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Abstract 

The paper introduces a new iterative sequential method for optimal heat exchanger 

network synthesis, that relies on an assignment problem. This method considers the 

splitting of hot and cold process streams, and uses a decomposition that fixes the 

split fractions for process streams at each subproblem. We apply this method to 

several heat integration problems to demonstrate its performance and efficiency. It 

is also compared with stage-wise superstructure optimization using mixed-integer 

nonlinear programming. 
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1. INTRODUCTION 

The last few decades have witnessed a number of new methods for solving 

the problem of optimal heat exchanger network (HEN) synthesis aimed at 

reducing heat consumption by heat recovery in the process streams (Klemeš and 

Kravanja, 2013). These methods can be subdivided into three groups: the 

thermodynamic approach, mathematical programming, and stochastic 

optimization. In the thermodynamic approach, a pinch-based calculation method 

proposed by Linnhoff and Hindmarsh (1983) has found wide application, as well 

as a method based on estimating the minimum entropy production (Tsirlin et al., 

2008). 
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The economic issues of the problem, however, are not accounted for in the 

pinch-based method. Mathematical programming (MP) methods convert the 

optimal heat exchanger network synthesis problem into a mixed-integer nonlinear 

programming (MINLP) problem (Biegler et al., 1997, Biegler, 2010, Zamora and 

Grossmann, 1998, Furman and Sahinidis, 2001, Yee and Grossmann, 1990), 

which is formulated from a superstructure containing many possible heat 

exchanger network designs. Due to the dimensionality of industrial HEN 

superstructures, this method becomes intractable for many realistic instances but 

can give better economic results than the thermodynamic approach. Additional 

disadvantages of MP include possibility of multiple local optima, a large number 

of optimization variables, and computational expense due to the combinatorial 

complexity of the HENS problem. These disadvantages are characteristic of 

simultaneous MP synthesis methods. It is possible to mitigate these disadvantages 

by using a sequential decomposition of the initial problem into subproblems, a 

technique adopted in this paper. Papoulias and Grossmann (1983) decompose this 

problem into three subproblems: minimizing external hot and cold utility 

consumption, minimizing the number of heat exchangers, and finding the 

minimum capital cost. These subproblems can be solved by using a transshipment 

model (Papoulias and Grossmann, 1983; Chen et al., 2015), or a transportation 

model (Cerda and Westerberg, 1983). The heuristic nature of this decomposition 

method, nevertheless, does not guarantee optimal heat exchanger networks 

(Biegler et al., 1997).  Recently Bagajewicz and co-workers (Chang et al., 2020a, 

2020b) have proposed global optimization approaches that rely on linear models 

for both minimal and non-minimal structures for heat exchanger networks. 

Stochastic methods, such as simulated annealing (Athier et al., 1997), 

particle swarm optimization (Ghiasvand et al., 2014), and genetic algorithms 

(Ravagnani et al., 2005), are also used for solving HEN synthesis problems. 

However, taking into account high dimensionality of the optimization problem, 
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these methods are very computationally expensive and do not guarantee optimal 

solutions. 

Ziyatdinov et al. (2016) considered a single stage HEN synthesis problem 

where each of the hot and cold process streams can exchange heat only once. The 

solutions in this case on reference examples were compared to the results of pinch 

analysis. It was shown that the single stage optimal heat integration does not allow 

using potential energy recovery at its full capacity due to the limitation imposed 

by the single heat exchange between the hot and cold process streams.  In the 

examples considered, a single-stage optimal heat integration provides energy 

recovery from 50% to 70% relative to the limiting values obtained as a result of 

pinch analysis. Ziyatdinov et al. (2018) showed that energy recovery can be 

improved using a multistage direct or counterflow heat exchange between the hot 

and cold process streams. This paper extends the multiple stage optimal HEN 

synthesis approach by splitting the hot and cold process streams, which expands 

the solution search area. The paper also reports results on a significant number of 

examples. 

 

2. THEORETICAL BACKGROUND 

2.1. Problem Formulation 

Assume we are given a process system with Мh  “hot” streams iH , 

(i=1,…,Мh) and the Мc “cold” streams jС , (j=1,…,Мc), with their flowrates ,i jF F , 

initial temperatures in
iT , (i=1,…,Мh), in

jT , (j=1,…,Мc), and specific heat capacities 

at constant pressure ,i jc c , correspondingly. The heat exchanger network synthesis 

problem (Seider et al., 2009) consists of finding the structure of a heat exchanger 

network involving heat exchangers for the hot and cold streams, and if needed, 

coolers for the hot streams and heaters for the cold streams. Furthermore, the heat 

exchange areas Ahe, the areas for heaters Ahr and the areas of coolers Acr, must be 

determined together with the consumption of cooling and heating 
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utilities, cuF and huF  , respectively, to satisfy the outlet temperatures of the hot and 

cold streams,  
out

iT , (i=1,…,Мh), out
jT , (j=1,…,Мс),  

that in turn define the heat content iH∆  of the hot streams, and the heat content 

jH∆  of the cold streams. The goal is to synthesize the network that minimizes the 

sum of annualized capital and operating costs.  

The synthesis problem is a non-linear combinatorial optimization problem, 

which is hard to solve due to the presence of both continuous (heat loads in 

exchangers, consumption of utilities, areas, etc.) and discrete variables (presence or 

absence of potential heat exchangers as well as their interconnections). 

We consider the problem of optimal heat exchanger network synthesis that 

takes into account the possibility of splitting the process streams. At the inlet of the 

hot (cold) streams, we place flow splitters iD  and jD . They split the i th  hot stream 

iH  into iL  number of branches 
il

H  (i=1,…,Мh , 1,..., ,i il L= ) and the j th cold stream 

jС  into jL  number of  branches 
jlС  (j=1,…,Мc, 1,...,j jl L= ), correspondingly. 

Every hot and cold process stream of the system can be split into a different 

number of branches. For the jth cold stream, the largest number of splits can be 

defined by the number of hot streams with temperatures higher than the jth cold 

stream temperature by a value higher than the minimum permissible temperature 

difference. Similarly, for the ith hot stream, the largest number of branches can be 

defined by the number of cold streams with initial temperatures lower than the set 

value of the minimum permissible temperature difference. The flowrates ,
i jl lF F  of 

branches 
il

H  and 
jlС  will be equal to ,

i i j jl l l lF Fβ β , correspondingly, where ,
i jl lβ β  

are the branch fractions satisfying the conditions: 

1
1, 1,..., ,

i

i
i

L
h

l
l

i Mβ
=

= =∑ с

1
1, 1,..., .

j

j
j

L

l
l

j Mβ
=

= =∑  (1) 
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Clearly the branch temperatures
il

H and 
jlС ( 1,..., ,i il L= 1,...,j jl L= ) are equal 

to the inlet streams temperatures in
iT  and in

jT , correspondingly. After passing 

through the heat exchanger network, the streams obtained by splitting the i th hot 

and the jth cold streams are mixed in mixers iG  and jG correspondingly. Using the 

equation for the mixer process stream balance, we obtain 

 
1

,
i

i
i

L

i l
l

H H
=

∆ = ∆∑ out

1
,

i

i
i

L

i l
l

F F
=

=∑ h1,..., ,i M= 1,..., ,i il L=  (2) 

 
1

,
j

j
j

L

j l
l

H H
=

∆ = ∆∑ out

1
.

j

j
j

L

j l
l

F F
=

=∑ с1,..., ,j M= 1,..., .j jl L=  (3) 

Next, we enumerate the hot and cold branches obtained after splitting the 

inlet streams. The numbers h c
S S,M M  of the obtained hot and cold branches will be 

equal, correspondingly, to: 

 
h c

h c
S S

1 1
, .

M M

i j
i j

M L M L
= =

= =∑ ∑  (4) 

2.2. Splitting of Process Streams in a HEN Superstructure  

We reduce the optimal heat exchanger network synthesis problem to the 

optimization problem of a certain flowsheet superstructure. All of the possible heat 

exchanger network configurations are particular cases of a global flowsheet. We 

postulate a superstructure characterized by the following parameters: 1) for every 

combination of the elementary li
th hot and lj

th cold streams, a heat recovery 

exchanger can be installed; 2) for additional heating or cooling of the process 

streams, the HEN outlet allows for installing additional coolers and heaters (which 

may be eliminated in the course of the problem solution); 3) any hot and cold 

elementary streams can exchange heat (in a heat recovery exchanger) only once. 

