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Abstract

The multiperiod blending problem involves binary variables and bilinear terms,
yielding a nonconvex MINLP. In this work we present two major contributions for
the global solution of the problem. The first one is an alternative formulation of the
problem. This formulation makes use of redundant constraints that improve the MILP
relaxation of the MINLP. The second contribution is an algorithm that decomposes
the MINLP model into two levels. The first level, or master problem, is an MILP
relaxation of the original MINLP. The second level, or subproblem, is a smaller MINLP
in which some of the binary variables of the original problem are fixed. The results
show that the new formulation can be solved faster than alternative models, and that
the decomposition method can solve the problems faster than state of the art general
purpose solvers.

1 Introduction

Many processes in the petrochemical industry involve the blending of intermediate and final
products. Large cost savings can be achieved by efficient blending schemes that satisfy
the technical and regulatory specifications of products. For example, the economic and
operability benefits from optimal crude-oil blend scheduling can reach multimillion dollars
per year[1].

One of the first mathematical programming models to represent the scheduling of blend-
ing operations is the pooling problem[2]. The pooling problem seeks to find the optimal
blend of materials available from a set of supply streams, while satisfying the demand of a
set of products. The model enforces that the end products satisfy a specified minimum and
maximum level for each specification. The objective is to minimize the total cost (or maxi-
mize the profit) of the operation. Several optimization models for the pooling problem have
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been reported in the literature. The p-formulation[2], based on total flows and component
compositions, is commonly used in chemical process industries. The q-formulation[3] uses
variables based on the fraction that each input stream contributes to the total input to each
pool, and does not explicitly use the pool specifications as variables. The pq-formulation[4]

is obtained by including valid redundant inequalities in the q-formulation. Tawarmalani
and Sahinidis[4] prove that the redundant constraints help to obtain a stronger polyhedral
relaxation of the pooling problem. Lastly, Audet et al.[5] propose a hybrid formulation by
combining the p and q models to avoid additional bilinear terms that arise when generalized
pooling problems are modeled using the q-formulation.

The multiperiod blending problem can be regarded as an extension of the pooling prob-
lem. In addition to the pooling problem restrictions, it considers inventory and time vari-
ations of supply and demand. The multiperiod blending problem can be formulated as a
mixed-integer nonlinear programming (MINLP) problem[6]. Binary variables are required to
model the movements of materials in and out of the tanks and to account for fixed costs.
Even in the absence of binary variables, bilinear terms (which are necessary to model the
mixing of various streams) make the problem nonconvex. Due to this highly combinatorial
and nonconvex nature, the blend scheduling problem is very challenging. General purpose
global optimization solvers fail to solve even small instances.

To the best of our knowledge, Foulds et al.[7] were the first to propose a global optimization
algorithm to solve a single-component pooling problem. They use McCormick envelopes[8]

to relax the bilinear terms. Androulakis et al.[9] propose a convex quadratic NLP relaxation,
known as αBB underestimator. However, due to its generality, the NLP relaxation is weaker
than its LP counterpart. Ben-Tal et al.[3] and Adhya et al.[10] present different Lagrangean
relaxation approaches for developing lower bounds for the pooling problem. These bounds
are tighter than standard LP relaxations used in global optimization algorithms.

In the context of processing network problems, Quesada and Grossmann[11] apply the
reformulation-linearization technique (RLT)[12], together with McCormick envelopes, to im-
prove the relaxation of a bilinear program by creating redundant constraints. These authors
combine concentration and flow based models in order to obtain a relaxed LP formulation
that provides a valid and strong lower bound to the global optimum. Similar results are ob-
tained by Tawarmalani and Sahinidis[4] for the multicomponent pooling problem. The idea
of using redundant constraints to strengthen the relaxation of the original problem is also
used by Karuppiah et al.[13] in the context of water networks. These constraints correspond
to total mass balance of contaminants and serve as deep cuts in the McCormick relaxation.

Piecewise MILP relaxations are an alternative relaxation of MINLPs that provide stronger
bounds than traditional MILP relaxations. The first references to the use of piecewise
MILP relaxation are by Bergamini et al.[14] and Karuppiah et al.[13]. Following this idea,
Wicaksono and Karimi[15] propose several novel formulations for piecewise MILP under and
overestimators for bilinear programs. Gounaris et al.[16] present a comprehensive computa-
tional comparison study of a collection of fifteen piecewise linear relaxations over a collection
of benchmark pooling problems. Misener et al.[17], building on the ideas from Vielma and
Nemhauser[18], introduce a formulation for the piecewise linear relaxation of bilinear functions
with a logarithmic number of binary variables. Another alternative to piecewise relaxations
are discretization techniques, such as multiparametric disaggregation[19, 20]. The number of
additional binary variables increases linearly with each increment in the precision of the
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discretization.
As an alternative to branch-and-bound solution procedures, Kolodziej et al.[19] propose

a heuristic as well as a rigorous two-stage MILP-NLP and MILP-MILP global optimization
algorithms. Approximate and relaxed MILPs are obtained through the multiparametric
disaggregation technique. Kesavan et al.[21] propose two approaches to generalize the outer
approximation algorithm to separable nonconvex MINLP. Similarly, Bergamini et al.[14],
based on the work from Turkay and Grossmann[22], present a deterministic algorithm based
on logic-based outer approximation that can guarantee global optimality in the solution of
an optimal the synthesis of process network problem.

Although the multiperiod blending problem arises in several applications, crude-oil blend-
ing is of great importance due to the potential increase in profit derived from optimal op-
eration. In fact, crude-oil costs account for about 80% of the refinery turnover[23]. As a
scheduling extension of the blending problem, crude-oil scheduling involves the unloading of
crude marine vessels into storage tanks, followed by the transfer of crude from storage to
charging tanks and finally, to the crude-oil distillation units (CDUs)[24, 25]. Lately, crude-oil
scheduling models incorporate more quantity, quality, and logistics decisions related to real-
life refinery operations, such as minimum run-length requirements, one-flow out of blender
or sequence-dependent switchovers[26].

Several authors have proposed different algorithms relying on mixed-integer linear formu-
lations to avoid solving the full nonconvex MINLP. These models can be seen as relaxations
of the original MINLP. Mendez et al.[27] present a novel MILP-based method where a very
complex MINLP formulation is replaced by a sequential MILP approximation that can deal
with non-linear gasoline properties and variable recipes for different product grades. Sim-
ilarly, a two-stage MILP-NLP solution procedure is employed by Jia et al.[28] and Mouret
et al.[29], featuring in the first stage a relaxed MILP model without the bilinear blending
constraints followed by the solution of the original MINLP after fixing all binary variables.
The same two-stage algorithm is studied by Castro and Grossmann[30] together with several
global optimization methods. However, instead of dropping the bilinear constraints in the
two-stage algorithm, they use multiparametric disaggregation to relax the bilinear terms.
Moro and Pinto[31] and Karuppiah et al.[13] tackle the problem with the augmented penalty
version and a specialized version of the outer-approximation method, respectively. Reddy et
al.[32] propose an MILP relaxation combined with a rolling-horizon algorithm to eliminate
the composition discrepancy. Finally, Li et al.[23] use a spatial branch-and-bound global op-
timization algorithm, that at each node uses the MILP-NLP two-stage strategy previously
mentioned, to solve the MINLP problems.

Even though, continuous-time models seem to be preferred for crude-oil scheduling, the
demand-driven nature of the multiperiod blending problem makes a simple discrete-time
framework a better choice for our problem. Despite the latest modeling and algorithmic
advances for this class of problems, large instances are still intractable. Improvements or
even new problem formulations and solution approaches must be proposed.

Generalized Disjunctive Programming (GDP) is a higher level representation of dis-
crete/continuous optimization problems[33]. GDP problems can be reformulated and solved
as MILP/MINLP problems. In this work, problems are presented as GDP and solved as
MILP/MINLP. Section 2.2 presents more details on this reformulation.

In this work, we make two primary contributions for solving multiperiod blending prob-
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lems. The first is an alternative formulation of the problem, in terms of generalized dis-
junctive programming (GDP), that makes use of redundant constraints. These constraints
considerably improve the linear GDP relaxation of the nonlinear GDP. Based on the obser-
vation that one can reduce the complexity of a problem by fixing values of certain variables,
a decomposition method is proposed next. The algorithm decomposes the GDP model into
two levels. The first level, or master problem, is a linear GDP relaxation of the original GDP
that provides rigorous upper bounds. The second level, or subproblem, is a smaller GDP
in which some of the Boolean variables of the original problem are fixed. The subproblem,
when a feasible solution is found, provides a feasible solution to the original GDP and a rig-
orous lower bound. These problems are solved successively until the gap between the upper
and lower bound is closed. We illustrate the new formulation and decomposition method
with several test problems. The results show that the new formulation can be solved faster
than the alternatives, and that the decomposition method can solve the problems faster than
state-of-the-art general purpose solvers.
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Table 1: Nomenclature of sets and variables

Sets Symbols Element

Total number of tanks N = S ∪ B ∪ D n

Blending tanks B b

Supply tanks S s

Demand tanks D d

Specifications Q q

Sources R r

Time periods T t

Variables Symbols Sets

Continuous Variables

Flow between tanks n and n′ at the end of time t Fnn′t (n, n′) ∈ A, t ∈ T
Demand flow from tanks d at time t FDdt d ∈ D, t ∈ T
Inventory in tank n at the end of time t Int n ∈ N , t ∈ T
Specification q in tank b at the end of time t Cqbt q ∈ Q, b ∈ B, t ∈ T
Flow of specification q between tanks n and n′ at time t F̄qnn′t q ∈ Q, (n, n′) ∈ A, t ∈ T
Inventory of specification q in blending tank b at time t Īqbt q ∈ Q, n ∈ N , t ∈ T
Flow of source r between tanks n and n′ at time t F̃rnn′t r ∈ R, (n, n′) ∈ A, t ∈ T
Inventory of source r in blending tank b at time t Ĩrbt r ∈ R, n ∈ N , t ∈ T
Fraction of inventory in blending tank b sent to

ξbnt (b, n) ∈ A, t ∈ T
tank n at the end of time t

Boolean Variables

Variable that indicates the existence of flow
Xnn′t (n, n′) ∈ A, t ∈ T

between tanks n and n′ at the end of time t

Variable that indicates the operating mode of

Y Bbt b ∈ B, t ∈ Tblending tank b at time t. Y Bbt = True indicates the tank

is charging. Y Bbt = False indicates the tank is discharging

Binary Variables

Binary variable that corresponds to Boolean variable Ybt.

ybbt b ∈ B, t ∈ Tybbt = 1 indicates the tank is charging.

ybbt = 0 indicates the tank is discharging
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Table 2: Nomenclature of parameters

Parameters Symbols Sets

Initial inventory for tank n I0
n n ∈ N

Initial values for the specifications q in tank b C0
qb q ∈ Q, b ∈ B

Incoming supply flows enter tank s at time t F IN
st s ∈ S, t ∈ T

Specification q in supply flow to tank s CIN
qs q ∈ Q, s ∈ S

Specification q in source r Ĉ0
qr q ∈ Q, r ∈ R

Bounds on demand flow from tanks d at time t [FDL
dt, FD

U
dt] d ∈ D, t ∈ T

Bound on specification q in demand tank d [CL
qd, C

U
qd] q ∈ Q, d ∈ D

Bounds on inventory for tank n [IL
n , I

U
n ] n ∈ N

Bounds on flow between tank n and n′ [FL
nn′ , FU

nn′ ] (n, n′) ∈ A
Costs for the supply flow for tank s βTs s ∈ S
Prices for demand flow for tank d βTd d ∈ D
Fixed costs for flow from tank n to tank n′ αN

nn′ (n, n′) ∈ A
Variable costs for flow from tank n to tank n′ βNnn′ (n, n′) ∈ A

Table 3: GDP models

Model Description

(C)
Concentration of individual specifications is a variable.

