to the logical proposition accounting for the 

transition costs, which is represented with equation (30). 

𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇}, 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐 , 𝑠𝑠 ∈ 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ≠ 0 (30) 

The bi-linear terms of the binary variables in (30) are linearized by applying the exact linearization strategy, 

proposed by Glover28. Let 𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠′,𝑡𝑡+1 = 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ⋅ 𝑦𝑦𝑐𝑐,𝑠𝑠′,𝑡𝑡+1, where 𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠′,𝑡𝑡is a continuous variable with range of [0,1], then 

the equation in (30) can be rewritten as the following set of constraints: 

𝑇𝑇𝑅𝑅𝑐𝑐,𝑡𝑡+1 = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ⋅ 𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡+1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇}, 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐 , 𝑠𝑠 ∈ 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ≠ 0 (31) 

𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡+1 ≥ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 + 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1 − 1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇}, 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐 , 𝑠𝑠 ∈ 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ≠ 0 (32) 

𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡+1 ≤ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇}, 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐 , 𝑠𝑠 ∈ 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ≠ 0 (33) 

𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡+1 ≤ 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇}, 𝑠𝑠ʹ ∈ 𝑆𝑆𝑐𝑐 , 𝑠𝑠 ∈ 𝑇𝑇𝑂𝑂𝑐𝑐,𝑠𝑠ʹ, 𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑇𝑇𝑟𝑟𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ≠ 0 (34) 

Although 𝑥𝑥𝑐𝑐,𝑠𝑠,𝑠𝑠′,𝑡𝑡 is a continuous variable, restricted by (31)-(34), it is naturally enforced to be 1 when both 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 

and 𝑦𝑦𝑐𝑐,𝑠𝑠′,𝑡𝑡+1 equal to 1; otherwise it equals to zero. 

The final MILP model with a tighter LP relaxation is given by (1)-(16), (18)-(26), (28)-(29) and (31)-(34). 

 

 

7. Alternative formulations  

To demonstrate its efficiency, the proposed APSTN based model is compared with two alternative MILP models: 

the precedence-based (PB) model and the original PSTN model. The formulations of the alternative models, 
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consistent with the nomenclature from section 5, are presented as follows. It is noted that both alternative models 

share the same production related constraints, which are the ones in section 5.1 to section 5.5. The main difference 

of the formulations lies in the way to represent the transition of operating states, reflected in the constraints described 

from section 5.6. 

7.1 Precedence-based formulation 

 As for the PB formulation, we refer to the state transition and minimum operating time constraints ((12), (13) 

and (15)) of the model in Mitra et al.4, which addresses the scheduling problem of continuous processes including 

air separation production. The state transition constraints, (12) and (13) in Mitra et al. 4, are then reformulated as 

constraint (15) in Mitra et al. 12, where the two constraints are aggregated into one constraint, and number of 

constraints is consequently reduced. The formulations from Mitra et al.4 and the improved reformulation in Mitra et 

al.12 are shown to be efficient and are adopted in other works, such as Zhang et al.5-6. With the nomenclature in this 

paper, the constraints are rewritten as (35) and (36), which represent the transitions and minimum operating time, 

respectively. The objective function for the PB model is reformulated as (37), where 𝑧𝑧𝑐𝑐,𝑠𝑠,𝑠𝑠′,𝑡𝑡 is a binary variable, 

which equals to 1 if unit c is operated with state s during time t-1 and state s’ during time t; 𝑇𝑇𝑜𝑜𝑠𝑠 is the set of operating 

states that from which state s can be directly reached; and 𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠 is the set of operating states that state s can directly 

transfer to. It is important to note that the binary variable that accounts for transitions has associated one more index 

(s’), which increases the total number of binary variables of the model. 

� 𝑧𝑧𝑐𝑐,𝑠𝑠ʹ,𝑠𝑠,𝑡𝑡 − � 𝑧𝑧𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡
𝑠𝑠ʹ∈𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠

= 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 − 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡−1
𝑠𝑠ʹ∈𝑇𝑇𝑜𝑜𝑠𝑠

,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇\{1} (35) 

𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡 ≥ � 𝑧𝑧𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡−𝜃𝜃

𝑚𝑚𝑠𝑠𝑠𝑠ʹ−1

𝜃𝜃=0

,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇 
(36) 

𝑇𝑇𝑇𝑇 = ��𝑤𝑤𝑝𝑝𝑡𝑡 ⋅ 𝑃𝑃𝑐𝑐,𝑡𝑡
𝑡𝑡∈𝑇𝑇

+�� � �𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝐸𝐸𝑃𝑃𝑡𝑡 ⋅ 𝑝𝑝𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ ⋅ 𝑧𝑧𝑐𝑐,𝑠𝑠,𝑠𝑠ʹ,𝑡𝑡
𝑡𝑡∈𝑇𝑇𝑠𝑠ʹ∈𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠𝑠𝑠∈𝑆𝑆𝑐𝑐𝑐𝑐∈𝐶𝐶

+ �𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡 𝑄𝑄𝑄𝑄𝑄𝑄 ⋅ 𝑄𝑄𝑄𝑄𝐾𝐾𝑡𝑡
𝑡𝑡∈𝑇𝑇𝑐𝑐∈𝐶𝐶

 (37) 

 

7.2 PSTN formulation 
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 The formulations in Basán et al.7 describe the scheduling of an air separation process of one unit under the 

PSTN framework. Each of the operating state is decomposed into three sub-states: initial state 𝑠𝑠𝑖𝑖, intermediate state 

𝑠𝑠𝑛𝑛−1 and final state 𝑠𝑠𝑛𝑛, respectively. The transitions between operating states and the requirement of minimum 

operating time are represented by logic-based constraints. It has to be noted that we consider a transition network 

that comprises different operating states from the ones in Basán et al.7. Therefore, only the constraints that are 

applicable to our problem, which are (1)-(3), (6)-(8) and (9)-(10) in their paper are adopted here as the alternative 

formulations. With the notations in this paper, the PSTN formulation is rewritten as follows. Some new sets of sub-

states corresponding to unit c are included in the formulations, which are the set of initial sub-state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐, the set 

of intermediate sub-state 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐, and the set of final sub-state 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑐𝑐. 𝑆𝑆𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 is the set of all possible operating 

states for unit c. Constraint (38), which corresponds to equation (1) in Basán et al.7, represents only one operating 

state that is running for each unit c and time period t. (39)-(41) and (42) correspond to the constraints representing 

sequential transitions ((2)-(3), (6)-(8) in Basán et al.7) and critical transition ((9) in Basán et al.7) of operating state, 

respectively. (43) is the minimum operating time constraint. 

� 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 = 1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑡𝑡 ∈ 𝑇𝑇
𝑠𝑠∈𝑆𝑆𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎

 (38) 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 = 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐 , 𝑠𝑠ʹ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇} (39) 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆𝑐𝑐 , 𝑠𝑠ʹ ∈ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑆𝑆𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇} (40) 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡+1 ≤ � 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡
𝑠𝑠ʹ∈𝑇𝑇𝑜𝑜𝑠𝑠

,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐, 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇} (41) 

𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ � 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡+1
𝑠𝑠ʹ∈𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠

,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇\{𝑇𝑇𝑇𝑇} (42) 

(𝑚𝑚𝑠𝑠𝑠𝑠 − 2) ∙ 𝑦𝑦𝑐𝑐,𝑠𝑠,𝑡𝑡 ≤ � 𝑦𝑦𝑐𝑐,𝑠𝑠ʹ,𝑡𝑡ʹ,∀𝑐𝑐 ∈ 𝐶𝐶, 𝑠𝑠 ∈ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑐𝑐 , 𝑠𝑠ʹ ∈ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐 , 𝑡𝑡 ∈ 𝑇𝑇, 𝑡𝑡 ≤ 𝑇𝑇𝑇𝑇 −
𝑡𝑡+𝑚𝑚𝑠𝑠𝑠𝑠−2

𝑡𝑡ʹ=𝑡𝑡+1

(𝑚𝑚𝑠𝑠𝑠𝑠 − 2) 
(43) 

8. Case study and numerical experiments 

For the case study in this paper, we consider an air separation process. The site under study has two 

heterogeneous parallel cold boxes as shown in Fig. 4. Unit 1 has one MAC and BAC, and one cold box, while Unit 
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2 has an extra expansion turbine to reduce the temperature of reflux stream. In addition, only Unit 1 produces liquid 

argon (LAR). 

The associated information of each operating state, such as the correlation coefficient of production level between 

products, the maximum and minimum production levels, are obtained from historical production data, and is 

considered as a model input. The discretized operating states considered in the case study are described in Table 1. 

The information related to transition costs and minimum operating time of the different states is shown in Fig. 5.  

All instances were implemented in GAMS 24.9.2 and solved with CPLEX 12.7.1.0 with default options. The 

relative optimality tolerance is set to zero. Instances in section 8.1 to section 8.3 are all based on real production data. 

For the instances in the sensitivity analysis in section 8.4, all the data is based on real production data except the data 

of product demand, which is generated based on nominal value (real production data). The hardware consisted on a 

laptop with Intel i7-7500U (2.70GHz) with 16G RAM running with Windows 10 system, and one thread is used by 

CPLEX solver.  