The structure of the described global flowsheet is given in Fig.1.  
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Figure 1 Splitting of Process Streams in a HEN Superstructure  

A direct optimization of the global flowsheet may require significant 

computational effort and may lead to local minima. Therefore, we propose to solve 

the problem by decomposition. The method to solve the global flowsheet 

optimization problem is based on the principle of fixing the values of intermediate 

variables (Ostrovsky and Brusilovsky, 1977)). These variables are selected so as to 

eliminate the interactions between certain subsystems in a complex system when 

the variables are fixed. Thus, in case of known values for the fixed variables, the 

structures of certain subsystems in a complex system can be optimized 

independently. 

https://www.researchgate.net/profile/Gennadi_Ostrovsky
https://www.researchgate.net/scientific-contributions/2029376262_AM_Brusilovsky
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Based on the principle of fixing the values of variables, the following 

iteration procedure can be developed. Two steps are taken at each iteration. In the 

first step, the optimal structures for certain subsystems are determined for the given 

values of the fixed variables. Using the new values of the fixed variables, the 

optimal structures for all subsystems are determined, and the iteration procedure 

starts again. 

The proposed superstructure can be used in any HEN where process streams 

can be split. We define in,( ) out,( ),
i i

k k
l lT T  as the temperatures of the li

th hot elementary 

stream at the HEN inlet and outlet, in,( ) out,( ),
j j

k k
l lT T  are the temperatures of the lj

th cold 

elementary stream at the HEN inlet and outlet at the k th iteration. Clearly, 
in,( ) in
i

k
l iT T= , in,( ) in

j

k
l jT T=  for all values of k . We fix the process stream split fractions. 

At the k th iteration, their values will be equal to ( ) ( ),
i j

k k
l lβ β , 1,..., ( 1),i il L= − 1,..., ( 1)j jl L= − , 

obtained from the ( k -1)th iteration. At specified values of the fixed variables, we 

determine the optimal HEN structure with split process streams and multiple heat 

exchanger operating conditions. The optimal economic cost of heat exchange 

between the li
th hot and the lj

th cold process streams is estimated using the HEN 

synthesis method without splitting the process streams as demonstrated by 

Ostrovsky et al. (2015). The method is based on structural decomposition of the 

system tested at the known values of ,
j il lH H∆ ∆ .This method determines the optimal 

economic costs for the heat exchange in every pair of hot and cold process streams. 

The resulting matrix is used to find the optimal combination of coupled elementary 

process streams determining the structure and operation mode of the synthesized 

HEN. 

For every combination of the li
th hot and the lj

th cold process streams, we 

determine the optimal heat exchange unit structure and operating conditions of 

heat exchangers within this unit. We define a canonical form called the 

superstructure of HEN elementary units. An example of such a superstructure is 

shown in Figure 2. This superstructure is made up of the recovery heat 
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exchanger
ji llE , , where the li

th hot and the lj
th cold process streams can exchange 

their heat, the cooler 
il

K , installed at the li
th hot process stream at the recovery heat 

exchanger outlet, and the heater 
jlB , installed at the lj

th cold process stream at the 

heat exchanger outlet. Given the values of variables 
il

β  and 
jlβ  we determine the 

optimal structure of the HEN elementary units, and operating conditions of the 

units within, so as to minimize the total costs , ( , )
i j i jl l l lf β β . Using the defined 

superstructure, the problem is formalized as a nonlinear programming problem 

with equality constraints for the heat exchanger, cooler and heater mathematical 

models, and inequalities for the heat exchange feasibility. We chose the sum of 

capital and operating costs as the optimization criterion. The general problem 

definition for designing optimal HEN elementary units is given below in (5)-(13). 

jlC
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,i jl lЕ
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in

i

i

i
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∆
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j j jl l lH T F∆

out
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T

с
jlT

h
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T
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Figure 2 Superstructure of HEN Elementary Units 

he cr hr cu hu
,

opt he cr hr cu hu
, , ,, , , ,

min ( , , , , ),
i j i j i j i j i j

l l l l l li j i j i j

l l l l l l l l l lA A A F F
f f A A A F F=  (5) 

s.t.  he in in he he
, ,

( , , , , , , , ) 0,
i j i j i j i j i jl l l l l l l l l l

T T T T A F F Uϕ = (6) 

 
cr out cu,in cu,out cr cu cr( , , , , , , , ) 0,

i i i i i i i il l l l l l l l
T T T T A F F Uϕ =  (7) 
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hr out hu,in hu,out hr hu hr( , , , , , , , ) 0,

j j j j j j j jl l l l l l l l
T T T T A F F Uϕ =  (8) 

in in in in,
i j

i jl l
T T T T= = ,  (9) 

 h с1,..., , 1,..., ,i M j M= =  

1,..., ,i il L= 1,..., .j jl L=  

in out
min min, ,

i j i jl l l l
T T T T T T− ≥ ∆ − ≥ ∆   (10) 

, , min
outinhu,

min
outhu, TTTTTT

jljljljl ∆≥−∆≥−  (11) 

out cu,in cu,out
min min, .

i i i il l l l
T T T T T T− ≥ ∆ − ≥ ∆  (12) 

he cr hr
,

0, 0, 0.
i j i jl l l l

Q Q Q≥ ≥ ≥  (13) 

where ,i jl l
f is the objective function to be minimized for HEN elementary units; (6)-

(8) are the mathematical models of the heat exchanger, cooler, and heater, 

correspondingly; (9) are the conditions imposed on the temperatures of the HEN 

inlet streams (the temperatures of the HEN inlet streams are to be kept to the set 

values); (10)-(13) are the limitations to the process driving force; he cr hr
,

, ,
i j i jl l l l

A A A
 
are 

heat exchange surface areas of the recuperative heat exchanger, cooler and heater, 

correspondingly; he cr hr
,

, ,
i j i jl l l l

Q Q Q  are duties of the heat exchanger, cooler and heater, 

correspondingly; 
jlil

TT  , are  the heat exchanger outlet hot and cold temperatures; 

∆Tmin is the minimum allowed temperature difference.  

We next introduce a binary variable 
,i jl l

z , which is defined as follows: 

 

,

1,  elementary streams  and  exchange heat with each other, 

   or with external utilities;
0, otherwise.

i j

i j

l l

l l

H C

z




= 
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Therefore, the arrangement problem of the optimal heat exchange structure 

can be reduced to a linear integer programming problem. In an ideal case, for 
h c
S SM M= , the problem of determining the optimal structure is reduced to the 

following problem: 

 
h c

,

opt
, , ,

1 11 1

min , {0,1},
ji

i j i j i j
l li j i j

LLM M

l l l l l lz i jl l

f z z
= == =

∈∑∑∑∑  (14) 

s.t. 

 
h

,
1 1

1,
i

i j
i

LM

l l
i l

z
= =

=∑∑
c

,
1 1

1
j

i j
j

LM

l l
j l

z
= =

=∑∑ . (15) 

h1,..., ,i M= с1,..., ,j M=  

1,..., ,i il L= 1,..., .j jl L=  
This problem is the well-known assignment problem for which efficient 

solution methods are available (Kobayashi et al., 1971). 

Based on the above, we propose the following iterative method for the optimal heat 

exchanger network synthesis. At the first step of each iteration, the assignment 

problem is solved using the given branch coefficients ( )
i

k
lβ and ( )  

j

k
lβ  for each of the 

hot and cold process streams obtained at the previous iteration. During the second 

step, the flowsheet optimization problem, shown in equations (16)–(23), is solved 

for the flowsheet structure obtained in the first step. Here, the values of the branch 

coefficients for the hot and cold process streams can be adjusted, taking into 

account the equations (1) – (3) for the process stream balance of the mixer and 

splitter, where: 

 Z is the total set of coupled branches with their HEN elementary units belonging 

to the HEN structure at the current iteration; and Φ  is the total sum of the 

annualized capital costs in the heat recovery exchangers, together with the 

annualized capital and operating costs for the heaters and coolers. 

  (16) 
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s.t.     he in in he he
, ,

( , , , , , , , ) 0,
i j i j i j i j i jl l l l l l l l l l

T T T T A F F Uϕ = ( , ) ,i jl l Z∀ ∈  (17) 

cr out cu,in cu,out cr cu cr( , , , , , , , ) 0,
i i i i i i i il l l l l l l l

T T T T A F F Uϕ = ( , ) ,i jl l Z∀ ∈  (18) 

hr out hu,in hu,out hr hu hr( , , , , , , , ) 0,
j j j j j j j jl l l l l l l l

T T T T A F F Uϕ = ( , ) ,i jl l Z∀ ∈  (19)  

in in in in,
i j

i jl l
T T T T= = ,

 

 (20)
 

in out
min min, ,

i j i jl l l l
T T T T T T− ≥ ∆ − ≥ ∆  (21) 

hu,out hu,in out
min min, ,

j j j jl l l l
T T T T T T− ≥ ∆ − ≥ ∆  (22) 

out cu,in cu,out
min min, .

i i i il l l l
T T T T T T− ≥ ∆ − ≥ ∆  (23) 

he cr hr
,

0, 0, 0.
i j i jl l l l

Q Q Q≥ ≥ ≥  

h с1,..., , 1,..., ,i M j M= = 1,..., ,i il L= 1,..., .j jl L=  

The solution strategy can be accelerated with initial estimates for  and 
i jl lβ β , 

determined from the utility cost minimization problem using either the 

transshipment model by Papoulias and Grossmann (1983), or the transportation 

model by Cerda and Westerberg (1983). 