Bilinear terms appear when blending tank is in “charging” mode.

(SF)
Flow and inventory of specifications and split fraction are variables.

Bilinear terms appear when blending tank is in “discharging” mode.

(SB)
Flow and inventory of sources and split fraction are variables.

Bilinear terms appear when blending tank is in “discharging” mode.

(CSB) Same as (C), but including redundant constraints from (SB).

(MP) Master problem. Linear relaxation of (CSB), including enumeration cuts.

(SP) Subproblem using (CSB) model with Ybt fixed.
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2 The Multiperiod Blending Problem

The multiperiod blending problem is defined on a network (N ,A), where N is the set of
nodes and A ⊆ N × N is the set of arcs connecting these nodes. The set of nodes is
partitioned into three subsets corresponding to the types of tanks: supply nodes s ∈ S,
blending nodes b ∈ B, and demand nodes d ∈ D. Directed arcs (n, n′) ∈ A between nodes
correspond to streams from tank n to tank n′. In general, interconnections between the
supply and demand tanks, as well as between blending tanks, are allowed by the model.
The streams and inventories in the system possess different specifications q ∈ Q, such as
concentration of chemical compounds or physical properties. The network operates over
a time horizon composed of multiple time periods, T = {0, 1, . . . , T}, over which demand
within concentration specifications has to be satisfied at the end of each time period. Figure
1 shows a schematic representation of the blending system.

Figure 1: Sketch of the multiperiod blending problem

Given fixed feed compositions CIN
qs and incoming flows F IN

st to the supply tanks, as well
as initial conditions in each tank, the problem consists of determining the flows Fnn′t, FDdt,
inventories Int and compositions Cqbt in the network in each time period so as to maximize
the profit (or minimize the total cost) of the blending schedule, while meeting the demand
limits [FDL

dt, FD
U
dt] within specified limits of composition [CL

qd, C
U
qd].

Note that each time period t ∈ T is not independent of the others due to the coupling
created by the inventories [6]. For instance, the composition and flow of an outgoing stream
from a blending tank at time t depends on the inventory in that tank at the end of the previ-
ous time period, t−1. As a consequence, the optimization must be performed simultaneously
over all time periods.

For simplicity, the composition of the incoming flow to the supply tanks CIN
qs and the

bounds on the concentration of flows leaving the demand tanks [CL
qd, C

U
qd] are assumed to be

constant over the time horizon. As a result, the compositions Cqbt in the blending tanks in
each time period are the only ones that are unknown in the system (hence the subscript b
instead of n in Cqbt). On the other hand, the supply and demand flows can vary in amount
over time (hence the subscript t in F IN

st and [FDL
dt, FD

U
dt]).

The system operates within bounds on the inventories [IL
n , I

U
n ], and on the flows [F L

nn′ , FU
nn′ ]
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between each pair of tanks (n, n′) ∈ A.
In order to quantify the profit of the blending process, costs for the supply flows βT

s ,
prices for the demand flows βT

d , and fixed and variable costs [αN
nn′ , βN

nn′ ] for the flows within
the network are taken into account.

An important assumption is that, due to operational and safety considerations, simulta-
neous input/output streams to blending tanks is not allowed, i.e. flow cannot enter and exit
a blending tank in the same time period. Boolean variables Xnn′t, which represent existence
(Xnn′t = True) or absence (Xnn′t = False) of flow between tanks n and n′, are required
to model this assumption, as well as to represent fixed costs for using the pipelines in the
objective function. Additional Boolean variables (Y Bbt) are used to represent the operating
mode of a blending tank (Y Bbt = True if a tank is “charging” and Y Bbt = False if a tank
is “discharging”). Finally, the multiple liquid streams that enter the blending tanks are
assumed to be perfectly mixed at the end of the time period.

Tables 1 and 2 contain a detailed explanation of the nomenclature used for sets, variables
and data in the problem. It can be noted from these tables that parameters contain a
superscript and variables do not. Table 3 contains the different models presented in this
work, as well as a brief description with the main difference among them.

2.1 Motivating Example

In this section we present a small illustrative example to provide some insight on the com-
plexity of multiperiod blending problems. It should be noted that the instance is significantly
simple so that the solution can in fact be obtained by inspection. The instance consists of
2 supply tanks, 8 blending tanks, 2 demand tanks, 6 time periods and 1 specification. The
topology of the network is shown in Figure 2.

Figure 2: Topology of the motivating example

Tables 4 and 5 contain the parameters of the supply and demand streams. The initial
inventory and concentration are zero for all blending tanks, I0

b = C0
qn = 0 ∀ b ∈ B, q ∈ Q.
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There is no inventory capacity in supply and demand tanks (IU
s = IU

d = 0 ∀ s ∈ S, d ∈ D).
The maximum inventory in the blending tanks is 30 for the first row of tanks (IU

b = 30 ∀ b ∈
{1, 2, 3, 4}) and 20 for the second row of tanks (IU

b = 20 ∀ b ∈ {5, 6, 7, 8}). The maximum
flow between tanks is 30 (FU

nn′ = 30 ∀ (n, n′) ∈ A). The fixed cost for using the pipelines of
0.1 (αN

nn′ = 0.1 ∀ (n, n′) ∈ A).

Table 4: Supply tank specifications

CIN
s F IN

st

Supply tank Qual.A t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 βT
s

s1 0.06 10 10 10 0 0 0 0

s2 0.26 30 30 30 0 0 0 0

Table 5: Demand tank specifications

[CL
qd, C

U
qd] FDL

dt

Demand tank Qual.A t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 βT
d

d1 [0, 0.16] 0 0 15 15 15 15 2

d2 [0, 1] 0 0 15 15 15 15 1

Note the rigid structure of the instance. The sum of the supply flow over the time horizon
equals the demand. Since the initial inventory is zero, all the supply should be used to satisfy
the demand, thus all blending tanks will be empty at the end of the time horizon. Besides,
the supply with low concentration of specification A should be equally mixed with flow from
supply s2 in order to satisfy the specifications of demand tank d1. The rest of supply s2 can
be sent directly to demand tank d2 because there is no upper limit for specification A. The
uneven inventory upper bounds on the tanks and the high symmetry derived from an empty
initial inventory, increases the complexity of a seemingly simple instance. The maximum
profit of this problem is 177.5 and an optimal flow schedule is shown in Figure 3. Table
6 contains the dimensions of the problem in terms of number of variables, constraints and
bilinear terms.

Table 6: Size of the (C) formulation (explained below) for the motivating example

Continuous Variables Binary variables Constraints Bilinear terms

584 240 1178 128

Even though it is a relative trivial instance, global optimization solvers, such as BARON
14.0[34], ANTIGONE 1.1[35] or SCIP 3.1[36], have difficulty even finding a feasible solution
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Figure 3: An optimal flow schedule for the motivating example

to this problem when using the original MINLP formulation of Kolodziej et al.[6]. In fact,
after 30 minutes of computational time, none of them reported a feasible solution. As men-
tioned before, this example motivates the need for alternative formulations and customized
techniques that can handle even larger instances.

2.2 Generalized Disjunctive Programming (GDP) Formulations

In this section we present two alternative formulations for the multiperiod blending problem:
a concentration model (C) and a split fraction model (SF). The concentration model (C)
includes the concentration of individual specifications as variables. As such, the bilinear
terms of this formulation appear when a tank is “blending”. The split fraction model (SF)
includes as variables the flow and inventory of individual specifications, and the split frac-
tion of discharge. As such, the bilinear terms appear when a tank is “discharging”. Both
formulations are presented as Generalized Disjunctive Programming (GDP) models.

GDP is an alternative method for formulating discrete/continuous optimization problems.
GDP models can be reformulated as MINLP problems using either the Big-M (BM) or hull-
reformulation (HR). For more details on the reformulations, we refer the reader to the review
work on modeling optimization problems through generalized disjunctive programming[33].
In this work, problems are formulated as GDP models and solved as MINLPs by using the
(BM) reformulation.

To illustrate the (BM) reformulation consider the following simple disjunction:
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[
X

F L1 ≤ F ≤ FU1

]
∨

[
¬X

F L2 ≤ F ≤ FU2

]
F ∈ R
X ∈ {True, False}

(1)

where F is a continuous variable, [F L1, FU1, F L2, FU2] are parameters, and X is a Boolean
variable. The GDP (1) can be reformulated as an MILP using (BM) as follows:

F L1 − F ≤M1(1− x)

F − FU1 ≤M2(1− x)

F L2 − F ≤M3x

F − FU2 ≤M4x

F ∈ R
x ∈ {0, 1}

(2)

Note that in (2) the Boolean variable X is replaced by the binary variable x. M1, M2,
M3, M4 are large enough parameters, so when x = 1 the first two constraints in (2) are
enforced, while the third and fourth constraints become redundant. When x = 0 the third
and fourth constraints are enforced, and the first two become redundant. In this example,
M1 = F L1−F L2, M2 = FU2−FU1, M3 = F L2−F L1, M4 = FU1−FU2 are valid M-parameters.

Kolodziej et al.[6] presented an MINLP model for the multiperiod blending problem, in
terms of total flow and concentration. The GDP formulation of this concentration model
(C) is as follows:

(C):

max
∑
t∈T

[ ∑
(n,d)∈A

βT
d Fndt −

∑
(s,n)∈A

βT
s Fsnt −

∑
(n,n′)∈A

(αN
nn′xnn′t + βN

nn′Fnn′t)
]

(3)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt ∀ s ∈ S, t ∈ T (4a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt ∀ d ∈ D, t ∈ T (4b)

[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

[
¬Xnbt

Fnbt = 0

]
∀ (n, b) ∈ A, t ∈ T (5)

 Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd ∀ q ∈ Q

 ∨ [ ¬Xsdt

Fsdt = 0

]
∀ (s, d) ∈ A, t ∈ T (6)
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 Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd ∀ q ∈ Q

 ∨ [ ¬Xbdt

Fbdt = 0

]
∀ (b, d) ∈ A, t ∈ T (7)



Y Bbt

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

IbtCqbt = Ibt−1Cqbt−1 +
∑

(s,b)∈A

FsbtC
IN
qs

+
∑

(b′,b)∈A

Fb′btCqb′t−1 ∀ q ∈ Q


∨


¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Cqbt = Cqbt−1 ∀ q ∈ Q

 ∀ b ∈ B, t ∈ T (8)

Xnbt ⇒ Y Bbt ∀ (n, b) ∈ A, t ∈ T (9a)

Xbnt ⇒ ¬Y Bbt ∀ (b, n) ∈ A, t ∈ T (9b)

IL
n ≤ Int ≤ IU

n ∀n ∈ N , t ∈ T (10a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ ∀ (n, n′) ∈ A, t ∈ T (10b)

FDL
dt ≤ FDdt ≤ FDU

dt ∀ d ∈ D, t ∈ T (10c)

CL
q ≤ Cqbt ≤ CU

q ∀ q ∈ Q, b ∈ B, t ∈ T (10d)

Xnn′t ∈ {True, False} ∀ (n, n′) ∈ A, t ∈ T (11a)

Y Bbt ∈ {True, False} ∀ b ∈ B, t ∈ T (11b)

In (C), the objective function (3) maximizes the profit that results from delivering prod-
ucts to the demand tanks, minus the costs associated with supply flows as well as fixed and
variable costs of transferring the liquids between tanks. Note that costs and revenues are
accounted through flows leaving the supply tanks and entering the demand tanks. Equations
(4) are total mass balances over the supply and demand tanks.

