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Abstract 

Petroleum Allocation is an important link for the integration of Petroleum Supply Chain at 

PETROBRAS as it is responsible for refining the strategic supply planning information to be used at the 

operation levels. In this work we describe how mathematical programming is being used to solve the 

Petroleum Allocation Problem and we show the effectiveness of a local search method by optimization to 

solve real industrial problems. We propose a Mixed-Integer Linear Programming formulation of the 

problem that relies on a time/space discretization network. As the model cannot be solved for the 

industrial size instances of the problem, and not even a feasible solution can be found after 15 days of 

computation, we implement an algorithm based on a heuristic to find a feasible solution and on a local 

search procedure based on optimization to improve it. Using this algorithm, solutions are found for all 

the case studies within 10% of optimality in less than 5 hours. 
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1. Introduction 

Petroleum allocation involves programming crude oil from platforms to refineries on a daily 

basis. This must be done by taking into account strategic planning and operational constraints in the 

petroleum supply chain as follows. Crude oil can either be locally produced or imported from abroad. 

Local crude oil comes from production sites, mostly offshore, and is transported either by tankers or 

pipelines. Imported oil is only transported by tankers. After reaching maritime terminals, domestic 

crude oils are either exported, or shipped to PETROBRAS refineries. At the refineries, petroleum is 

processed in crude distillation units (CDUs) on daily scheduled production campaigns. These 

campaigns are defined by consumption rates of different petroleum categories, and start and finish 

dates to completing them. 

 

 

 

 

 

 

 

 

 

Figure 1. Infrastructure of PETROBRAS’ Petroleum Supply Chain 

 

The petroleum allocation activity at PETROBRAS represents a big challenge. Firstly, the size of 

the network, as PETROBRAS has assets spreading all over the territory of Brazil. Secondly, these 

operations have to be planned for an average horizon of 72 days. At present, these operations are 



  

planned manually. Consequently, since a large number of simplifications is needed, this leads to 

suboptimal operations. Moreover, as some constraints need to be disregarded, the flow of information 

in the supply chain is not properly accounted for at the low levels. 

Applications of mathematical programming in the petroleum industry date back from the 1950’s 

with the work of Charnes et al (1952) and Sysmond (1955). Since then, we have seen an enormous 

advancement of algorithms and modeling techniques to solve problems related to the petroleum 

industry. Today we can say that the relevance of mathematical programming tools are common ground 

among all oil companies (Forrest and Oettly, 2003). However, most of the tools are focused on 

specific parts of the petroleum supply chain, often leading to a lack of integration. Lasschuit and 

Thijssen (2004) stress the importance of achieving a full integration in the oil and chemical supply 

chain and describe a tool developed by Shell Global solutions with this objective. Pinto and Neiro 

(2004) point out the significance for the oil industry to have a broader view of the supply chain and 

propose a general framework for modeling operations in the supply chain. Nonetheless, the offshore 

portion of the problem is not considered. The model presented in this paper is built with the 

requirement of integration in mind, and intends to close the gap between the strategic and operational 

levels at PETROBRAS. 

We should mention that the problem addressed in this work is particular to the PETROBRAS 

logistic process, and to the best of our knowledge, no reference can be found in the literature that 

treats a similar problem in its whole extension. Typically, this problem is divided into two sub 

problems: inventory and ship scheduling (Miller, 1987; Brown, 1987), and planning operations at 

refineries (Lee et al, 1996; Pinto et al, 2000; Wenkay, 2003). In this study we have chosen to model 

the entire problem. Needless to say, if some simplifications are not performed, any real instance of this 

problem would remain out of reach. 



We propose a Mixed-Integer Linear Programming model to solve this important problem for the 

integration of petroleum supply chain at PETROBRAS. This is a large scale problem, and despite all 

the efforts that were spent to tighten the formulation, not even a feasible solution was achieved after 

15 days of computation. To solve this problem, an algorithm is proposed in this paper based on a 

heuristic to find a feasible solution, and on a local search procedure by optimization known as Local 

Branching. Using this algorithm, we can find for all the case studies considered a solution guaranteed 

to be within 10% of optimality in less than 5 hours. We compare our results against a standard solver 

(XPRESS-MP, 2007) supplying the heuristically generated upper bound. Our approach outperformed 

the standard solver in all instances. 

This paper is organized as follows. In section 2, we present the problem and describe each 

element that is considered in the mathematical formulation. The mathematical model is introduced in 

section 3, along with an example solution, an extension of the formulation, and a family of cuts. The 

proposed solution algorithm is explained in section 4, while computational results supporting the 

solution algorithm are shown in section 5. Finally, in section 6 we draw some conclusions and discuss 

future work. 