We describe the components of the formulated problems (5) – (13) and (16) 

– (23). The objective function (5) is determined as a function of the total 

annualized capital and operating costs for the cooler and heater, and the annualized 

capital costs for the recuperative heat exchanger: 

( ) ( )
( )

he hr

cr

he he he hr hr hr hr hr
1 2 1 2, ,

cr cr cr cr cr
1 2

ˆ

ˆ ,

ji j i j j

ii

ll l l l l

ll

f m m A m m A m Q

m m A m Q

γ γ

γ

   
= + + + + +   
   

 
+ + + 
 

   

 

 (24) 

where he he cr cr hr hr
1 2 1 2 1 2, , , , ,m m m m m m       are the price ratios for the corresponding heat 

exchanger, cooler, and heater, including the costs for the heat exchange equipment, 
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its assembling and installation; γhe,γcr,γhr are the cost exponent coefficients; and 
cr hrˆ ˆ,m m  are the unit costs for the hot or cold heat carrier consumption. 

The objective function (16) takes the form (25): 

( ) ( )

( )

he hr

cr

he he he hr hr hr hr hr
1 2 1 2,

cr cr cr cr cr
1 2

ˆ

ˆ ,

ji

ji j j
i j

ii

LL

ll l l
l l

ll

Ф m m A m m A m Q

m m A m Q

γ γ

γ

   
= + + + + +   

   

 
+ + + 
 

∑∑    

 

 (25) 

The optimization problem given by (5) – (13) and (16) – (23) can be 

simplified with the following assumptions: 

1) The outlet temperatures of all the utilities are specified. Therefore, the 

heat carrier consumption can be determined to maintain a fixed thermal capacity; 

2) There are no phase transitions in the process streams. 

The logarithmic mean temperature difference (LMTD) is used to calculate 

the areas of the heat exchangers, heaters and coolers. The following assumptions 

are introduced for the heat exchanger mathematical models: 

1) the heat exchangers operate in counter flow mode; 

2) the pressure drops across the exchangers are neglected;  

3) the overall heat transfer coefficient of the heat exchanger is assumed to be 

given as a constant; 

4) the average value of the specific heat capacity at constant pressure is used. 

Therefore, the heat exchange areas can be determined from the heat transfer 

equation: 
he
,he

he he,
,

,i j

i j
i j

l l

l l
l l LM

Q
A

U T
=

∆

hr
hr

hr hr ,j

j
j

l

l
l LM

Q
A

U T
=

∆

cr
cr

cr cr .i

i
i

l
l

l LM

Q
A

U T
=

∆
 (26) 

2.3. Algorithm for optimal HEN with splitting of process streams 

The algorithm for the optimal HEN with splitting of process streams is as 

follows: 

Step 1. Set the initial approximations for the branch coefficients 
(0) (0),
i jl lβ β , 1,..., ( 1),i il L= − 1,..., ( 1)j jl L= − . 
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1
(0) (0) h

1
1 , 1,..., ,

i

ii
i

L

lL
l

i Mβ β
−

=

= − =∑
1

(0) (0) с

1
1 , 1,..., .

j

jj
j

L

lL
l

j Mβ β
−

=

= − =∑
 

We set the iteration counter k=1. 

Step 2. Solve the h c
S SM M× nonlinear mathematical programming problems 

(5)-(13) for every HEN elementary unit. 

he,( )
,

( )
,

min ,
k i j

l li j

k
l lQ

f
 

where  
hr

cr

he,( ) hr,( )
,( ) he he hr hr hr hr,( )

1 2 1 2he he,( ) hr hr,( ),
,

cr,( )
cr cr cr c
1 2 cr cr,( )

ˆ

ˆ

he

i j j

ji j
i j j

i

i

i

k k
l l lk k

lk kl l
l l LM l LM

k
l

lk
l LM

Q Q
f m m m m m Q

U T U T

Q
m m m Q

U T

γ γ

γ

            = + + + + +      ∆ ∆         

 
+ + +  ∆ 

   

 

r,( )k
 
 
 
 

 (27) 

he
,

1 ,1 1i j

i j

l l

l l

U

α α

=
+

cr

cu

1 ,1 1i

i

l

l

U

α α

=
+

hr

hu

1 ,1 1j

j

l

l

U

α α

=
+

 (28) 

s.t.   hr,( ) ( ) he,( ) cr,( ) ( ) he,( )
, ,, ,

j j i j i i i j

k k k k k k
l l l l l l l lQ H Q Q H Q= ∆ − = ∆ −  (29) 

( ) ( 1) ( ) ( 1), ,
j j i i

k k k k
l l j l l iH H H Hβ β− −∆ = ∆ ∆ = ∆  (30) 

( ) ( 1) ,
i i

k k
l l iF Fβ −= ( ) ( 1) ,

j j

k k
l l jF Fβ −=   (31) 

he,( ) he,( )
, ,( ) in ( ) in

( ) ( ), ,i j i j

j j i i

j i

k k
l l l lk k

l l l lk k
l j l i

Q Q
T T T T

F c F c
= + = −  (32) 

in in in in, ,
j il j l iT T T T= =   (33) 

out out out out, ,
j il j l iT T T T= =   (34) 

,( ) ,( )
,( ) 1 2

,( )
1

,( )
2

,
ln

,
p k p k

p k
LM p k

p k

DT DTT
DT
D

p

T

+
∆ = ∈Ω∀ if ,( ) ,( )

1 2
p k p kDT DT≠ ; (35) 

he,( ) in ( ) he,( ) ( ) in
1 2,

i j i j

k k k k
l l l lDT T T DT T T= − = − , (36) 
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cr,( ) ( ) cu,out cr,( ) out cu,in
1 2, ,

i i

k k k
l lDT T T DT T T= − = −  (37) 

hr,( ) hu,in out hr,( ) hu,out ( )
1 2,   ,

j j

k k k
l lDT T T DT T T= − = −  (38) 

,( ) ,( )
1 min 2 min0, 0,p k p kDT T DT T− ∆ ≥ − ∆ ≥  (39) 

he,( ) cr,( ) hr,( )
,

0, 0, 0,
i j i j

k k k
l l l l

Q Q Q≥ ≥ ≥  

{ }crh .e,  ,  hrΩ =   (40) 

where ,
i jl lα α are the film heat transfer coefficients of the hot and cold streams; 

hu cu,α α are the film heat transfer coefficients of the hot and cold heat carriers; Ω  is 

the set of heat exchangers in the HEN elementary unit structure. 

Step 3. Solve the assignment problem in (14) and (15). As a result, the 

optimal HEN structure is determined for the fixed values of the stream branch 

fractions. 

Step 4. Find the optimal operating conditions for the HEN with a fixed 

structure by solving the nonlinear programming problem in (16) – (23). The design 

and operating parameters of the heat exchangers, coolers and heaters are used as 

optimization variables. 

 
( ) ( ) he ,( )

,,

( )

, , ( )
min

k k k k
i jl li j l li j

k

Q l l Z
Ф

β β ∀ ∈
 (41) 

 where 
he hr

c

he,( ) hr,( )
,( ) he he hr hr hr hr,( )

1 2 1 2he he,( ) hr hr,( )
,

cr,( )
cr cr
1 2 cr cr,( )

ˆ
ji

i j j

j

i j i j j

i

i

k kLL
l l lk k

lk k
l l l l LM l LM

k
l

k
l LM

Q Q
Ф m m m m m Q

U T U T

Q
m m

U T

γ γ

γ

            = + + + + +      ∆ ∆         

 
+ +   ∆ 

∑∑    

 

r

cr cr,( )ˆ ,
i

k
lm Q

 
 +  
 

 (42) 

he
,

1 ,1 1i j

i j

l l

l l

U

α α

=
+

cr
,

cu

1 ,1 1i j

i

l l

l

U

α α

=
+

hr
,

hu

1 ,1 1i j

j

l l

l

U

α α

=
+

 (43) 

s.t.   hr,( ) ( ) he,( ) cr,( ) ( ) he,( )
, ,, ,

j j i j i i i j

k k k k k k
l l l l l l l lQ H Q Q H Q= ∆ − = ∆ −  (44) 
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( ) ( ) ( ) ( ), ,
j j i i

k k k k
l l j l l iH H H Hβ β∆ = ∆ ∆ = ∆  (45) 

( ) ( ) ,
i i

k k
l l iF Fβ= ( ) ( ) ,

j j

k k
l l jF Fβ=

  (46) 

he,( ) he,( )
( ) ( ), ,in in

( ) ( ), ,i j i j
j ij i

j i

k k
k kl l l l

l ll lk k
l j l i

Q Q
T T T T

F c F c
= + = −  (47) 