Disjunctions (5) to (7) represent the set of constraints regarding the existence of flow
between nodes. If the flow between nodes exists (Xnn′t = True), then upper and lower
bounds on flow and concentration are enforced. If the flow does not exist (Xnn′t = False),
then the flow is zero and no concentration constraints are enforced. Note that in disjunction
(6) CIN

qs is a parameter. However, this disjunction enforces that there can only exist flow
between supply and demand when the supply specifications lie within the demand bounds
(CL

qd ≤ CIN
qs ≤ CU

qd).
Disjunction (8) models the operation of the blending tanks. Since there cannot be simul-

taneous input/output streams to blending tanks, they can be either charging or discharging
but not both. The total mass balance of the inventory is calculated if a tank is either charg-
ing or discharging. However, the individual specification inventory balance is only calculated
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Figure 4: Illustration of no simultaneous input/output streams in a blending tank

when a tank is charging (Y Bbt = True). When it is discharging (Y Bbt = False), the re-
quired constraint specifies that there is no change in the concentration from the previous
time period. Figure 4 illustrates the disjunction used to model the blending tanks.

Constraints (9) state the logic relationship between the binary variables. If there is flow
coming into a blending tank (Xnbt = True), then Y Bbt must be active (Y Bbt = True) to
indicate that it is in charging mode; the opposite if flow is leaving the tank. The last set of
constraints (10) impose upper and lower bounds on the variables.

It is important to note that the original MINLP formulation of Kolodziej et al.[6] does
not make use of disjunction (8). Instead, the mass balance of the blending tanks is described
through global constraints. Introducing (8) in the formulation not only makes the “no
simultaneous charge/discharge” condition more explicit, but it also reduces the number of
bilinear terms. The reason for this reduction is that the mass balance individual specifications
is defined as a global constraint in the model by Kolodziej et al. (IbtCqbt = Ibt−1Cqbt−1 +∑
(s,b)∈A

FsbtC
IN
qs +

∑
(b′,b)∈A

Fb′btCqb′t−1 −
∑

(b,n)∈A
FbntCqbt−1). As such, bilinear terms appear in

the constraint regardless if the tank is charging or discharging. Furthermore, the bilinear
terms not only involve flow and concentration of blending tanks as in (C), but also flow
and concentration of the nodes connected to the blending tanks (FbntCqbt−1; (b, n) ∈ A).
When compared with the original MINLP formulation of Kolodziej et al. for the motivating
example presented before, the number of bilinear terms decreases 50%, from 248 to 128 .
This formulation requires more binary variables but, due to the logic implications (9), it
does not increase the combinatorial complexity of the problem.

Model (C) uses total flows, inventories and concentration of specifications as variables
(Fnn′t, Int and Cqbt). In this sense, formulation (C) is akin to the p-formulation of the
pooling problem. An alternative formulation for the multiperiod blending problem is the
split fraction model (SF). (SF) includes as variables the flow and inventory of individual
specifications, and the split fraction of discharge (F̄qnn′t, Īqbt and ξbnt). This type of model
was first proposed by Quesada and Grossmann[11] in their work on general process networks.

The split fraction model (SF) is as follows:

(SF):

max
∑
t∈T

[ ∑
(n,d)∈A

βT
d Fndt −

∑
(s,n)∈A

βT
s Fsnt −

∑
(n,n′)∈A

(αN
nn′ynn′t + βN

nn′Fnn′t)
]

(12)
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s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt ∀ s ∈ S, t ∈ T (13a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt ∀ d ∈ D, t ∈ T (13b)

[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

 ¬Xnbt

Fnbt = 0

F̄qnbt = 0 ∀ q ∈ Q

 ∀(n, b) ∈ A, t ∈ T (14)

 Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd ∀ q ∈ Q

 ∨
 ¬Xsdt

Fsdt = 0

F̄qbdt = 0 ∀ q ∈ Q

 ∀ (s, d) ∈ A, t ∈ T (15)

 Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

FbdtC
L
qd ≤ F̄qbdt ≤ FbdtC

U
qd ∀ q ∈ Q

 ∨
 ¬Xbdt

Fbdt = 0

F̄qbdt = 0 ∀ q ∈ Q

 ∀ (b, d) ∈ A, t ∈ T (16)



Y Bbt

Ibt = Ibt−1 +
∑

n∈Ňb

Fnbt

Īqbt = Īqbt−1 +
∑

(s,b)∈A

FsbtC
IN
qs

+
∑

(b′,b)∈A

F̄qb′bt ∀ q ∈ Q


∨



¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Īqbt = Īqbt−1 −
∑

(b,n)∈A
F̄qbnt ∀ q ∈ Q

Fbnt = ξbntIbt−1 ∀ (b, n) ∈ A
F̄qbnt = ξbntĪqbt−1 ∀ q ∈ Q, (b, n) ∈ A


∀ b ∈ B, t ∈ T

(17)

Xnbt ⇒ Y Bbt ∀ (n, b) ∈ A, t ∈ T (18a)

Xbnt ⇒ ¬Y Bbt ∀ (b, n) ∈ A, t ∈ T (18b)

IL
n ≤ Int ≤ IU

n ∀n ∈ N , t ∈ T (19a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ ∀ (n, n′) ∈ A, t ∈ T (19b)

FDL
dt ≤ FDdt ≤ FDU

dt ∀ d ∈ D, t ∈ T (19c)

IL
b C

L
q ≤ Īqbt ≤ IU

b C
U
q ∀ q ∈ Q, b ∈ B, t ∈ T (19d)

F L
nn′CL

q ≤ F̄qnn′t ≤ FU
nn′CU

q ∀ q ∈ Q, (n, n′) ∈ A, t ∈ T (19e)

0 ≤ ξbnt ≤ 1 ∀ (b, n) ∈ A, t ∈ T (19f)
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Xnn′t ∈ {True, False} ∀ (n, n′) ∈ A, t ∈ T (20a)

Y Bbt ∈ {True, False} ∀ b ∈ B, t ∈ T (20b)

The main difference between (C) and (SF) is that in the former the concentration of
individual specifications is a variable (Cqbt), while in the latter the flow and inventory of
individual specifications, and the split fraction of discharge are the variables (F̄qnn′t, Īqbt and
ξbnt). In (SF), constraints (12) and (13) are the same as constraints (3) and (4) in (C).
Constraints (14), (15) and (16) enforce flow and concentration bounds when there exists
flow between two nodes. Disjunction (17) models the charging and discharging constraints
of blending tanks. In order to enforce the same specification concentrations in the outflows
and inventory of a tank, it is necessary to introduce a new variable ξbnt. When discharging,
ξbnt represents the proportion of the inventory that flows to a tank (Fbnt = ξbntIbt−1). This
proportion needs to be the same for the total flow and the flow of the individual specifica-
tions (F̄qbnt = ξbntĪqbt−1). Note that in formulation (SF) the bilinear terms appear in the
formulation every time a blending tank operates in discharge mode (Y Bbt = False). Con-
straints (18) state the logic relationship between the binary variables. Finally, (19) impose
the bounds on the variables.

Note that model (SF) is not equivalent to the q-formulation of the generalized pooling
problem[3]. The proportion variables in the q-formulation denote the fraction of incoming
flow to the blending tank that is contributed by input n, which implies that the sum over
all n add to 1. In other words, the variables model the incoming streams to the tank and
not what is being withdrawn, which does not have to sum up to one if the tank is not being
emptied completely. In addition, the variables in the q-formulation represent the fraction of
raw materials that are supplied to the system, whereas the split fraction model tracks the
specifications just as the concentration model. In other words, instead of fractions of raw
materials, the variables of the split fraction model represent the actual amount of flow of each
specification q in each and every stream. The q-formulation is discussed in more detail in
Section 3.1. Nevertheless, Alfaki and Haugland[37] use proportions for flows transported from
pools to demand tanks for the standard pooling problem and named it the TP formulation.

Table 7: Number of bilinear terms of GDP formulations. B̂ = (b, b′) ∈ A, N̂b = (b, n) ∈ A

Model Bilinear terms
Motivating Example
|Q| = 5, |T | = 6

(C) |Q|
[
|B||T |+ |B̂|(|T | − 1)

]
640

(SF) |N̂b|(T − 1)(1 + |Q|) 720

Table 7 compares the number of bilinear terms of the two GDP models. Table 7 also
shows that, for the motivating example, (C) has fewer bilinear terms than (SF) (640 vs.
720). However, depending on the structure of the network, number of tanks, time periods
and specifications, one formulation can have more bilinear terms than the other. Note that
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the number of continuous variables is larger when the system is modeled using individual
flows and inventories (SF).

The proposed formulations imply that a decomposition approach can be used to exploit
the operational constraint on the blending tanks. By deciding whether the tank is in charge
or discharge mode, the number of binary variables representing the connection between
blending tanks and the rest of the network is reduced. Moreover, if the operating mode
of the tanks is fixed at each period of time, the number of bilinear terms can be further
reduced, thus yielding smaller and easier problems to solve. Before presenting the details of
the decomposition algorithm, an alternative formulation is proposed.

3 Improving Formulation with Redundant Constraints

A crucial feature for solving a nonconvex MINLP is the tightness of the formulation when the
non-convex constraints are relaxed (i.e. the MILP relaxation of a nonconvex MINLP). Note
that performing the linear relaxation on the GDP and then using the (BM) reformulation
yields the exact same MILP as first using the (BM) reformulation and then performing the
linear relaxation (assuming the same big-M parameters are used). Therefore, the MILP
relaxation of the (BM) reformulation of a GDP is the same as the (BM) reformulation of
the linear GDP (LGDP) relaxation of the original GDP. A tighter LGDP relaxation of a
GDP means a tighter MILP relaxation of the MINLP reformulation of the GDP. Therefore,
tighter LGDP relaxations of a GDP typically translate into improved solution times in the
MINLP reformulation of the GDP.