 
Figure 4. Units’ configuration. MAC and BAC stand for main air compressor and booster air compressor, 

respectively. 
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Table 1. Production state description. 

Unit State Equipment 
Liquid Production Gaseous Production 

LIN LOX LAR HPGOX CA 
min max min max min max min max min max 

1 
Shut-down (S1) - - - - - - - - - - - 

No LIN Production (S2) MAC - - ✓ ✓ 0 ✓ ✓ ✓  ✓ 
LIN Production (S3) MAC ✓ ✓ ✓ ✓ 0 ✓ ✓ ✓  ✓ 

2 

Shut-down (S4) - -  - - - - - - - - 
Low Air production level 

(S5) MAC 0 ✓ ✓ ✓ - - ✓ ✓  ✓ 
High Air production 

level (S6) 
MAC 

Turbine 0 ✓ ✓ ✓ - - ✓ ✓  ✓ 

 

 

Figure 5. Operation states and allowed transitions within the different units. 

8.1 Nominal case  

The model is tested for a scheduling time horizon of one week on an hourly basis. The profile of the electricity 

price forecast is presented in Fig. 6. There is a continuous demand of the gaseous product HPGOX and compressed 

air, whereas the liquid production demands occur every 12 hours, as shown in Fig. 7. The operating states in this 

case are listed in Table 1. The minimum operating time of S1 to S6 is {48, 6, 6, 48, 0, 6} hours, respectively. The 

optimal production levels, inflow air and compressed air production level are shown in Fig. 8, Fig. 9, Fig. 10 and 

Fig. 11. We can see from the figures that the production levels are varying with the electricity price. For the periods 

with higher price, the air inflow is adjusted to a relative lower level to minimize the electricity costs. However, the 

production is also subject to demand and inventory requirements.  
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Figure 6. Electricity price forecast. 

 
Figure 7. Liquid and gaseous product demand. 

 
Figure 8. Liquid Production in unit 1. 
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Figure 9. Liquid Production in unit 2. 

 

 
Figure 10. Air Flowrate to columns. 

 
Figure 11. Compressed Air production level  
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8.2 Model performance with variable number of disaggregated states 

First, we analyze the influence of the number of states with minimum operating time on the computational 

performance on the PB, PSTN and APSTN models considering two different instances. Instance 1# consists of three 

states with minimum operating time, whereas instance #2 consists of five states with minimum operating time (see 

Table 2). For example, the minimum operating time of state S1 and S2 within the two instances are 0 hour and 6 

hours, respectively. The time horizon for both instances is 1 week with one-hour length time intervals.  

As it can be seen in Table 2, for Instance #1, all the three models are able to obtain the optimal solutions in short 

times, where APSTN requires the shortest time. Regarding the LP relaxation, the PB model is slightly tighter than 

the APSTN model and much tighter than the PSTN model. However, the number of binary variables of the APSTN 

model is 44% less than the PB model. While for Instance #2 where 5 out of 6 operation states have minimum 

operating time, the PSTN model cannot obtain the optimal solution within one hour of computational time. The 

reason for why PSTN is not that efficient with the transition network in this paper can be explained as follows. 

Compared to the transition network in this paper, the one in which the PSTN model performs efficiently in Basán 

et al.7, has the feature that the sequence of the state transitions is relatively constrained. Therefore, for the PSTN 

model, the decision space is reduced compared to the one in this paper. Moreover, the transition network in this 

paper accounts for more states with minimum operating time that need to be disaggregated, which significantly 

increases the number of binary variables and constraints, and consequently increases the difficulty of solving the 

model. The PB and APSTN models obtain the optimal solution in rather short solution times. It is important to note 

that the APSTN obtains the optimal solution at the root node for both Instance #1 and #2, and also PSTN obtains 

optimal solution for Instance #1 at the root node. This can be explained by the pre-solve processing performed by 

CPLEX, where cutting planes are added at the root before the branching, regarding to the underlying logic 

constraints of the APSTN model, and PSTN as well.  
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Table 2. Computational results of instances with variable minimum operating time. 

Formulation Instance 

Minimum operating time for states 
(hour) Model size 

Cost 
LP 

relaxation 
gap 

# of 
Nodes 

Optimality 
Gap (%) CPUs  

S1 S2 S3 S4 S5 S6 # bin. 
vars. 