,( ) ,( )
,( ) 1 2

,( )
1

,( )
2

,
ln

,
p k p k

p k
LM p k

p k

DT DTT
DT
D

p

T

+
∆ = ∈Ω∀  if ,( ) ,( )

1 2
p k p kDT DT≠ ; (48) 

( ) ( )he,( ) in he,( ) in
1 2,j ii j

k kk k
l ll lDT T T DT T T= − = − , (49) 

( )cr,( ) cu,out cr,( ) out cu,in ( )
1 2, , ( , )i i

kk k k
l l i jDT T T DT T T l l Z= − = − ∀ ∈ , (50) 

( )hr,( ) hu,in out hr,( ) hu,out
1 2, jj

kk k
llDT T T DT T T= − = − , (51) 

,( ) ,( )
1 min 2 min0, 0, ,p k p kDT T DT T p− ∆ ≥ − ≥ ∀ ∈Ω∆  (52) 

he,( ) cr,( ) hr,( )
,

0, 0, 0,
i j i j

k k k
l l l l

Q Q Q≥ ≥ ≥  

( ) ( )

1 1
1 0, 1 0,

j i

j i
j i

L L
k k

l l
l l

β β
= =

− = − =∑ ∑  (53) 

in in in in,
i j

i jl l
T T T T= = ,  (54) 

out out out out, ,
i j

i jl l
T T T T= =

  
(55) 

h с1,..., , 1,..., ,i M j M= = 1,...,i il L= 1,..., ,j jl L=  

{ }crh .e, , hrΩ =   (56) 

Step 5. If ( ) ( 1)k k ξ−Φ −Φ < , then the algorithm requirements are satisfied and 

the solution is obtained; otherwise set 1k k= +  and return to step 2. 

2.4. Discussion 

We denote the proposed synthesis method as SSHEN (Split Stream Heat 

Exchange Net). We can make the following remarks for the SSHEN method. 
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1) Equations in (34) and in (55) define the outlet temperatures of the 

branches and this assumption simplifies the problem. In some cases, however, they 

require additional heaters and coolers at the outlets of the branches, thus making it 

difficult to obtain the optimal value of the objective function. Therefore, the 

problem can be described more precisely by adding the optimization variables 
out h( 1,..., , 1,..., ),
i

i il
T i M l L= = out с( 1,..., , 1,..., )

j
j jl

T j M l L= =
 
and limitations for the heat 

balance of the mixer (2) – (3). Thus, in non-isothermal mixing, Equations (57) and 

(58) are used. 

in out outin out out

11out out , out
out out out out

1 1

,
, ,

ji

j j ji i i ji
ji

i i j j
i j

LL

l j l ll i l l LL
ll c out

i l l j l l
l li i j j

F с TF с T
T T T T

с F с F

ββ
β β==

= =

= ≡ = ≡
∑∑

∑ ∑  (57) 

out out out out

1 1
0, 0,

ji

i i j j
i j

LL

i l l j l l
l l

T T T Tβ β
= =

− = − =∑ ∑
 

(58) 

h с1,..., , 1,..., ,i M j M= = 1,..., ,i il L= 1,..., .j jl L=

 2) In the solution for the optimization problem in (27) – (40), some heat 

exchangers may be excluded from the optimal HEN elementary unit structure. We 

introduce the Boolean variables he hr cr, ,δ δ δ , characterizing the presence or absence 

of units in the HEN structure: 
th th th

,( ) th
,

1, if the  unit for a combination of the  hot and cold streams is present 

in the HEN elementary unit structure at the iteration;
0, otherwise.

i j

i j

n k
l l

n l l

kδ


= 



 

Then, the optimization problem (41) – (56) can be simplified by adding the 

following conditions: 
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he hr cr
, , ,

he in in
, ,

he hr cr
, , ,

he out
, ,

he hr
, ,

if ( 0) ( 1) ( 1),

then {he}, 0, , ;

if ( 1) ( 0) ( 1),

then {hr}, , ;

if ( 1) ( 1) (

i j i j i j

i j i j j j i i

i j i j i j

i j i j i j j

i j i j

l l l l l l

l l l l l l l l

l l l l l l

l l l l l l l

l l l l

Q T T T T

Q H T T

δ δ δ

δ δ δ

δ δ δ

= ∧ = ∧ =

Θ = = = =

= ∧ = ∧ =

Θ = = ∆ =

= ∧ = ∧ cr
,

he out
, ,

he hr cr
, , ,

he
, ,

out out

0),

then {cr}, , ;

if ( 1) ( 0) ( 0),

then {hr,cr}, ,

, .

i j

i j i j j i i

i j i j i j

i j i j j i

i i j j

l l

l l l l l l l

l l l l l l

l l l l l l

l l l l

Q H T T

Q H H

T T T T

δ δ δ

 
 
 
 
 
 
 
  = 
 

Θ = = ∆ = 
 

= ∧ = ∧ = 
 

Θ = = ∆ = ∆ 
 = =  

( )

h

с

( , ) ,

1,..., , 1,..., ,

1,..., , 1,..., ,

k
i j

i i

j j

l l Z

i M l L

j M l L

∀ ∈

= =

= =

 (59) 

where, and ,i jl lΘ is the set of heat exchangers excluded from the HEN elementary 

unit structure. 
Based on the above conditions, the problem is solved for every sum of the li

th 

hot and the lj
th cold branches for /

i jl lp∈Ω Θ∀ . Keep in mind that for the described 

cases, the heat exchanger load he
,i jl lQ  is excluded from the list of optimization 

variables. 

3) When solving the problem in (41)-(56) for cases where the heat 

exchanger, cooler and heater for the set of the li
th hot and the lj

th cold branches 

( ( )( , ) k
i jl l Z∈ ) are present in HEN structure, the heat exchanger load he

,i jl lQ may also 

be excluded from the list of optimization variables considering that their operation 

costs significantly exceed capital costs. The thermal capacity is determined based 

on the following conditions: 

( )
( )





−=+∆=>
−=∆−=<

.  ,  :1
;  ,  :1

inhe
,

in
min

inhe
,min

in

ililiiljliljlil

jljljjljlililjl

TTcFQTTT
TTcFQTTT

ν
ν

 
(60) 

where 
iil

jjl

cF
cF

=ν , h с1,..., , 1,..., ,i M j M= = 1,..., ,i il L= 1,..., .j jl L=
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4) The assumption of no phase transitions can be easily eliminated by using 

detailed mathematical models. Thus, based on the heat balance equation for the 

heat exchanger model we derive the following: 
he he
, ,in in, ,i j j i j i

j j i i

j i

l l l l l l
l l l l

l j l i

Q rF Q rF
T T T T

F c F c
− −

= + = −  (61) 

where r is the specific heat of evaporation. 

5) In the general case, when h c
S SM M≠ , for the optimal solution, it is 

suggested to reduce an asymmetric assignment problem to a symmetric problem by 

introducing additional rows c h
S S( )M M− or additional h c

S S( )M M−  columns into the 

cost matrix. New rows contain optimal economic estimations for autonomous 

heating of the cold branches, while new columns contain economic estimations for 

autonomous cooling of the hot branches. As the assignment problem is to be 

solved for every sum of the hot and cold branches, the corresponding dummy cold 

and hot branches are introduced into the system. The economic value for heating 

and cooling these branches is zero. 

The autonomous heating for the jth cold branch together with the qth 

imaginary hot branch aut
, jq lf  is estimated based on the following equations: 

hr
hr

aut hr hr hr hr
, 1 2 hr hr ˆ ,j

j j

j

l
q l l

l LM

Q
f m m m Q

U T

γ
 
 = + +
 ∆ 

 

 (62) 

hr ,
j jl lQ H∆ = ∆   hr

hu

1 ,1 1j

j

l

l

U

α α

=
+

 (63) 

hr hr
hr 1 2

hr
1
hr

2

ln
LM

DT DTT
DT
DT

−
∆ = , if  hr hr

1 2 ;DT DT≠   (64) 

hr hu,in out hr hu,out in
1 2, ,

j jl lDT T T DT T T= − = −   (65) 

h с1,..., , 1,..., ,i M j M= = 1,..., ,i il L= 1,..., .j jl L=  
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In a similar way, the economic parameters aut
,il wf  for autonomous cooling of 

the ith hot branch together with the wth imaginary cold branch are estimated based 

on the following equations: 
cr

cr
aut cr cr cr cr
, 1 2 cr cr ˆ ,i

i i

i

l
l w l

l LM

Q
f m m m Q

U T

γ
 

= + +  ∆ 
   (66) 

cr ,
i il lQ H= ∆ cr

h cu

1 ,1 1i

i

l

l

U

α α

=
+

 (67) 

cr cr
cr 1 2

cr
1
cr

2

ln
LM

DT DTT
DT
DT

−
∆ = , if cr cr

1 2 ;DT DT≠   (68) 

cr in cu,out cr out cu,in
1 2, ,

i il lDT T T DT T T= − = −   (69) 

h с1,..., , 1,..., ,i M j M= = 1,..., ,i il L= 1,..., .j jl L=  
Therefore, the 0-1 linear optimization problem for determining the optimal 