In this section we present two new models for the multiperiod blending problem: a
source based model (SB) and a hybrid model between the concentration and source based
models (CSB). We first describe the new source based model (SB). We prove that the
LGDP relaxation of the source based model (SB) is tighter than the LGDP relaxation of
the split fraction model (SF). We present computational experiments that show that it is
also tighter than the LGDP relaxation of the concentration model (C) in all tested cases.
Using the key idea behind the source based model (SB), we then present an improvement
to the concentration model (C) using redundant constraints. The resulting model (CSB) is
a hybrid between the source based model (SB) and the concentration model (C). We prove
that the model (CSB) has the tightest LGDP relaxation of all the models presented in this
work.

3.1 Alternative Problem Formulation

If the blending network is modeled using concentrations, as in the (C) model, or using indi-
vidual flows and inventories, as in the (SF) model, the physical insight behind the equations
is to track the specifications from supply to demand. The disadvantage of these models is
that, when the non-convex constraints are dropped entirely, the composition limits of the
demand can be violated. For instance, if model (C) is relaxed, total mass balances are the
only equations that restrict flows and inventories. As a consequence, the streams entering
the demand tanks can have any composition. Similarly, when the bilinear terms are dropped
from model (SF), the individual flows and inventories are allowed to take any value between
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the bounds. The drawback is that any configuration that satisfies the total mass balance
in the tanks is a feasible solution for the relaxed problem, whereas most of them will be
infeasible to the original problem.

Alternatively, there is the option of tracking the “sources” or “commodities” in the
system, which is the insight behind the q-formulation of the pooling problem. This type of
model has also been used in crude-oil scheduling problems. The idea of “following” the crudes
along the network seems reasonable at the front-end of a refinery due to the specifications
in the feed to the distillation columns [24, 29].

Each supply and initial inventory in the blending tanks can be considered as a different
“source”. For instance, if crudes A and B are being unloaded and supplied to the system, in
which tanks 1 and 3 contain an initial inventory of crude C and D respectively, the blending
network has a total of four different types of crudes (or sources). Following with the crude-oil
scheduling example, once the crudes are mixed and right before the mixture is discharged to
the distillation columns, it is possible to calculate the relative amount of each specification
in the blend since the composition of the sources is known. It is not until the final mixture
of crudes is fed to the distillation columns that the composition specifications are checked.

Sources are defined as the supply and the blending tanks that have initial inventory
greater than zero. The new index r ∈ R denotes the set of sources in the blending network.
It is defined as R = S ∪ B̆ where B̆ = {b ∈ B : I0

b > 0}. The variables in the model
resemble the ones in the (SF) model, but note that now F̃rnn′t and Ĩrbt are individual flows
and inventories per source r instead of per specification q. Also, the model involves new
parameters Ĉ0

qr that represent the amount of specification q in source r and are defined as
follows:

Ĉ0
qs = CIN

qs ∀ s ∈ S (21a)

Ĉ0
qb = C0

qb ∀ b ∈ B̆ (21b)

The source based model (SB) is similar to the split fraction model (SF), but the sources
are tracked instead of the specifications. In the (SF) model, the fraction of specification q
in a stream is defined as the amount of flow of specification q in the stream, divided by
the total flow between tanks, see (22a). In model (SB), the composition of a stream is
determined from the compositions of each of the sources present in the stream. The sum of
the amount of specification q in each source corresponds to the total amount of specification
q in the stream, i.e. F̄qbdt =

∑
r∈R

F̃rbdtĈ
0
qr. If divided by the total flow, the composition can

be calculated as in equation (22b).

Cqbt =
F̄qbdt

Fbdt

∀ q ∈ Q, (b, d) ∈ A, t ∈ T (22a)

Cqbt =

∑
r∈R

F̃rbdtĈ
0
qr

Fbdt

∀ q ∈ Q, (b, d) ∈ A, t ∈ T (22b)
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The source-based model (SB), where sources r ∈ R correspond to the supply and blending
tanks with initial inventory, is as follows:

(SB):

max
∑
t∈T

[ ∑
(n,d)∈A

βT
d Fndt −

∑
(s,n)∈A

βT
s Fsnt −

∑
(n,n′)∈N

(αN
nn′ynn′t + βN

nn′Fnn′t)
]

(23)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt ∀ s ∈ S, t ∈ T (24a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt ∀ d ∈ D, t ∈ T (24b)

Fnn′t =
∑
r∈R

F̃rnn′t ∀n ∈ N , n′ ∈ N̂n, t ∈ T (25a)

Ibt =
∑
r∈R

Ĩrbt ∀ b ∈ B, t ∈ T (25b)

[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

[
¬Xnbt

Fnbt = 0

]
∀ (n, b) ∈ A, t ∈ T (26)

[
Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

]
∨

 ¬Xsdt

Fsdt = 0

F̃rsdt = 0 ∀r ∈ R

 ∀ (s, d) ∈ A, t ∈ T (27)


Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt ∀ q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 ∀ q ∈ Q

 ∨
[
¬Xbdt

Fbdt = 0

]
∀ (b, d) ∈ A, t ∈ T (28)


Y Bbt

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A
F̃rnbt ∀ r ∈ R

 ∨



¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A
F̃rbnt ∀ r ∈ R

Fbnt = ξbntIbt−1

F̃rbnt = ξbntĨrbt−1 ∀ r ∈ R


∀ b ∈ B, t ∈ T
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(29)

Xnbt ⇒ Y Bbt ∀ (n, b) ∈ A, t ∈ T (30a)

Xbnt ⇒ ¬Y Bbt ∀ (b, n) ∈ A, t ∈ T (30b)

IL
n ≤ Int ≤ IU

n ∀n ∈ N , t ∈ T (31a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ ∀ (n, n′) ∈ A, t ∈ T (31b)

FDL
dt ≤ FDdt ≤ FDU

dt ∀ d ∈ D, t ∈ T (31c)

IL
b ≤ Ĩrbt ≤ IU

b ∀ r ∈ R, b ∈ B, t ∈ T (31d)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ ∀ r ∈ R, (n, n′) ∈ A, t ∈ T (31e)

0 ≤ ξbnt ≤ 1 ∀ (b, n) ∈ A, t ∈ T (31f)

F̃rsnt|r=s = Fsnt ∀ (s, n) ∈ A, t ∈ T (32a)

F̃rbnt|r=b = Fbnt ∀ (b, n) ∈ A, t = 1 (32b)

Xnn′t ∈ {True, False} ∀ (n, n′) ∈ A, t ∈ T (33a)

Y Bbt ∈ {True, False} ∀ b ∈ B, t ∈ T (33b)

The source based model (SB) follows the same general idea as the split fraction model
(SF). However, there are four main differences. The first one is that the individual flows and
inventories are based on sources r ∈ R instead of specifications q ∈ Q. The second difference
are the constraints (25). These constraints relate the source flows and inventories to the
total flows and inventories, and they assume linear blending. Note that (25) is redundant
for the GDP, however, it is not redundant for its LGDP relaxation. Also note that similar
constraints cannot be included in the split fraction model (SF), since the specifications
can represent completely different properties (e.g. density and concentration of sulfur).
The third difference is disjunction (28). In this disjunction, the bounds on the different
specifications q ∈ Q for the demand, are transformed into restrictions for the sources r ∈ R.
This transformation is easily performed using the equations presented in (22). The last
difference lies in equations (32). These equations link the supply and initial inventories with
the corresponding individual flow per source. For instance, supply tank 1 holds source 1 and
nothing else.

The LGDP relaxation of the source based model (SB) is tighter than the LGDP relaxation
of the split fraction model (SF), as shown in the following theorem.

Theorem 3.1 Let (R−SF) and (R−SB) be, respectively, an LGDP relaxation of (SF) and
(SB) in which the nonlinear constraints are removed from the problem formulation. Then
(R−SB) ⊆ (R−SF).
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Proof. Let (Int, Fnn′t, FDdt, Ĩrbt, F̃rnn′t, Xnn′t, Y Bbt) be a feasible point in (R−SB). Let Īqbt =∑
r∈R

ĨrbtĈ
0
qr and F̄qnn′t =

∑
r∈R

F̃rnn′tĈ
0
qr.

If Xnbt = False, then F̃rnbt = 0 ∀r ∈ R. Then, for every q ∈ Q it is possible to multiply
both sides of the equation by Ĉ0

qr:

Ĉ0
qrF̃rnbt = 0 ∀r ∈ R, q ∈ Q (34)

By summing over all sources:∑
r∈R

Ĉ0
qrF̃rnbt = 0 ∀q ∈ Q (35)

F̄qnbt = 0 ∀q ∈ Q (36)

The same scheme can be used when Xsdt = False, Xbdt = False to obtain F̄qndt =
0 ∀q ∈ Q. For the source inventory balance constraint (associated with the Boolean variable
Y Bbt) the same two steps can be applied.

If Y Bbt = True, then Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A
F̃rnbt ∀ r ∈ R, which implies:

Īqbt = Īqbt−1 +
∑

(n,b)∈A

F̄qnbt ∀ q ∈ Q (37)

where F̄qsbt = FsbtC
IN
qs (s, b) ∈ A

If Y Bbt = False, then Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A
F̃rbnt ∀ r ∈ R, and then:

Īqbt = Īqbt−1 −
∑

(b,n)∈A

F̄qbnt ∀ q ∈ Q (38)

When Xbdt = True, then CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt ∀ q ∈ Q, so:

CL
qdFbdt ≤ F̄qbdt ≤ CU

qdFbdt ∀ q ∈ Q (39)

The same procedure can be applied to obtain valid upper and lower bounds for the
variables.

It is clear then, considering constraints (36), (37), (38) and (39), that for a feasible point
(Int, Fnn′t, FDdt, Ĩrbt, F̃rnn′t, Xnn′t, Y Bbt) in (R−SB) it is possible to set Īqbt =

∑
r∈R

ĨrbtĈ
0
qr and

F̄qnn′t =
∑
r∈R

F̃rnn′tĈ
0
qr and obtain the point (Int, Fnn′t, FDdt, Īrbt, F̄rnn′t, Xnn′t, Y Bbt) that is

feasible for (R−SF). This means that any (Int, Fnn′t, FDdt, Xnn′t, Y Bbt) that is feasible for
(R−SB) is also feasible for (R−SF) �.
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Table 8: Comparison between the LGDP relaxation of different formulations.

# Variables # Constraints Normalized relaxation

Ex. |R| |Q| (C) (SF) (SB) (C) (SF) (SB) (C) (SF) (SB)
1 2 1 681 889 793 1558 2582 2054 1.007 1.020i 1.000∗

2 2 5 1385 1849 793 4342 7158 2822 1.012 1.026i 1.000∗

3 2 10 2265 3049 793 7846 12902 3782 1.012i 1.026i 1.000∗

4 5 1 681 889 2713 1558 2582 5894 1.006i 1.006 1.000∗

5 5 5 1385 1849 2713 4342 7158 6662 1.022 1.022 1.011
6 5 10 2265 3049 2713 7846 12902 7622 1.022i 1.022i 1.006
7 10 1 681 889 1513 1558 2582 3494 1.000∗ 1.000∗ 1.000∗

8 10 5 1385 1849 1513 4342 7158 4262 1.005 1.005 1.005
9 10 10 2265 3049 1513 7846 12902 5222 1.005 1.005 1.005

Note that Theorem 3.1 considers the linear relaxations (R−SB) and (R−SF) without
the McCormick envelopes. The relaxations using the McCormick envelopes depend on the
bounds of Ĩrbt and Îrbt.