# cont. 
vars. # constraints 

PB 
Precedence 
based  

#1 48 0 0 48 0 6 2,684 5,546 21,004 31,089,230 10.7% 480 - 6.19 

#2 48 6 6 48 0 6 2,684 5,546 21,676 31,089,230 10.7% 2,013 - 8.52 

PSTN 

#1 48 0 0 48 0 6 2,014 6,548 41,366 31,089,230 23.5% 0 - 2.20 

#2 48 6 6 48 0 6 2,686 7,220 56,802 31,089,230 - 105,893 2.8% 3,600 

APSTN 

#1 48 0 0 48 0 6 1,507 6,044 26,686 31,089,230 11.7% 0 - 1.88 

#2 48 6 6 48 0 6 1,841 6,380 28,360 31,089,230 11.7% 0 - 2.94 

LP relaxation gap: (MIP – LP relaxation)/MIP. Optimality gap: (Upper Bound - Lower Bound)/Upper Bound. 

8.3 Model performance regarding to variable length of time interval  

In order to analyze the efficiency of the models, we also test the models on instances with different combination 

of scheduling time horizons and sizes of time intervals, which are instances #3 to #6 in Table 3. For these instances, 

the number of disaggregated operation states is set to be the same as the Instance #2 in Section 8.2. For instance #4, 

who has half hour time intervals, the first half and the second half of each hour has the same electricity price, and 

the price is equal to the hourly price in instance #5 for the same hour. While for instance #3, another setting of 

electricity prices is used. We introduce some variation between the quarterly electricity prices in one hour to verify 

that the production levels are adjusted accordingly. The computational results are listed in Table 3.  

In this section, only PB and APSTN models are analyzed. As shown in Table 3, the LP relaxation of the PB 

model is also slightly tighter than the APSTN model, while the number of binary variables is reduced by more than 

30%. For every instance, the APSTN model can obtain the optimal solution with shorter solution time than the PB 

model. Especially for Instance #6, where a two-week time horizon and one hour of time interval length is considered, 

the solution time is significantly reduced. It is noted that for Instances #4 to #6, the optimal solutions are obtained 

at the root node. From instance #4 to instance #5, we can see that the objective function is improved as the time 

grids get smaller. 
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Table 3. Computational results with various sizes of time intervals. 

Formulation Instance Time 
horizon 

Time 
interval 

Model size 

Cost 
LP 

relaxation 
gap 

# of 
Nodes CPUs 

# bin. vars. # cont. 
vars. # constraints 

PB 
Precedence-

based 

#3 1 week 0.25h 10,748 22,178 86,692 32,089,462 10.7% 612 151.41 

#4 1 week 0.5h 5,372 11,090 43,348 31,089,044 10.8% 522 17.16 

#5 1week 1h 2,684 5,546 21,676 31,089,230 10.7% 2013 8.52 

#6 2week 1h 5,372 11,090 43,348 62,281,349 12.1% 5211 195.06 

APSTN 

#3 1 week 0.25h 7,385 25,532 113,536 32,089,462 11.7% 570 146.05 

#4 1 week 0.5h 3,689 12,764 56,752 31,089,044 11.7% 0 8.50 

#5 1week 1h 1,841 6,380 28,360 31,089,230 11.7% 0 2.94 

#6 2week 1h 3,689 12,764 56,752 62,281,349 13.0% 0 18.78 

 

8.4 Sensitivity Analysis  

Considering Instance #6, with a two-week time horizon and time interval of one hour, we perform optimizations 

of production scheduling with the PB and APSTN formulations for different values of product demands. We 

generate 1000 scenarios of demand normally distributed around the nominal demand profile with a standard 

deviation of 10%.  

Not all the scenarios can be solved to optimality within 600 s for both formulations. 75.4% and 70.6% of the 

scenarios are solved to optimality in the case of the APSTN and PB, respectively. Considering only these scenarios, 

it is important to note that 29% of them are solved at the root node for the APSTN, whereas 15% in the case of the 

PB formulation. Finally, the average CPU for the APSTN is 52 s, shorter than the PB, which is 143 s. 

9. Conclusion 

In this paper, a scheduling problem of air separation production has been addressed. The goal of the scheduling 

problem is to minimize the total production cost under variable day ahead electricity price by properly adjusting the 

operating state of the units and consequentially adjusting the production levels. To represent the transition network 
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of air separation process, the APSTN framework is developed which is efficient for the network that has many 

potential transitions. The APSTN is a generalized framework that can be applied to other industrial process with 

state transitions. Applying APSTN, a tight discrete time MILP model is developed to address the scheduling problem. 

The model has been tested on different instances with industrial data and demonstrated to be efficient. The APSTN 

framework and the tight MILP model provide a solid basis for the potential research on energy intensive processes 

under uncertainty, e.g. flexibility analysis on the scheduling of air separation process.  
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