HEN structure is as follows: 
aut h h c

Sh c
, aut c h c

S

, ( 1)... , , ;
max{ , },

, ( 1)... , , ;
j

i

l S S
S S q w

l S S

f q M R w M M
R M M f

f w M R q M M

 = + ∈∅ <= = 
= + ∈∅ >

 (70) 

If h c
S SM M<  

h c

( ) ( )
c

, ,

opt,( ) ( ) aut,( ) ( )
, , , ,, 1 11 1 ( 1)

min ,
ji

k k i j i j j j
l l q li j j i j S

LLM M R
k k k k

l l l l q l q lz z i jl l q M

f z f z
= == = = +

 
 + 
 
 
∑∑∑∑ ∑  (71) 

h

c

( ) ( ) ( ) ( )
, , , ,

1 1 11 ( 1) 1 1

. . 1, 1, 1,
j ji

i j j i j j
i S j j

L LLM R M M
k k k k

l l q l l l q l
i j jl q M l l

s t z z z z
= = == = + = =

+ = = =∑∑ ∑ ∑∑ ∑∑  (72) 

     
h1,..., ,i M= с1,..., ,j M= 1,..., ,i il L= 1,..., ,j jl L=  

     , ,
{0,1}, {0,1}.

i j jl l q l
z z∈ ∈  

If h c
S SM M>  

h c

( ) ( ) i ih
, ,

opt,( ) ( ) aut,( ) ( )
, , , ,, 1 11 1 ( 1)

min ,
ji

k k i j i j
l l q li j j i j S

LLM M R
k k k k

l l l l l w l wz z i jl l w M

f z f z
= == = = +

 
 + 
 
 
∑∑∑∑ ∑  (73) 
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h c h

ic h

( ) ( ) ( ) ( )
, , , ,

1 1 11 1 ( 1) 1

. . 1, 1, 1,
ji i

i j i j i
i j S i

LL LM M R M
k k k k

l l l l l w l w
i j il l w M l

s t z z z z
= = == = = + =

= + = =∑∑ ∑∑ ∑ ∑∑  (74) 

     
h1,..., ,i M= с1,..., ,j M= 1,..., ,i il L= 1,..., ,j jl L=  

     i

( )
, ,

{0,1}, {0,1}.
i j

k
l l l w

z z∈ ∈  (75) 

3. COMPUTATIONAL RESULTS 

3.1. Test problems 

The operational performance and efficiency of the SSHEN method were first 

tested with four examples from the SYNHEAT software (Yee et al., 1990, Ponce-

Ortega et al., 2008). SYNHEAT is based on a mixed-integer nonlinear 

programming model for optimizing a staged HEN superstructure. Two 

optimization algorithms were used when addressing the problem of heat exchange 

systems synthesis in the SYNHEAT program: DICOPT code and the global 

optimization code BARON. All examples were solved on a computer with an Intel 

Core i5-3570K processor, 3.4 GHz 

  

3.2. Example 1 

There are two hot and two cold streams which exchange heat. The data are 

given in Tables 1, 2. The total amount of heat to be recovered from the hot streams 

is h
sum 5000 kWH∆ = , the total amount of heat to be transferred to the cold streams 

is c
sum 4900 kWH∆ = . 

Table 1 Stream data for Example 1 

Hot stream 
in ,iT  
K 

out ,iT  

K 
,iH∆  

kW 
α , 

kW/m2K 
Cold 

stream 

in ,jT  
K 

out ,jT  
K 

,jH∆
 

kW 

α , 
kW/m2K 

H1 430 380 2,000 1.8 C1 410 410 4,000 1.7 
H2 425 425 3,000 1.9 C2 390 420 900 1.85 
HU 627 627  2.5 CU 303 315  1.0 

Table 2 Costs for Example 1 

Cost of heating utility ($/kW-yr) 100.00 
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Cost of cooling utility ($/kW-yr) 10.00 
Fixed charge for exchanger ($/yr) 0.00 
Area cost coefficient for exchangers ($/m2) 380.00 
Area cost coefficient for heaters ($/m2) 380.00 
Area cost coefficient for coolers ($/m2) 380.00 
Area cost exponent for exchangers  0.65 

 

 
Figure 3 Composite Curves for Example 1 with minT∆  = 5°C. 

Pinch analysis for the lowest permissible temperature difference minT∆  of 5oС 

gives the following results:  

a) In the area where the hot and cold composite curves coincide, the 

maximum possible amount of recovered heat is he
max 4,200 kWQ = ;  

b) The minimum amount of supply heat is cr
min 800 kWQ = ; 

c) The minimum amounts of removed heat is hr
min 700kWQ = . 

Table 3 yields the results of solving the optimal synthesis problem by the 

SSHEN method 

Table 3 Results the SSHEN method for Example 1 

 Q, kW in ,iT K out ,iT K in ,jT K out ,jT K A, m2 
Heat exchangers             

1 21 1E  900 430 395 390 420 139 

1 12 2E  214.4 430 415 410 410 23.4 

2 11 1E  3,000 425 425 410 410 233.1 
Coolers       
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11K  385.6 395 380 303 315 7.8 

12K  500 415 380 303 315 9 
Heaters       

11B  785.6 627 627 410 410 3.48 
 

The HEN diagram obtained by using the proposed method (2.4 CPUs) is 

given in Figure 4.  

1H

2H

430 K

425 K

380 K

425 K

1C

2C

410 K

420 K

410 K

390 K

900kW

214.4kW

3000kW

385.6kW

785.6kW

2139m

223.4m

2233.1m

27.8m

29m

500kW

23.48m

 
Figure 4 HEN diagram obtained by SSHEN method for Example 1. 

 

The HEN Diagrams obtained by using SYNHEAT (DICOPT) (t=0.48 s) and 

SYNHEAT Software (BARON) (1,058 CPUs) are given in Figures 5 and  6. 

 

1H
430K

2H
425K

1C

2C

380K

425K

410K

390K

410K

420K 900kW

400kW

1400kW

600kW

263,4m

3000kW

2222,9m

410K

410K

 
Figure 5 HEN diagram obtained by SYNHEAT (DICOPT) for Example 1. 
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1H
430K

2H
425K

1C

2C

380K

425K

410K

390K

410K

420K 300kW

400kW

800kW

600kW

263,4m

3000kW

2222,9m

600kW

291,2m

415K 400K

410K

410K

410K

 

Figure 6 HEN diagram obtained by SYNHEAT (BARON) for Example 1.  

 

Comparison of the obtained results is presented in Table 43. 

Table 4 Results of the SSHEN and SYNHEAT Methods for Example 1 

Name SSHEN DICOPT BARON 
Qhe, (kW) 4,114.1 3,600 4,200 
Qhr, (kW) 785.9 1300 700 
Qcr, (kW) 885.9 1400 800 
nhe 3 2 3 
nhr 1 2 2 
ncr 2 1 1 
Esum, USD/year 87,420 144,000 78,000 
Ksum, USD/year 29,454 22,951.3 28,828.4 
Ahe. m2 395.5 286.4 377.5 
Acr, m2 16.8 24.8 15.4 
Ahr, m2 3.48 5.7 3.15 
Ф, USD/year TAC 116,874 166,951 106,828 
CPU time, (s) 2.4 0.48 1,058 

 

The results show that the HEN structure in Figure 4 is characterized by a 

lower total cost compared to the structure using the SYNHEAT (DICOPT) 

software (Figure 5). Also, its configuration is not significantly different from the 

HEN obtained in SYNHEAT (BARON) although it has a higher cost. 

3.3. Example 2 
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There are three hot and four cold streams exchanging heat. The data are 

given in Tables 5, 6. The composite curves on temperature vs. enthalpy diagram 

for a minT∆ of 5oС are shown in Figure 7.  

Table 5 Stream data for Example 2 

Hot 
stream 

in ,iT  
K 

out ,iT  

K 
,iH∆  

kW 
α , 

kW/m2K 
Cold 

stream 

in ,jT  
K 

out ,jT  
K 

,jH∆  
kW 

α , 
kW/m2K 

H1 503 308 12,948 0.81 C1 323 503 8,838 0.72 
H2 425 425 33,020 1.78 C2 408 408 18,413.1 1.91 
H3 381 381 12,870 1.62 C3 391 391 18,498.4 1.76 

     C4 353 353 16,347.7 1.84 
HU 627 627  2.5 CU 303 315  1.0 

 

Table 6 Costs for Example 2  

Cost of heating utility ($/kw-yr) 100.00 
Cost of cooling utility ($/kw-yr) 10.00 
Area cost coefficient for exchangers ($/m2) 380.00 
Area cost coefficient for heaters ($/m2) 380.00 
Area cost coefficient for coolers ($/m2) 380.00 
Area cost exponent for exchangers  0.65 

 

 
Figure 7 Composite Curves for Example 2 with minT∆  = 5°C. 