Table 8 compares the value of the objective function of the LGDP relaxation of (C), (SF)
and (SB) for 9 instances. The LGDP relaxation was obtained using McCormick envelopes.
All instances have 240 binary variables. The solutions were obtained using CPLEX 12.6.
All values reported were below 1% gap after 1800 seconds of computational time. Values
are normalized to the best known feasible solution. An asterisk ∗ marks the instances in
which the value of the Boolean variables in the LGDP relaxation is the same as their value
in the optimal solution to the GDP. i indicates those relaxed solution that will lead to an
infeasible subproblem when the set of Boolean variables Y Bbt is fixed accordingly. Instances
with 1, 5 and 10 specifications and 1, 5 and 10 sources are used for the comparison. All the
instances have 6 time periods and same network topology as the motivating example. Three
conclusions can be inferred from the results:

1. For the examples tested, (SB) is stronger than (C) and (SF) when the bilinear terms
in the source-based model are relaxed using McCormick envelopes.

2. The difference between relaxations is larger when the number of specifications is high
and the number of sources is low.

3. In general, the size of the relaxed (C) formulation strongly depends on the number of
specifications, whereas the size of the relaxed (SB) model depends on the number of
sources.

The difference between the values of the normalized relaxations may not seem that sig-
nificant at first. However, the feasibility of the subproblem when the set of discrete variables
Y Bbt is fixed according to the solution of the relaxed LGDP is crucial for the decomposition
algorithm. In 6 of the 9 examples, the upper bound provided by the relaxation of the source
based model (SB) is the same as the best known solution. Furthermore, when fixing the
Boolean variables Y Bbt form the LGDP relaxation of (SB), all solutions are feasible to the
original problem. In the concentration (C) and split fraction (SF) models 3 and 4 instances
become infeasible, when fixing the value of Y Bbt from the LGDP relaxation.
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Note that the q and pq-formulations are also exploiting the idea of sources or commodities
to model the blending process. Even though the ideas are similar, these formulation have
clear differences with the source-based model. The proportion variables in the q-formulation
denote the fraction that each source contributes to the total incoming flow to the blending
tank, which implies that the sum of the fractions over all sources add to 1. Instead of
following the fraction of the total flow that corresponds to each source, the source-based
model tracks the actual amount of source in each and every stream in the system. Also, the
source-based model uses splits fractions in order to ensure consistency in the discharge. This
is not necessary in the traditional q-formulation, since the pooling problem does not consider
inventories. Gupte et al. [38] proposed an extension of the q-formulation to handle inventories
and semi-continuous flows. However, their model requires the introduction of more bilinear
terms with up to five indexes per term. This implies that the number of bilinear terms
will increase drastically even with small instances. Finally, the classical Haverly pooling
problem is used to illustrate the difference between the traditional formulations in the pooling
community and the new formulation presented in this report. See Appendix A for details.

3.2 Using redundant constraints in the (C) model

The linear constraints of the source based model (SB) can be used as redundant constraints
in the concentration model (C). This allows to obtain stronger LGDP relaxations. The
new model (CSB) (hybrid of the (C) and (SB) models) will increase in size but will have a
stronger LGDP relaxation. The model is as follows:

(CSB):

max
∑
t∈T

[ ∑
(n,d)∈A

βT
d Fndt −

∑
(s,n)∈A

βT
s Fsnt −

∑
(n,n′)∈A

(αN
nn′xnn′t + βN

nn′Fnn′t)
]

(40)

s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt ∀ s ∈ S, t ∈ T (41a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt ∀ d ∈ D, t ∈ T (41b)

Fnn′t =
∑
r∈R

F̃rnn′t ∀ (n, n′) ∈ A, t ∈ T (42a)

Ibt =
∑
r∈R

Ĩrbt ∀ b ∈ B, t ∈ T (42b)

[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

[
¬Xnbt

Fnbt = 0

]
∀ (n, b) ∈ A, t ∈ T (43)
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 Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd ∀ q ∈ Q

 ∨ [ ¬Xsdt

Fsdt = 0

]
∀ (s, d) ∈ A, t ∈ T (44)



Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd ∀ q ∈ Q

CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt ∀ q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 ∀ q ∈ Q


∨

[
¬Xbdt

Fbdt = 0

]
∀ (b, d) ∈ A, t ∈ T (45)



Y Bbt

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

IbtCqbt = Ibt−1Cqbt−1 +
∑

(s,b)∈A

FsbtC
IN
qs

+
∑

(b′,b)∈A

Fb′btCqb′t−1 ∀ q ∈ Q

Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A
F̃rnbt ∀ r ∈ R


∨



¬Y Bbt

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Cqbt = Cqbt−1 ∀ q ∈ Q

Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A
F̃rbnt ∀ r ∈ R


∀ b ∈ B, t ∈ T

(46)

Xnbt ⇒ Y Bbt ∀ b ∈ B, n ∈ Ňb, t ∈ T (47a)

Xbnt ⇒ ¬Y Bbt ∀ b ∈ B, n ∈ N̂b, t ∈ T (47b)
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IL
n ≤ Int ≤ IU

n ∀n ∈ N , t ∈ T (48a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ ∀ (n, n′) ∈ A, t ∈ T (48b)

FDL
dt ≤ FDdt ≤ FDU

dt ∀ d ∈ D, t ∈ T (48c)

CL
q ≤ Cqbt ≤ CU

q ∀ q ∈ Q, b ∈ B, t ∈ T (48d)

IL
b ≤ Ĩrbt ≤ IU

b ∀ r ∈ R, b ∈ B, t ∈ T (48e)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ ∀ r ∈ R, (n, n′) ∈ A, t ∈ T (48f)

F̃rsnt|r=s = Fsnt ∀ (s, n) ∈ A, t ∈ T (49a)

F̃rbnt|r=b = Fbnt ∀ (b, n) ∈ A, t = 1 (49b)

Xnn′t ∈ {True, False} ∀ (n, n′) ∈ A, t ∈ T (50a)

Y Bbt ∈ {True, False} ∀ b ∈ B, t ∈ T (50b)

In addition to the constraints in the concentration model (C), (CSB) includes the last
two inequalities in the first term of the disjunction (45), the last equations in disjunction
(46), and equalities (42) and (49). Note that all of these inequalities are linear.

Consider the concentration model (C), the source based model (SB), and the hybrid
model (CSB). The LGDP relaxation of (CSB) is tighter than the LGDP relaxation of the
other two, as stated in the following theorem.

Theorem 3.2 Let (R−C), (R−SB) and (R−CSB) be, respectively, a linear relaxation of
(C), (SB) and (CSB) in which the nonlinear constraints are removed from the problem
formulation. Then (R−CSB) ⊆ (R−SB) and (R−CSB) ⊆ (R−C).

The proof of Theorem 3.2 is trivial, since (R−CSB) includes all of the constraints of
(R−C) and (R−SB).

In summary, we have presented four formulations in this work: the concentration model
(C), the split fraction model (SF), the source based model (SB), and the hybrid model
(CSB). We can stablish the following relations between the LGDP relaxation of these mod-
els: (R−CSB) ⊆ (R−SB) ⊆ (R−SF), and (R−CSB) ⊆ (R−C). Therefore, when removing
the nonlinear constraints from the formulations, (CSB) is stronger than the other formula-
tions. Note that a linear relaxation of the different formulations can be achieved by using
McCormick[8] envelopes of the bilinear terms. In such a case, the strength of the linear
relaxation also depends on the bounds of the variables involved in the bilinear terms. In
real applications, it is likely that the bounds for total flow and concentration are stronger
than the bounds for individual specification inventories and split fractions. In such cases,
the advantage of (CSB) over (R−SB), and (R−SF) is further increased.

The number of bilinear terms in (CSB) is the same as in (C). The number of bilinear
terms in (SB) depends not only on Q, T and B, but also on S and the number of blending

24



tanks with I0
b > 0. Table 9 presents the number of bilinear terms for (CSB) and for (SB) for

two instances. Both instances have the same topology and |Q| = 5 and |T | = 6. However,
the initial inventory of all the blending tanks in the first instance is zero. The initial inventory
of all blending tanks in the second instance is greater than zero. It is clear from Table 9 that
the number of bilinear terms for the (SB) can change drastically for “similar” instances (480
vs.1760).

Table 9: Number of bilinear terms of GDP formulations. B̂ = (b, b′) ∈ A, N̂b = (b, n) ∈ A

Model Bilinear terms
Motivating Example

|Q| = 5, |T | = 6 |Q| = 5, |T | = 6
I0
b = 0, |R| = 2 I0

b > 0, |R| = 10

(CSB) |Q|
[
|B||T |+ |B̂|(|T | − 1)

]
640 640

(SB) |N̂b|(T − 1)(1 + |R|) 480 1760

The MINLP reformulation of the concentration model, with and without redundant con-
straints ((C), (CSB)) was tested in 48 instances. Half of these instances include initial
inventory and the other half do not (See Section 5 for more details on the instances). Table
10 shows the fraction of the instances for which the solver could find at least one feasible
solution. The global solvers BARON 14.0, ANTIGONE 1.1, and SCIP 3.1 were used.

Table 10: Fraction of instances for which a feasible solution was found in less than 30 minutes.

Solver (CSB) (C)
SCIP 0.42 0.31

BARON 0.29 0.21
ANTIGONE 0.31 0.29

In general, a feasible solution is obtained for a larger number of instances if the problem
is modeled using the redundant constraints. For instance, in the case of SCIP, the number
of instances for which SCIP can find a solution increase from 15 to 20 out of 48 instances.
In addition, SCIP performs better than its competitors, since it can find a feasible solution
in 42% of the instances against the 29% and 31% of BARON and ANTIGONE, respectively.
Due to this superior performance, SCIP 3.1 is used as a reference for comparison in the
computational results.

It can be seen that the performance of the solver is better when the redundant constraints
are added to the concentration model. Nevertheless, the number of instances for which a
feasible solution was found is still small. This motivates the need to develop a specialized
algorithm that can better exploit the structure of the problem.
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4 A Two-Stage MILP-MINLP Decomposition

Algorithm

Considering the performance of commercial solvers and the potential advantages of the (CSB)
formulation, a decomposition algorithm is proposed next. As mentioned before, if the oper-
ating mode of the blending tanks is fixed, the resulting GDP becomes easier to solve, due
to a reduction in size and complexity. In fact, all variables related to incoming arcs to a
blending tank (i.e. Fnbt and xnbt) will be removed from the model when the tank is discharg-
ing. Similarly, if the tank is being charged, all outgoing flows from the blending tank (i.e.
Fbnt and xbnt) will be set to zero. Furthermore, the number of bilinear terms will decrease
compared to the original GDP in the following circumstances:

1. If the blending tank is discharging at time t, the equations that describe the operation
are linear for that period (i.e., the second disjunct of disjunction (46) is True). Thus,
all bilinearities related to that blending tank and time period are eliminated from the
model. In addition, if a blending tank is in idle mode, it can be set to discharge mode
in order to avoid considering unnecessary bilinear terms.