 

The results of pinch analysis are as follows: 
h
sum 58,838 kWH∆ =  
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c
sum 62,097 kWH∆ =  

he
max 56,991 kWQ =  
cr
min 1,847 kWQ =  
hr
min 5,106kWQ =  

Table 7 gives the results of solving the optimal synthesis problem by the 

SSHEN method. 

Table 7 Results the SSHEN method for Example 2 

 

 Q, kW 
in ,iT K out ,iT K in ,jT K out ,jT K A, 

m2 

Heat exchangers             

1 12 1E  7,718.5 503 328 323 479.2 1,726.1 

2 22 1E  14,522 425 425 408 408 985 

2 31 1E  18,498 425 425 391 391 633.4 

1 411E  3,232.7 503 397.7 353 353 135.4 

3 41 2E  12,870 381 381 353 353 553.3 
Coolers             

12K  882.1 328 308 303 315 235.4 

11K  1,114.7 397.7 308 303 315 141 
Heaters             

11B  1,119.5 627 627 479.2 503 14.9 

41B  245.2 627 627 353 353 0.85 

22B  3,891.5 627 627 408 408 16.5 
 

The HEN diagram obtained by using the SSHEN method (t=14.3 s) is 

given in Figure 8.  
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1H 503K

2H 425K

1C

3C

308K

425K

323K

391K

503K

391K

7718.5kW

20.85m

3H 381K 381K

2C408K408K

4C353K353K

2m1726.1

328K

479.2K

2m985

18498kW

2m633.4

3232.7kW

2135.4m

397.7K

353K

12870kW

2553.3m

882.1kW

2m235.4

1114.7kW

2141m

1119.5kW

214.9m

3891.5kW

216.5m
245.2kW

14522kW

 
Figure 8 HEN diagram obtained by SSHEN method for Example 2. 

 

The HEN diagrams   obtained by using the SYNHEAT (DICOPT) (t=1.2 s) 

and SYNHEAT (BARON) (>24,126 CPU s) are given Figures 9 and 10. 

1H 503 K

2H
425K

1C

2C

308 K

425K

408K408 K

391K

264.6 kW

5843.2kW

3213.3kW

381K381 K
3H 12870.0kW

3C

323 K503 K

353K
246m

391K

353K

14606.9kW
18413.1kW

3891.5kW

4C

396K

2304,4m

454,6K

21m

2m1175,6

2485,47m

2533.5m

2478,5m

8838 kW

278,8m

 
Figure 9 HEN diagram obtained by SYNHEAT (DICOPT) for Example 2. 
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1H 503 K

2H
425K

1C

2C

308 K

425K

408K408 K

391K

5106.4 kW

1847kW
3891.5kW

381K381 K
3H 12870kW

3C

323 K503 K

353K

2112,1 m

391K

353K

18498,4kW
14521.6kW

1473 kW

4C

335,8K

2465,9m

410,3K

253,5m

2m927,2

2614,81m

2533,6m

2374m

2258.6kW

2115,8 m

444,4K
3477.9kW

2297,9 m

358K

399 K 353 K

408 K

353K

 
Figure 10 HEN diagram obtained by SYNHEAT (BARON) for Example 2. 

 

Comparison of the obtained results is presented in Table 8. 

Table 8 Results of the SSHEN and SYNHEAT methods for Example 2 

Name SSHEN DICOPT BARON 
Qhe, (kW) 56,841.2 52,994.8 56,991 
Qhr, (kW) 5,256.2 9,102.6 5,106 
Qcr, (kW) 1,996.8 5,843.2 1,847 
nhe 5 5 7 
nhr 3 2 1 
ncr 2 1 1 
Esum, USD/year 545,592 968,692 529,111 
Ksum, USD/year 166,882 130,459 154,905 
Ahe. M2 4,033.2 2,545 3,067.3 
Acr, m2 376.5 504 374.1 
Ahr, m2 32.2 79.8 53.5 
Ф, USD/year TAC 712,474 1,099,151 684,016 
CPU time, (s) 14.3 1.2 24,126 
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The results in Table 8 show that the SSHEN method yields lower costs than 

SYNHEAT (DICOPT). However, SYNHEAT (BARON) showed slightly better 

results. 

3.4. Example 3 

There are four hot and four cold streams exchanging heat. The data are given 

in Tables 9, 10. The composite curves on temperature vs. enthalpy diagram for a 

minT∆ of 10oС are shown in Figure 11. 

Table 9 Stream data for Example 3 

Hot 
stream 

in ,iT  
K 

out ,iT  

K 
,iH∆  

kW 
α , 

kW/m2K 
Cold 

stream 

in ,jT  
K 

out ,jT  
K 

,jH∆  
kW 

α , 
kW/m2K 

H1 420 360 3,000 1.0 C1 340 380 2,400 1.0 
H2 470 375 19,000 2.5 C2 365 430 7,800 1.0 
H3 485 390 14,250 2.0 C3 395 450 5,500 1.0 
H4 500 435 6,500 2.0 C4 410 465 22,000 1.0 
HU 620 620  5.0 CU 300 315  1.0 

 

Table 10 Costs for Example 3 

Cost of heating utility ($/kw-yr) 85.0 
Cost of cooling utility ($/kw-yr) 15.0 
Area cost coefficient for exchangers ($/m2) 380.00 
Area cost coefficient for heaters ($/m2) 380.00 
Area cost coefficient for coolers ($/m2) 380.00 
Area cost exponent for exchangers  0.65 

  
Figure 11 Composite Curves for Example 3 with minT∆  = 5°C. 
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The results of pinch analysis are as follows: 
h
sum 42.75 MWH∆ = , c

sum 37.7 MWH∆ = , 

he
max 35.55 MWQ = , cr

min 9.5 MWQ = , hr
min 2.15MW.Q =  

HEN diagram obtained by using the SSHEN method (t=12.8 s) is given 

Figure 12. 
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Figure 12 HEN diagram obtained by SSHEN method for Example 3. 

 

The HEN Diagram   obtained by using SYNHEAT (DICOPT) (t=0.85 s) and 

SYNHEAT (BARON) (34,752 CPUs) are given Figures 13 and 14. 
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Figure 13 HEN diagram obtained by SYNHEAT (DICOPT) for Example 3. 
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Figure 14 HEN diagram obtained by SYNHEAT (BARON) for Example 3. 

 

Comparison of the obtained results is presented in Table 11. 

Table 11 Results of the SSHEN and SYNHEAT Methods for Example 3 

Name SSHEN DICOPT BARON 
Qhe, (kW) 33,376 28,650 35,550 
Qhr, (kW) 4,324 9,050 2,150 
Qcr, (kW) 9,374 14,100 7,200 
nhe 6 5 8 
nhr 2 2 1 
ncr 4 3 3 
Esum, USD/year 508,150 980,750 290,750 
Ksum, USD/year 128,798 118,164 145,283 
Ahe. M2 36.1 54.7 3,218.4 
Acr, m2 158.59 231.22 151.2 
Ahr, m2 2,329.6 2,478.3 16.4 
Ф, USD/year TAC 636,948 1,098,914 436,012 
CPU time, (s) 12.8 0.85 34,752 
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As in the previous examples, the proposed method gave a lower cost than 

SYNHEAT (DICOPT) but worse than the SYNHEAT (BARON) method, although 

at a much lower computational cost. 

This example has been investigated of for the existence multiple local 

solutions. For this, we plotted the dependences of the optimal values of the 

objective function on two splitting coefficients of the streams, with fixed values of 

the others. The graphs in Figure 15 confirm the presence of many local minima. 

  

 

Figure 15 The dependence of the optimal values of the objective function (mln. 

USD) on two coefficients of splitting of streams. 

3.5. Example 4 

 In this example there are four hot and three cold isothermal streams 

exchanging heat. The data are given in Tables 12, 13. The composite curves on 

temperature vs. enthalpy diagram for a minT∆ of 5oС are shown in Figure 16. 

Table 12 Stream data for Example 4 

Hot  
stream 

in ,iT  
K 

out ,iT  

K 
,iH∆  

kW 
α , 

kW/m2K 
Cold 

stream 

in ,jT  
K 

out ,jT  
K 

,jH∆  
kW 

α , 
kW/m2K 

H1 340 340 1,900.0 1.52 C1 350 350 992.5 1.81 
H2 390 390 1,493.1 1.63 C2 375 375 1,801.2 1.72 
H3 420 420 2,594.4 1.75 C3 400 400 4,361.6 1.64 
H4 475 475 1,999.1 1.58      
HU 627 627  2.5 CU 303 315  1.0 



33 

 

 

Table 13 Costs for Example 4 

Cost of heating utility ($/kw-yr) 100.00 
Cost of cooling utility ($/kw-yr) 10.00 
Fixed charge for exchanger ($/yr) 0.00 
Area cost coefficient for exchangers ($/m2) 380.00 
Area cost coefficient for heaters ($/m2) 380.00 
Area cost coefficient for coolers ($/m2) 380.00 
Area cost exponent for exchangers  0.65 

 

  
Figure 16 Composite Curves for Example 4 with minT∆  = 5°C. 