2. The bilinear term Fb′btCqb′t−1 has to be included if and only if tank b′ is discharging
(¬Y Bb′t) and tank b is charging (Y Bbt) at time t. Therefore, if blending tank b has an
incoming stream from a supply tank, i.e. it is in charge mode, but there is no other
blending tank (b′), connected to tank b, that is discharging at that time t, bilinear
terms of the form Fb′btCqb′t−1 are unnecessary and can be eliminated.

To exploit these ideas, the proposed algorithm decomposes the GDP model into two
levels. The first level, or master problem, is a linear relaxation of the original GDP that
provides rigorous upper bounds for the profit. The second level, or subproblem, is a smaller
GDP in which the set of discrete variables Y Bbt is fixed. The subproblem, when a feasible
solution is found, provides a feasible solution to the original GDP and a rigorous lower bound.
These problems are solved successively until the gap between the upper and lower bounds is
within a tolerance. Figure 5 presents the flow diagram of the algorithm.

The solution of the master problem is used to define the subproblem, which is more
tractable than the original problem. A master problem with a tight relaxation is crucial for
the success of the algorithm, since its solution will be used to fixed the operating mode of the
tanks. The feasibility of the subproblem will strictly depend on the solution of the master
problem.

As mentioned in the introduction, there are many relaxation techniques that can be used
to construct the master problem. In the algorithm, the master problem is a linear relaxation
of (CSB) in which the non-convex constraints are dropped. Optimality and/or feasibility
cuts are added in the form of integer cuts, eliminating regions already evaluated in previ-
ous iterations. Note that McCormick envelopes could be used for linearly relaxing (CSB).
However, from computational experiments we observed that dropping the nonlinearities im-
proved the performance of the algorithm. In particular, the master problem solves faster,
and we did not observe a significant difference in the number of iterations of the algorithm.
We acknowledge that for other instances the use of McCormick envelopes could help the
algorithm to perform better.
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Figure 5: Decomposition Algorithm

The subproblem can be solved using a global optimization solver or through a specialized
technique that ensures global optimality. The concentration model plus the source-based
redundant constraints (CSB) is used in the subproblem.

4.1 Description of the algorithm

The following master problem is a linear relaxation of the (CSB) in which the nonlinear
constraints were dropped. Also, optimality and/or feasibility cuts are added in the form of
integer cuts:

(MP):

max Z (51)

s.t.

Z ≤
∑
t∈T

[ ∑
(n,d)∈A

βT
d Fndt −

∑
(s,n)∈A

βT
s Fsnt −

∑
(n,n′)∈N

(αN
nn′ynn′t + βN

nn′Fnn′t)
]

(52)

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt ∀ s ∈ S, t ∈ T (53a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt ∀ d ∈ D, t ∈ T (53b)
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Fnn′t =
∑
r∈R

F̃rnn′t ∀n ∈ N , n′ ∈ N̂n, t ∈ T (54a)

Ibt =
∑
r∈R

Ĩrbt ∀ b ∈ B, t ∈ T (54b)

[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

[
¬Xnbt

Fnbt = 0

]
∀ (n, b) ∈ A, t ∈ T (55) Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd

 ∨ [ ¬Xsdt

Fsdt = 0

]
∀ (s, d) ∈ A, t ∈ T (56)



Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd ∀ q ∈ Q
CL

qdFbdt ≤
∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt ∀ q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 ∀ q ∈ Q


∨

[
¬Xbdt

Fbdt = 0

]
∀ (b, d) ∈ A, t ∈ T (57)



Y Bbt

ybbt = 1

Ibt = Ibt−1 +
∑

(n,b)∈A
Fnbt

Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A
F̃rnbt ∀ r ∈ R


∨



¬Y Bbt

ybbt = 0

Ibt = Ibt−1 −
∑

(b,n)∈A
Fbnt

Cqbt = Cqbt−1 ∀ q ∈ Q

Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A
F̃rbnt ∀ r ∈ R


∀ b ∈ B, t ∈ T

(58)

Z ≤ −(UB − Zi)
( ∑

b∈B, t∈T :

ŷb
i
bt=1

ybbt −
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt

)

+(UB − Zi)
( ∑

b∈B, t∈T

(ŷb
i

bt)− 1
)

+ UB ∀ i ∈ IO

(59a)

∑
b∈B, t∈T :

ŷb
i
bt=1

(1− ybbt) +
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt ≥ 1 ∀ i ∈ IF (59b)

Xnbt ⇒ Y Bbt ∀ (n, b) ∈ A, t ∈ T (60a)

Xbnt ⇒ ¬Y Bbt ∀ (b, n) ∈ A, t ∈ T (60b)
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IL
n ≤ Int ≤ IU

n ∀n ∈ N , t ∈ T (61a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ ∀ (n, n′) ∈ A, t ∈ T (61b)

FDL
dt ≤ FDdt ≤ FDU

dt ∀ d ∈ D, t ∈ T (61c)

IL
b ≤ Ĩrbt ≤ IU

b ∀ r ∈ R, b ∈ B, t ∈ T (61d)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ ∀ r ∈ R, (n, n′) ∈ A, t ∈ T (61e)

0 ≤ ξbnt ≤ 1 ∀ (b, n) ∈ A, t ∈ T (61f)

F̃rsnt|r=s = Fsnt ∀ (s, n) ∈ A, t ∈ T (62a)

F̃rbnt|r=b = Fbnt ∀ (b, n) ∈ A, t = 1 (62b)

Xnn′t ∈ {True, False} ∀ (n, n′) ∈ A, t ∈ T (63a)

Y Bbt ∈ {True, False} ∀ b ∈ B, t ∈ T (63b)

Note that variable ybbt is introduced in the formulation. This variable takes the value
of the binary variable that corresponds to Y Bbt in the (BM) reformulation of the GDP (i.e.
ybbt = 1, when Y Bbt = True). It is necessary to introduce the variable to add the enumer-
ation cuts (59), which are added in the form of integer cuts that eliminate regions already
evaluated in previous iterations. IF is the set of enumeration cuts that are added when a
subproblem is infeasible[39]. IO is the set of enumeration cuts that are added otherwise[40].
Z is the value of the objective function, UB a global upper bound for the GDP, and Zi

an upper bound for the objective function corresponding to the solution ŷb
i

bt. (59b) will
eliminate from the feasible space those solutions for the master problem that resulted in in-

feasible subproblems. When ybbt is different from ŷb
i

bt, then
∑

b∈B, t∈T :

ŷb
i
bt=1

ybbt −
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt

is smaller than
∑

b∈B, t∈T (ŷb
i

bt) and (59a) becomes Z ≤ UB (or an even weaker cut). When

ybbt = ŷb
i

bt, then
∑

b∈B, t∈T :

ŷb
i
bt=1

ybbt −
∑

b∈B, t∈T :

ŷb
i
bt=0

ybbt =
∑

b∈B, t∈T (ŷb
i

bt). In such a case, (59a)

becomes Z ≤ Zi and the cut is valid (since Zi is an upper bound of the objective function

in the solution ŷb
i

bt).

For a given ˜Y B
fix

bt ∈ {True, False}∀ b ∈ B, t ∈ T , consider the following subproblem
(which is the (CSB) model with tanks fixed in “charge” or “discharge” mode):

(SP):

max
∑
t∈T

[ ∑
(n,d)∈A

βT
d Fndt −

∑
(s,n)∈A

βT
s Fsnt −

∑
(n,n′)∈A

(αN
nn′xnn′t + βN

nn′Fnn′t)
]

(64)
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s.t.

Ist = Ist−1 + F IN
st −

∑
(s,n)∈A

Fsnt ∀ s ∈ S, t ∈ T (65a)

Idt = Idt−1 +
∑

(n,d)∈A

Fndt − FDdt ∀ d ∈ D, t ∈ T (65b)

Fnn′t =
∑
r∈R

F̃rnn′t ∀ (n, n′) ∈ A, t ∈ T (66a)

Ibt =
∑
r∈R

Ĩrbt ∀ b ∈ B, t ∈ T (66b)

[
Xnbt

F L
nb ≤ Fnbt ≤ FU

nb

]
∨

[
¬Xnbt

Fnbt = 0

]
∀ (n, b) ∈ A, t ∈ T , ˜Y B

fix

bt = True (67)

 Xsdt

F L
sd ≤ Fsdt ≤ FU

sd

CL
qd ≤ CIN

qs ≤ CU
qd ∀ q ∈ Q

 ∨ [ ¬Xsdt

Fsdt = 0

]
∀ (s, d) ∈ A, t ∈ T (68)



Xbdt

F L
bd ≤ Fbdt ≤ FU

bd

CL
qd ≤ Cqbt−1 ≤ CU

qd ∀ q ∈ Q

CL
qdFbdt ≤

∑
r∈R

F̃rbdtĈ
0
qr ≤ CU

qdFbdt ∀ q ∈ Q

CL
qdIbt−1 ≤

∑
r∈R

Ĩrbt−1Ĉ
0
qr ≤ CU

qdIbt−1 ∀ q ∈ Q


∨

[
¬Xbdt

Fbdt = 0

]
∀ (b, d) ∈ A, t ∈ T , ˜Y B

fix

bt = False

(69)

Ibt = Ibt−1 +
∑

(n,b)∈A

Fnbt ∀ b ∈ B, t ∈ T , ˜Y B
fix

bt = True (70a)

IbtCqbt = Ibt−1Cqbt−1 +
∑

(s,b)∈A

FsbtC
IN
qs

+
∑

(b′,b)∈A
˜Y B

fix
b′t=False

Fb′btCqb′t−1 ∀ q ∈ Q, r ∈ R, b ∈ B, t ∈ T , ˜Y B
fix

bt = True
(70b)

Ĩrbt = Ĩrbt−1 +
∑

(n,b)∈A

F̃rnbt ∀r ∈ R, b ∈ B, t ∈ T , ˜Y B
fix

bt = True (70c)
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Ibt = Ibt−1 −
∑

(b,n)∈A

Fbnt ∀ b ∈ B, t ∈ T , ˜Y B
fix

bt = False (71a)

Cqbt = Cqbt−1 q ∈ Q, b ∈ B, t ∈ T , ˜Y B
fix

bt = False (71b)

Ĩrbt = Ĩrbt−1 −
∑

(b,n)∈A

F̃rbnt ∀ r ∈ R, b ∈ B, t ∈ T , ˜Y B
fix

bt = False (71c)

Fbdt = 0 ∀ (b, d) ∈ A, t ∈ T , ˜Y B
fix

bt = True (72a)

Fnbt = 0 ∀ (n, b) ∈ A, t ∈ T , ˜Y B
fix

bt = False (72b)

IL
n ≤ Int ≤ IU

n ∀n ∈ N , t ∈ T (73a)

F L
nn′ ≤ Fnn′t ≤ FU

nn′ ∀ (n, n′) ∈ A, t ∈ T (73b)

FDL
dt ≤ FDdt ≤ FDU

dt ∀ d ∈ D, t ∈ T (73c)

CL
q ≤ Cqbt ≤ CU

q ∀ q ∈ Q, b ∈ B, t ∈ T (73d)

IL
b ≤ Ĩrbt ≤ IU

b ∀ r ∈ R, b ∈ B, t ∈ T (73e)

F L
nn′ ≤ F̃rnn′t ≤ FU

nn′ ∀ r ∈ R, (n, n′) ∈ A, t ∈ T (73f)

F̃rsnt|r=s = Fsnt ∀ (s, n) ∈ A, t ∈ T (74a)

F̃rbnt|r=b = Fbnt ∀ (b, n) ∈ A, t = 1 (74b)

Xnn′t ∈ {True, False} ∀ (n, n′) ∈ A, t ∈ T (75a)

Y Bbt ∈ {True, False} ∀ b ∈ B, t ∈ T (75b)

Note that the summation of streams that contains the bilinear terms in (70b) only involves

the blending tanks that are operating as “discharge” ( ˜Y B
fix

b′t = False) at a given time period.
The decomposition algorithm is as follows:
0. Specify gap ε > 0. Set UB = inf, LB = − inf, i = 1, IO = {∅}, and IF = {∅};
1. Solve (MP). Let ˜Y B

fix

bt be the value of Y Bbt at the optimal solution. Let ŷb
i

bt be the

binary representation of the Boolean parameter ˜Y B
fix

bt (i.e. if ˜Y B
fix

bt = True then ŷb
i

bt = 1,

and if ˜Y B
fix

bt = False then ŷb
i

bt = 0). Let UB be the value of the optimal objective function.