 

The results of pinch analysis are as follows: 
h
sum 7,986.6 kWH∆ = , c

sum 7,173.3 kWH∆ = , 

he
max 6,086 MWQ = , cr

min 1,900 kWQ = , hr
min 1,068.7kW.Q =  

The HEN diagram obtained by using the SSHEN method (t=6.5 s) is given 

in Figure 17. 
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Figure 17 HEN diagram obtained by SSHEN method for Example 4. 

The HEN diagram obtained by using SYNHEAT (DICOPT) (t=0.2 s) and 

SYNHEAT (BARON) (112,464 CPUs) is given in Figure 18.  
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400K
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375K

400K

2594.4kW

698.5kW 1300.6kW

2104,4m

2m16

2m160,92m11,62m4,8  
Figure 18 HEN diagram obtained by SYNHEAT (DICOPT/BARON) for Example 4 

Comparison the obtained results are presented in Table 14. 
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Table 14 Results of the SSHEN and SYNHEAT Methods for Example 4 

Name SSHEN DICOPT/BARON 
Qhe, (kW) 6,086.6 6,086.6 
Qhr, (kW) 1,068.7 1,068.7 
Qcr, (kW) 1,900 1,900 
nhe 5 5 
nhr 1 1 
ncr 1 1 
Esum, 
USD/year 125,870 125,870 

Ksum, 
USD/year 30,467.2 30,438.4 

Ahe. M2 216.2 215.8 
Acr, m2 104.4 104.4 
Ahr, m2 4.7 4.7 
Ф, USD/year 156,337.2 156,308.4 
CPU time, (s) 6.5 0.2/112,464 

 

As can be seen from Table 14, the results obtained are the same for two 

different synthesized structures. This phenomenon is most likely due to the 

isothermal conditions of the cold and hot streams. 

 

3.6 Additional test problems 

The proposed SSHEN method was tested on two problems studied by 

Ravagnani et al. (2005) and five problems studied by Escobar and Trierweiler 

(2013). The output generated by SSHEN was compared with the results published 

in these papers. The data are summarized in Appendix 1 and Appendix 2, 

respectively. 

The number of hot streams ranges between 2 and 22 hot streams, and the 

cold streams between 2 and 17.   As can be seen from tables A1-A3, the proposed 

method for five tasks yields cheaper and closer solutions, and higher cost for two 

other cases (CS03, CS05). The proposed SSHEN method solves these problems in 

a reasonable amount of time.  
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CONCLUSION 

Synthesis methods for optimal heat exchanger networks based on 

superstructure optimization offer a general systematic approach. These problems 

result from the fact that the global flowsheet embeds all the possible alternatives 

for the heat exchanger configurations. The use of the BARON global optimization 

algorithm ensures the global optimum within the selected superstructure, although 

often at very high computational cost. The SSHEN method addresses the 

computational challenges of large scale HENS by reducing the problem to a 

sequence of assignment problems. In this case, the optimization problem can be 

solved for a number of fixed structure heat exchanger networks.  

The SSHEN method has the advantage of extending the search area by 

splitting the streams and expanding the number of optimization variables. The 

basic procedure of HEN synthesis by the SSHEN method involves decomposing 

the problem into a sequence of assignment problems. To apply this procedure, it is 

necessary to estimate the optimal economic estimations of the possible heat 

exchanges between the hot and cold process streams. Therefore, the superstructure 

is decomposed into the elementary heat exchange units.  

Computational results on four examples showed that the difference in the 

solutions found using the proposed method of schemes do not exceed an average of 

10 percent of the optimal values obtained using SYNHEAT (BARON). At the 

same time, the time to solve the problems using the proposed method is several 

orders of magnitude smaller than the time spent by the BARON method. 

Additional results were presented in the Appendix to demonstrate the capabilities 

(good quality of solution, reduced CPU time) of the proposed SSHEN method. 
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SYMBOLS 

A−heat exchange surface area, m2; 

B−outlet heater; 

K−outlet cooler; 

c−specific heat capacity at constant pressure, kW·h/kg·K; 

E− heat exchanger; 

Esum−energy cost, USD/year  

F−mass flow rate, kg/hour; 
f−total reduced capital and operating costs, USD/year; 

H−enthalpy, kW; 

Ksum−annualized capital cost, USD/year 

альфа 

1m̂ −reduced price ratios of capital costs, USD/year; 

2m̂ −reduced price ratios of capital costs, USD/year·m2; 

m −unit cost for hot or cold heat carrier consumption, USD/kg; 

T−stream temperature, K; 

t − computational time of the case study, s 

TAG−Total Annual Cost, USD/year 

U− Total heat transfer coefficient, kW·h/m2·K; 

Q−heat quantity, kW; 

∆Tmin−minimum allowed temperature difference, K; 

r−specific heat of evaporation, kW·h/kg·K; 

γ−correlation coefficient; 



38 

 

Φ−total sum of reduced capital and operating costs for heat exchanger network, 

USD/ year; 
( )kZ −total sum of coupled branches with their HEN elementary units belonging to 

the HEN structure at current iteration. 

 

INDICES 

с−cold stream; 

h−hot stream; 

hu−heating steam; 

cu−cooling water; 

aut – autonomous heat exchange; 

he−recuperative heat exchanger; 

cr−cooler / condenser; 

hr−heater/ boiler; 

i−hot stream number; 

j−cold stream number; 

l –branch stream; 

k−iteration number. 
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Appendix 1.  SSHEN comparison with other available methods 
 
Table A1. Comparison of the SSHEN method with the methods by Frausto-

Hernaґndez et al. (2003), and Ravagnani et al. (2005). The case study dimension is 

2H х 2С. 
Name Frausto-Hernaґndez et 

al. (2003)  
Ravagnani et al.  (2005) 
 

SSHEN 
t(s)=2.4 

Hot utility (kW) 605.00 200.00 420 
Cold utility (kW) 525.00 120.32 340 
Total area (m2) 423.26 706.45 577.4 
Energy cost ($/year) 71800.00 23203.20 49600 
Capital cost ($/year) 75553.75 93866.14 79204 
Total cost ($/year) 147353.75 117069.34 128804 
 
Table A2 Comparison of the SSHEN method with the methods by Ahmad  (1985), 

and Ravagnani et al. (2005). The case study dimension is 6H х 4С 
Name Ahmad  (1985) Ravagnani et al (2005) 

 
SSHEN 
t(s)=7.2 

Hot utility (kW) 15400 20529.3 20759 
Cold utility (kW) 9796 14923.8 15204 
Total area (m2) – 56600.6 60712 
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Energy cost ($/y) 1686940 2276787 2303980 
Capital cost ($/y) 5387060 3396034 3661944 
Total cost ($/y) 7074000 5672821 5965924 
 

 

Appendix 2. The results obtained by Escobar & Trierweiler (2013) for five case 

studies are complemented with the results obtained by SSHEN. 

Table A3. Computational time and TAC for the MINLP solvers for each case 

studyb. 
Problem Case study CS01 CS02 CS03 CS04 CS05 

 Dimension 2Hx2C 5Hx5C 8Hx7C 13Hx7C 22Hx17C 
  

Solver 
 
t(s) 

 
t(s) 

 
t(s) 

 
t(s) 

 
t(s) 

 
P4 

DICOPT 0.42 1.02 3.42 12.5 18.4 
SBB 2.70 6.98 17.5 18.2 25.1 
BARON 101.2 120.8 249.4 400.6 a 

OQNLP 7.22 182.3 221.8 a a 

 
P5 

DICOPT 0.63 0.72 3.38 10.3 12.4 
SBB 0.17 2.35 2.46 50.0 71.8 
BARON 119.6 178.5 218.5 358.7 a 

OQNLP 80.1 15.2 47.6 327.2 a 

AP SSHEN 0.72 5.32 6.2 16.44 21.2 
  

Solver 
 
TAC 

 
TAC 

 
TAC 

 
TAC 

 
TAC 

  ($ yr-1) ($yr-1) ($yr-1) ($yr-1) ($yr-1) 
 

P4 
DICOPT 368649.0 43705 1574948 1518187 2197653 
SBB 361982.8 43705 1769655 1758489 2197653 
BARON 362429.7 43242 1574948 1589810 a 

OQNLP 362459.9 43708 1594011 a a 

 
P5 

DICOPT 399509.7 43570 1507654 1461006 2055421 
SBB 366006.7 43685 1506667 1467675 2055421 
BARON 377541.3 43689 1506667 1461276 a 

OQNLP 399509.8 43689 1518149 1467503 a 

AP SSHEN 290597.2c 43833 1891641 1519576 2223113 
a Failed to converge; BARION within time limit (180000s) 
b The table is borrowed from paper of Escobar and Trierweiler (2013) and supplemented by the 
results obtained using SSHEN. 
c Problem was solved with data presented in the paper of Escobar and Trierweiler  (2013). 
Discrepancy may be due to errors in the data presented in that paper. 
P4:  MINLP problem, Ciric & Floudas (1991). 
P5:  MINLP problem, Yee & Grossmann (1990). 
AP:  Assignment problem, Kobayashi S., Umeda Т., & Ichikawa A. (1971).   
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Appendix 3. Step-by-step solution of Example 1 

Step 1. Set the initial approximations for the branch coefficients: 

2, 2, 1,2, 1,2;i jL L i j= = = =  

1
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Step 2. Solve the  4 4×  nonlinear mathematical programming problems (5)-

(13) for every HEN elementary unit. Optimization algorithm: SQP. Results: 
Stream C1, 1st branch 

1

с,(1)
1

2200kWH∆ =  
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1
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135kWH∆ =  

H1, 1st branch 

1

h,(1)
1

1,100kWH∆ =

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 
 
 

Optimal Structure: 

 
 

 
1 1

opt,(1)
1 ,1

202,143.3f =  

1 1

he,(1)
1 ,1

330kWQ =  

1

cr,(1)
1 770kWQ =  

1

hr,(1)
1 1,870kWQ =  

1 1

opt,(1)
1 ,2

161,923.8f =  

1 1

he,(1)
1 ,2

330kWQ =  

1

cr,(1)
1 770kWQ =  

1

hr,(1)
2 1, 470kWQ =  

1 2

opt,(1)
1 ,1

12,903f =  

1 2

he,(1)
1 ,1

765kWQ =  

1

cr,(1)
1 335kWQ =  

2

hr,(1)
1 0kWQ =  

1 2

opt,(1)
1 ,2

13,398.8f =  

1 2

he,(1)
1 ,2

135kWQ =  

1

cr,(1)
1 965kWQ =  

2

hr,(1)
2 0kWQ =  

H1, 2nd branch 

1

h,(1)
2

900kWH∆ =

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 
 

 
1 1

opt,(1)
2 ,1

206,050.6f =  

1 1

he,(1)
2 ,1

270kWQ =  

1

cr,(1)
2 630kWQ =  

1

hr,(1)
1 1,930kWQ =  

1 1

opt,(1)
2 ,2

165,833.1f =  

1 1

he,(1)
2 ,2

270kWQ =  

1

cr,(1)
2 630kWQ =  

1

hr,(1)
2 1,530kWQ =  

1 2

opt,(1)
2 ,1

23,894f =  

1 2

he,(1)
2 ,1

630kWQ =  

1

cr,(1)
2 270kWQ =  

2

hr,(1)
1 135kWQ =  

1 2

opt,(1)
2 ,2

11,103.4f =  

1 2

he,(1)
2 ,2

135kWQ =  

1

cr,(1)
2 765kWQ =  

2

hr,(1)
2 0kWQ =  
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Stream C1, 1st branch 

1

с,(1)
1

2200kWH∆ =  

C1, 2nd branch 

1

с,(1)
2

2, 200kWH∆ =  

C2, 1st branch 

2

с,(1)
1

765kWH∆ =  

C2, 2nd branch 

2

с,(1)
2

135kWH∆ =  

H2, 1st branch 

2

h,(1)
1

2,850kWH∆ =

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 
 

2 1

opt,(1)
1 ,1

18,898.8f =  

2 1

he,(1)
1 ,1

2, 200kWQ =  

2

cr,(1)
1

650kWQ =  

1

hr,(1)
1 0kWQ =  

2 1

opt,(1)
1 ,2

22,103.8f =  

2 1

he,(1)
1 ,2

1,800kWQ =  

2

cr,(1)
1

650kWQ =  

1

hr,(1)
2 0kWQ =  

2 2

opt,(1)
1 ,1

29,165.3f =  

2 2

he,(1)
1 ,1

765kWQ =  

2

cr,(1)
1

2,085kWQ =  

2

hr,(1)
1 0kWQ =  

2 2

opt,(1)
1 ,2

32,671.6f =  

2 2

he,(1)
1 ,2

135kWQ =  

2

cr,(1)
1

2,715kWQ =  

2

hr,(1)
2 0kWQ =  

H2, 2nd branch 

2

h,(1)
2

150kWH∆ =

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 

Optimal Structure: 

 
 
 

 
2 1

opt,(1)
2 ,1

208,493.5f =  

2 1

he,(1)
2 ,1

150kWQ =  

2

cr,(1)
2

0kWQ =  

1

hr,(1)
1 2,050kWQ =  

2 1

opt,(1)
2 ,2

168,279.9f =  

2 1

he,(1)
2 ,2

150kWQ =  

2

cr,(1)
2

0kWQ =  

1

hr,(1)
2 1,650kWQ =  

2 2

opt,(1)
2 ,1

63,308.9f =  

2 2

he,(1)
2 ,1

150kWQ =  

2

cr,(1)
2

0kWQ =  

2

hr,(1)
1 615kWQ =  

2 2

opt,(1)
2 ,2

1,925.1f =  

2 2

he,(1)
2 ,2

135kWQ =  

2

cr,(1)
2

15kWQ =  

2

hr,(1)
2 0kWQ =  

 

Step 3. Solve the assignment problem in (14). As a result, the optimal HEN 

structure is determined for the fixed values of the stream branch fractions. 

Optimization algorithm:  Hungarian algorithm.  

Result: 
Stream C1, 1st branch C1, 2nd branch C2, 1st branch C2, 2nd branch 

H1, 1st branch 0 0 1 0 
H1, 2nd branch 0 1 0 0 
H2, 1st branch 1 0 0 0 
H2, 2nd branch 0 0 0 1 

 

Criterion Value: 199,560.9 
(0) 199,560.9Φ =  
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Optimal HEN structure: 

 
Step 4. Find the optimal operating conditions for the HEN with a fixed 

structure by solving a nonlinear mathematical modeling problem in (16) – (23). 

Optimization algorithm: SQP. Results: 

 
(1) 116,874Φ =  

Optimal values of optimization variables: 

1

h,(1)
1 0.643,β =   2

h,(1)
1 1.0;β =  
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1

c,(1)
1 0.75,β =   

2

c,(1)
1 1.0;β =  

1

h,(1)
2 0.357,β =   

2

h,(1)
2 0;β =

 
1

c,(1)
2 0.25,β =   

2

c,(1)
2 0.β =

 
Step 5. (1) (0) 116,874 199,560.9 0.001Φ −Φ = − > . Go to Step 2. k=2. 

At the second iteration, the value of the optimization criterion remains the 

same (2) 116,874Φ = . Calculation finished. 

 

 

Appendix 4. Step-by-step results of Optimal HEN Synthesis using the 

SSHEN (Example 2) 

 

Iteration 
Number 

he
sumQ  

kW 

hr
sumQ  

kW 

cr
sumQ  

kW 
Ф, 

USD/year nhe nhr ncol 

1 56,186 5,911.3 2,651.9 814,571.3 8 3 2 
2 56,185 5,912.1 2,652.7 810,153.3 7 3 2 
3 56,187 5,910.4 2,650.3 803,501.5 6 3 2 
4 56,187 5,910 2,650.6 798,793.8 5 3 2 
5 56,841.2 5,256.2 1,996.8 712,474.5 5 3 2 
6 56,841.2 5,256.2 1,996.8 712,474.5 5 3 2 

 

Appendix 5. Optimal heat exchanger network synthesis: A case study 

comparison (Escobar, M., & Trierweiler, J.O. (2013)) 
 

 Case study CS01 minT∆ =10 oС CS01 minT∆ =20 oС 
 Solver t(s) t(s) 

(P4) DICOPT 0.42 0.42 
 SBB 2.70 2.70 
 BARON 101.2 101.2 
 OQNLP 7.22 7.22 

(P5) DICOPT 0.63 0.63 
 SBB 0.17 0.17 
 BARON 119.6 119.6 
 OQNLP 80.1 80.1 
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  ti(s) ti(s) 
(P4)  0.11 0.11 
(P5)  0.78 0.78 
AP SSHEN 0.72 0.64 

 Solver TAC TAC 
  ($ yr-1) ($ yr-1) 

(P4) DICOPT 368649.0 368649.0 
 SBB 361982.8 361982.8 
 BARON 362429.7 362429.7 
 OQNLP 362459.9 362459.9 

(P5) DICOPT 399509.7 399509.7 
 SBB 366006.7 366006.7 
 BARON 377541.3 377541.3 
 OQNLP 399509.8 399509.8 

AP SSHEN 290597.2 342000.4 
 

We observe that in article Escobar and Trierweiler (2013), for the example 

of CS01, it is very likely that incorrect data for film heat transfer coefficients are 

reported. 
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