2. Solve (SP) using ˜Y B
fix

bt with optimality gap εSP ≤ ε.
If (SP) is infeasible, let i ∈ IF , and go to 3.
If (SP) is feasible, let i ∈ IO. Let Zi∗ be the value of the optimal objective function,

and Zi be the upper bound of the objective function. If Zi∗ > LB then set LB = Zi∗, let
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(I∗nt, F
∗
nn′t, C

∗
qbt, Ĩ

∗
rbt, F̃

∗
rnn′t, X

∗
nn′t, Y B

∗
bt) be the optimal values of the variables in (SP) and go

to 3. If Zi∗ ≤ LB go to 3.
3. If (UB−LB)/LB ≤ ε, stop with optimal solution (I∗nt, F

∗
nn′t, C

∗
qbt, Ĩ

∗
rbt, F̃

∗
rnn′t, X

∗
nn′t, Y B

∗
bt).

Else, set i = i+ 1 and go to 1.

Theorem 4.1 The decomposition algorithm converges to the global optimal solution, within
ε optimality gap, after a finite number of iterations.

Proof. Enumeration cut (59b) guarantees that infeasible solutions are not revisited again
by the master problem. Cut (59a) ensures that if a feasible solution is revisited, then the
UB from (MP) equals the upper bound of (SP) for that solution (Zi). Since εSP ≤ ε, then
(UB − LB)/LB ≤ ε. �.

Two phases were implemented for the algorithm. Both phases follow the same steps,
but different stopping criteria. In the first phase, the stopping criteria of the master and
the subproblem are the maximum execution time and the optimality gap. In the second
phase, the optimality gap is the only criteria. The objective of the first phase is to quickly
find feasible solutions by limiting the time limit for solving the master and subproblem.
Instead of focusing on a region, the algorithm is allowed to move to the next iteration and
try a different configuration of tanks after a small amount of time. In the second phase,
the objective is to find the optimal solution for the problem within a tolerance. In order to
guarantee global optimality, the master and the subproblem have to be solved, at least, to
the specified optimality gap of the algorithm.

4.2 Illustration of the algorithm

In order to illustrate the decomposition algorithm, consider the motivating example pre-
sented in section 2.1. It has an optimal solution of 177.5. The iterations of the algorithm
for this example are explained below.

Step 0. The iteration counter is set to i = 1. The maximum execution time of the algorithm
is set to 30 minutes and the optimality gap is set to 0.01%
Phase 1. The maximum execution time of the master problem is set to 30 seconds and
the optimality gap is set to 0.5%. For the subproblem, the maximum execution time is 100
seconds and the optimality gap is 0.5%. The maximum duration of the first phase is 15
minutes and the optimality gap is set to 0.5%
Iteration 1.

Step 1.1: Master problem. The MILP reformulation of the LGDP relaxation of
the hybrid formulation (CSB) is solved using CPLEX 12.6. The optimality gap after
4 seconds is below 0.5%. The best possible objective value provided by the solver is
an upper bound for the original GDP. The optimal solution is not a true upper bound
because the MILP is not solved to the tolerance of the algorithm. The upper bound is
set to UB = 177.8 and the solution of the master problem is stored for later use.
Step 1.2: Subproblem. The MINLP reformulation of (CSB), in which the operating
mode of blending tanks has been fixed according to the solution of the master problem
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Table 11: Value of Boolean variables Y Bbt at the relaxed solution

Y B∗1bt

Blending tank t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

1 True True

2 True True

3 True

4 True

5 True True

6 True True

7 True True

8 True True

shown in Table 11, is solved using SCIP 3.1. The subproblem is feasible with a solution
of 177.3. SCIP is able to close the gap to less than 0.5% in a second. The lower bound
is set to LB = 177.3.
Step 1.3: Stopping criteria. Since the gap between the lower and upper bounds is
less than the tolerance of the first phase, gap= 0.3% ≤ 0.5%, the algorithm proceeds to
the second phase. The iteration counter is set to i = 2.

The gap between the upper bound 177.8 and the lower bound 177.3 is very small. How-
ever, for illustration purposes, the phase 2 of the algorithm is presented for the example.

Note that the algorithm only needs one iteration and less than 5 seconds to find a good
feasible solution. Neither BARON 14.0, SCIP 3.1 or ANTIGONE 1.1 are able to find a
solution in 30 minutes when solving the original MINLP formulation by Kolodziej et al.[6].

Phase 2. The optimality gap for the master and the subproblem is set equal to the tolerance
of the algorithm, 0.01%. Time restrictions do not apply in the second phase. Since no cuts
are added, the master and the subproblem in the first iteration of the second phase are the
same as in the previous iteration, but the optimization has a different stopping criteria.
Iteration 2.

Step 2.1: Master problem. The optimal solution is found after 50 seconds. The new
upper bound is UB = 177.5. At the solution, the operating modes of the blending tanks
are the same as in step 1.2., which means that in the previous iteration CPLEX 12.6
found the optimal solution to the relaxed problem but it did not have time to prove
global optimality.
Step 1.2: Subproblem. The GDP is the same as in the previous iteration, which
means that, after finding the same solution of 177.3, SCIP continues the search until the
gap is less than 0.01% and the new lower bound increases to LB = 177.5.
Step 1.3: Stopping criteria. Since the gap between the lower and upper bounds is
less than the tolerance, gap = 0%, the algorithm stops.
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In summary, the decomposition algorithm only requires two iterations and less than two
minutes to find the global optimum. In fact, a good feasible solution is found in only a few
seconds. The correct combination of blending tanks obtained from a tight LGDP relaxation
in the master problem and the critical reduction in the number of binary variables and
bilinear terms leads to a feasible and more tractable GDP in the subproblem, as will be
shown in the next section.

5 Computational Results

In this section, we present the computational results of applying the algorithm described in
the previous section to several instances. The MINLP reformulation of the GDPs were also
solved with the global optimization solver SCIP 3.1 for comparison. There are rules that
could be used for deciding if the algorithm moves from one phase to another or from one
iteration to the next. In this study, the stopping criteria used in the master problem, in the
subproblem and in the first and second phases, are the same as the stopping criteria used to
illustrate the algorithm in section 4.2.

48 instances were tested. All instances have eight blending tanks and the same topology.
They can be divided in two groups: instances with initial inventory and instances without
initial inventory. In each group, all combinations of instances with 1, 2, 5 and 10 specifications
and 6 and 8 periods of time were generated. Table 12 shows the size of the instances in terms
of the number of variables, constraints and bilinear terms. The values of the parameters were
generated randomly.

Table 12: Size of the instances for the (C) formulation. The number in parenthesis indicates the
number of instances in each group.

Instances |T | |Q| Binary var. Bilinear terms Variables Constraints

A(6) 6 1 240 128 552 984

B(6) 6 2 240 256 600 1176

C(6) 6 5 240 640 772 1752

D(6) 6 10 240 1280 984 2712

E(6) 8 1 320 176 736 1312

F(6) 8 2 320 352 800 1568

G(6) 8 5 320 889 992 2336

H(6) 8 10 320 1760 1312 3616

The algorithm and models were implemented in GAMS[41]. All computations were per-
formed on a Dell PowerEdge T410 computer with twelve Intel Xeon processors at 2.67 GHz
each, 16 GB of RAM, and running Ubuntu Server 14.04 LTS (64-bit).

The decomposition algorithm is able to find at least a feasible solution for 45 out of
the 48 instances generated. The three instances that were unsolved had 8 periods and 10
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Figure 6: Evolution of the average normalized upper and lower bounds, for the decomposition
algorithm (solid line) and SCIP 3.1 (dashed line) when tested in 48 instances. The graph contains
the 45 instances for which a solution could be found.

specifications. SCIP 3.1 can only find solutions for 20 instances as was shown earlier in
Table 10. Figure 6 shows the performance of the decomposition algorithm and the MINLP
reformulation of (CSB) using SCIP 3.1. The figure shows the average normalized upper
and lower bounds. The average normalized lower bound provides the average best objective
function value (ANBOFV)

The figure shows that the decomposition algorithm performs better than SCIP. After
approximately two minutes, the ANBOFV of the instances solved with the algorithm is
close to 0.5, whereas SCIP is below 0.3. As the execution continues, the normalized lower
bound keeps increasing. After 600 seconds, the average solution is within 0.1 from the
best known objective function value. After 1200 seconds, the average normalized lower and
upper bounds are within 0.03 for the decomposition algorithm, while the solutions provided
by SCIP are far from the best known solutions. Another important result is the value of the
upper bound provided by the master problem, which is practically equal to the best known
solution since the first iteration. This shows the tightness of (CSB) when the nonconvex
constrains are relaxed.

Table 13 shows the problem size, fraction of blending tanks in charge mode at the so-
lution, the normalized upper bound and the time to get it, of the master problem for the
first iteration, all averaged for the 48 instances. Notice that the average time to get a good
upper bound for the original GDP problem is less than a minute, only few seconds in some
cases. Also, the fraction of tanks that are doing blending is low compared with those that
are discharging or in idle mode.

In the subproblem, the decomposition algorithm can find at least a feasible solution to 26
of the instances in the first iteration with a relative lower bound of 0.99. This implies that
the values of the Boolean variables representing the mode of operation of the tanks given by
the master problem is very close to the optimal solution for half of the instances. Table 14
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Table 13: Average values for the Master Problem at the first iteration

Master Problem (MILP reformulation of LGDP relaxation)

Instances Variables Const. Binary Var.
Fraction

Normalized UB Time (s)
Y Bbt = True

A(6) 1584 1896 240 0.30 1.001 5.2
B(6) 1584 2088 240 0.30 1.007 14.9
C(6) 1584 2664 240 0.29 1.007 22.5
D(6) 1584 3624 240 0.31 1.037 22.8
E(6) 2072 2528 320 0.34 1.001 15.6
F(6) 2072 2784 320 0.34 1.007 11.0
G(6) 2072 3552 320 0.34 1.004 24.3
H(6) 2072 4832 320 0.34 1.011 41.3

shows the problem size and normalized lower bound and time for the first iteration of the
subproblem.

Table 14: Average values for the Subproblem at the first iteration

Subproblem (MINLP reformulation of GDP)

Instance Variables Const. Binary Var Bilinear Terms Normalized LB Time (s)
A(6) 857 1776 56 40 0.83 7.2
B(6) 951 2302 59 83 0.66 67.4
C(6) 1058 3880 57 200 0.83 68.3
D(6) 1301 6510 58 405 0.33 68.8
E(6) 1094 2408 69 45 1.00 38.3
F(6) 1186 3130 72 91 0.33 157.2
G(6) 1400 5296 75 235 0.32 207.8
H(6) 1729 8906 76 470 0.00 177.3

The reduction in the number of binary variables and bilinear terms is essential to the
success of the algorithm. On average, the number of binary variables drops 70% when
compared to the original MINLP reformulation of the GDP. Similarly, the number of bilinear
terms decreases by 70%. These reductions are the main reasons why the MINLP global solver
used in the subproblem can find feasible solutions. Note that the lower bound is very close
to the best known objective function value for those instances with 6 time periods and 1,
2 and 5 specifications. However, the value of the feasible solution for instances with 10
specifications is not as good. When dealing with 8 time periods, only those with a single
specification have good lower bounds. Nevertheless, the solution for those instances with 2
and 5 specifications is still good considering that it is the first iteration.

In conclusion, the decomposition algorithm performs better than SCIP 3.1 for the 48
instances generated. The algorithm is able to find a good feasible solution for 45 of the
instances in less than two minutes. The tightness of the relaxation of the master problem
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and the reduction in the number of binary variables and bilinear terms in the subproblem
are key to the success of the algorithm.

6 Conclusions

In this manuscript, we have addressed the multiperiod blending problem, which frequently
arises in the petroleum and petrochemical industry. Our main goal has been to develop new
formulations and new algorithms for obtaining good feasible solutions in few minutes. We
have presented two principal contributions towards solving multiperiod blending problems
more effectively.

First, we have presented a source based formulation. The sources in a system are the
supplies and initial inventories. They can be interpreted as raw materials of known compo-
sition. The model uses flow and inventory variables to track down each one of the sources
along the network. The notion of split fraction is used to guarantee that the outflows from
a tank have the same composition. These are the only nonlinearities in the model. The
composition of a stream is determined from the compositions of each of the sources present
in the stream. Since the latter are parameters in the model, the specification requirement
constraints are linear. Lastly, we found redundant linear constraints that can be added to
this model in order to improve its relaxation. In the context of a branch-and-bound search,
this speeds up the convergence by reducing the number of open nodes. It was shown that the
number of instances for which a feasible solution can be found using a global optimization
solver increases when adding the redundant constraints (from 31 % to 41 % using SCIP 3.1)

Second, we have proposed a solution procedure that takes advantage of the operational
assumption of non-simultaneous inlet/outlet streams in the blending tanks. Under this
assumption, we can think of two non-coincident modes of operation for each blending tank
at any time period: charge mode or discharge mode. This restriction can be modeled using
disjunctions. The GDP formulation leads to a reduction in the number of bilinear terms and
generates a favorable structure that can be exploited in a decomposition algorithm. Thus,
an iterative two-stage MILP-MINLP decomposition method for the global optimization of
the multiperiod blending problem is proposed. The first stage, or master problem, is a linear
GDP relaxation of the original GDP and provides rigorous upper bounds. The second stage,
or subproblem, is a smaller GDP in which the set of the binary variables representing the
modes of operation for the blending tanks is fixed accordingly to the solution of the master
problem. The subproblem, when a feasible solution is found, provides a feasible solution to
the original GDP and a rigorous lower bound. These problems are solved successively until
the gap between the upper and lower bound is closed.

The decomposition algorithm was tested in 48 instances and compared against the global
optimization solver SCIP 3.1. The results show that the algorithm performs better than
SCIP 3.1. In fact, the algorithm is able to find feasible solutions for 45 out of the 48
instances, whereas SCIP could only find solutions for 20 instances. Feasible solutions are
obtained in less than two minutes. After less than 15 minutes, the solutions obtained with
the algorithm are within 3% of the best known solutions, whereas the solutions provided by
SCIP are at around 60% from the optimal values. The tightness of the relaxation of the
source-based formulation when the nonconvex constraints are relaxed is reinforced by the
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values of the upper bound given by the master problem. They are practically equal to the
best known objective function value since the first iteration. The better performance of the
algorithm when compared with SCIP can be explained by the reduction in the number of
binary variables and bilinear terms in the subproblem.

Acknowledgments

The authors would like to acknowledge financial support from the Center for Advanced
Process Decision-making (CAPD) and from ExxonMobil.

References

[1] Kelly, J.; Mann, J. Crude oil blend scheduling optimization: an application with mul-
timillion dollar benefits-Part 1: Process/plant optimization. Hydrocarbon Processing
2003, 82, 47–53.

[2] Haverly, C. A. Studies of the behavior of recursion for the pooling problem. ACM
SIGMAP Bulletin 1978, 19–28.

[3] Ben-Tal, A.; Eiger, G.; Gershovitz, V. Global minimization by reducing the duality
gap. Mathematical programming 1994, 63, 193–212.

[4] Tawarmalani, M.; Sahinidis, N. V. Convexification and global optimization in con-
tinuous and mixed-integer nonlinear programming: theory, algorithms, software, and
applications ; Springer Science & Business Media, 2002; Vol. 65.

[5] Audet, C.; Brimberg, J.; Hansen, P.; Digabel, S. L.; Mladenović, N. Pooling problem:
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A Haverly Pooling problem

A well-known benchmark problem is a small problem proposed by Haverly[2]. The problem
is defined as follows: There is a single pool that receives supplies from two different sources
A and B, with different specification content. A third supply C is not fed into the pool but
is directly mixed with the two outflows from the pool. The specification parameters for the
streams going into the pool are 3% for A, 1% for B, and 2% for C. The blending of flows from
the pool and from the supply stream C produces products X and Y, which have to adhere
to the specifications of maximum 2.5% and 1.5%, respectively. The maximum demands for
products X and Y are 100 and 200, respectively. The objective is to minimize the cost of the
blending operation while meeting the demand requirements. As opposed to the multiperiod
blending problem, supply and demand flows do not depend on time and they are the decision
variables. Figure 7 illustrates the topology and parameters of the network.

Figure 7: Sketch of Haverly Problem

The problem was modeled using p, q, pq and (SB) formulations. They are shown in
Table 16. Total flows, denoted by the variable Fnn′ , are present in all models. The rest of
the variables are different. Analyzing each formulation: (i) the p-formulation is based on
the concentration value of the specification, Cq, in the pool and its outputs, (ii) the q and
pq-formulations are based on the fraction of incoming flow to the pool that is contributed
by each supply, qs, and (iii) the source-based model is based on individual flows per source,
F̃snn′ , and split fractions, ξ1n, that represent the fraction of the total outgoing flow from the
pool that is being sent to each of the mixers.
Another important difference is the number of variables, constraints and bilinear terms.
The size of the problem and the number of bilinear terms increase from left to right in the
table. Therefore, the only reason to choose the source-based model over, for example, the
concentration model, is if the former had a tighter LP relaxation than the latter. Table 15
shows the size and the optimal solution of the relaxed LP for the four formulations. Two
solutions are displayed. The first row corresponds to the optimal solution when the bilinear
terms are replaced by their McCormick envelopes. The second row has the solutions when
the nonlinear constraints are dropped entirely.

Two conclusion can be drawn. First, the optimum of the relaxed LP is the same for the p,
pq and (SB) formulations when the bilinear terms are replaced by their McCormick envelopes.
However, the number of variables and constraints is larger for the latter. Secondly, when the
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Table 15: Optimal solution of the relaxed LP for the Haverly problem with different formulations.

# Variables # Constrains Normalized relaxation

Relax. Bilinear Terms p q pq SB p q pq SB p q pq SB
McCormick 14 15 15 27 19 26 30 49 1.25 6.125 1.25 1.25

w/o McCormick 12 11 11 21 8 6 6 19 5.25 9.75 9.75 1.25

For McCormick envelopes, the bounds on the variables are, Cq = {1, 3}, qs = {0, 1}, ξ1n = {0, 1},
Fnn′ = F̃snn′ = {0, 300}

non-convex equations are eliminated from the formulations, the source-based model is tighter
than the rest of the formulations. In the traditional pooling formulations, the nonconvexities
appear in the specification requirements constraints, whereas in the source-based model they
are only present in the “split fractions equations”. This difference explains the significant
improvement in the tightness of the relaxation when the non-linear terms are dropped.

Table 16 presents the p-formulation, q-formulation, pq-formulation and (SB) formulation
for the Haverly pooling problem.
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Table 16: Formulations for the Haverly pooling problem. The objective function is: min6F IN
A + 16F IN

B + 10F IN
C − 9FX − 15FY

Constraints p-formulation q-formulation/pq-formulation (SB)

Mass balance

F IN
A = FA1 F IN

A = qA(F12 + F13) F IN
A = FA1

F IN
B = FB1 F IN

B = qB(F12 + F13) F IN
B = FB1

F IN
C = FC2 + FC3 F IN

C = FC2 + FC3 F IN
C = FC2 + FC3

FA1 + FB1 = F12 + F13 FX = F12 + FC2 FA1 + FB1 = F12 + F13

FX = F12 + FC2 FY = F13 + FC3 FX = F12 + FC2

FY = F13 + FC3 qA + qB = 1 FY = F13 + FC3

Specification mass balance 3FA1 + 1FB1 = Cq(F12 + F13)

Flows

FA1 = F̃A,A1

FB1 = F̃B,B1

FC2 = F̃C,C2

FC3 = F̃C,C3

F12 = F̃A,12 + F̃B,12

F13 = F̃A,13 + F̃B,13

Source mass balance
F̃A,A1 = F̃A,12 + F̂A,13

F̃B,B1 = F̃B,12 + F̃B,13

Split fractions

F12 = ξ12(FA1 + FB1)

F13 = ξ13(FA1 + FB1)

F̃A,12 = ξ12F̃A,A1

F̃B,12 = ξ12F̃B,B1

F̃A,13 = ξ13F̃A,A1

F̃B,13 = ξ13F̃B,B1

ξ12 + ξ13 = 1

Redundant Constraints (for pq)

qAF12 + qBF12 = F12

qAF13 + qBF13 = F13

qAF12 + qAF13 = 300 ∗ qA1

qBF12 + qBF13 = 300 ∗ qB1

Specification requirements
CqF12 + 2FC2 ≤ 2.5FX 3qAF12 + qBF12 + 2FC2 ≤ 2.5FX 3F̃A,12 + F̃B,12 + 2F̃C,C2 ≤ 2.5FX

CqF13 + 2FC3 ≤ 1.5FY 3qAF13 + qBF13 + 2FC3 ≤ 1.5FY 3F̃A,13 + F̃B,13 + 2F̃C,C3 ≤ 1.5FY

Demands
FX ≤ 100 FX ≤ 100 FX ≤ 100

FY ≤ 200 FY ≤ 200 FY ≤ 200
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