 

2. Problem Description 

To describe the problem, first we need to understand the logistic process of petroleum supply to 

the refineries at PETROBRAS. This process follows the general hierarchical structure of a typical 

supply chain and is divided into three levels: Strategic, Tactical and Operational as shown in Figure 2. 

 

 

 



  

 

Figure 2.Simplified Hierarchical structure of the Petroleum Supply Chain at PETROBRAS 

 

At the strategic level, a Linear Programming tool, known as PLANAB, is used to determine on a 

monthly basis the amount and type of petroleum that will be processed in each refinery, as well as the 

amount of petroleum exported and imported for a horizon of three months. The Petroleum Allocation, 

which is a tactical activity, refines this information on a daily basis for a horizon of two and a half 

months considering in greater detail the constraints on the petroleum supply chain. This information 

will be further used for refinery planning and for the operational level activities. 

In the following subsections we describe each element considered in our mathematical model, as 

well as some simplifications that are necessary. 

 

2.1. Production Sites 

 

A production site is one or more platforms that usually produce oil from the same petroleum 

field. They can be offshore or terrestrial. However, in the PETROBRAS case, almost 95% of them are 

offshore. Moreover, depending on the infrastructure installed, the petroleum can be shipped to 



terminal via pipeline or tankers. Nonetheless, in Brazil, only three production sites are linked to 

terminals by pipelines. The petroleum that comes out from a given production site is commonly 

named after the offloading platform, as depicted in Figure 3. This allows us to use interchangeably the 

same index for the production site and for the crude oil produced by it.  

 

 

Figure 3. Schematic flow of the Xareu production site – Source: PETROBRAS 

 

The data related to the production sites are those of the offloading platforms and can be 

summarized as follows:  

• Production rate per day 

• Shipment transportation mode – Tankers or pipelines 

• Anchorage restrictions that are translated into the class of tankers that can be used for 

offloading them 

• Storage capacity - It can be either the storage capacity of the offloading platform, or the 

auxiliary ship that is being used as a tank 

 

 



  

2.2. Tanker Fleet 

 

Regarding crude oil tankers, PETROBRAS owns or rents in time charter contracts most of its 

fleet. Crude oil tankers are used to transport petroleum from the production sites to the terminals, and 

occasionally if needed from terminals to terminals. They are usually classified according to their size 

and a common measurement unit to this purpose is the Dead Weight Tonnage (DWT). In this work, 

we consider the number of tankers in each class owned or rented by PETROBRAS, and we associate 

to each class an average transportation volume capacity and an average cost per day. Following are the 

classes and corresponding average capacities used in this study: 

• Handy – C (19,000 m3) 

• Handy – R (30,000 m3) 

• Handy – L (40,000 m3) 

• Panamax (65,000 m3) 

• Aframax (100,000 m3) 

• Suezmax. (140,000 m3) 

• New-Suezmax (160,000 m3) 

• VLCC (350,000 m3) 

 

2.3. Petroleum Category 

 

Petroleum category means a subset of the petroleum crudes with the same properties and 

equivalent product yields. It is introduced here for simplification as we manage inventory by category 

instead of by individual crude oil. This concept is used in inventory management in terminals as well 

as in refineries. In this work six petroleum categories are used, namely:  

• Lubricant 

• Light 



• Cracked Atmospheric Residues, named here Rat-Craq 

• Low Sulfur Content - LSC 

• Marlim – a subset of petroleum produced in the Marlim field 

• Asphaltic 

 

2.4. Maritime Terminals 

 

These are intermediate elements in the petroleum supply chain, where all petroleum from 

offloading platforms is sent to before reaching the refineries. They can be linked to one or more 

refineries by pipelines. This imposes some difficulties in the modeling, since we are not managing the 

inventory tank by tank. Therefore, it is necessary to pre-assign tanks to refineries, and to leave some 

volume corresponding to tanks that can be used either by one refinery or another for the sake of 

flexibility, as explained in Figure 4. In terms of modeling, the following data are considered: 

• Number of berths 

• Class of ships that can dock at the terminal – These data depend on the Dead Weight Tonnage 

(DWT) and the draft of ships, as well as the depth of sea and the structure of piers at the 

terminals. 

• Storage capacity: by refinery connected to the terminal; by petroleum category and refinery; 

and total 

 

 

 

 

 

 

 

 



  

 

Figure 4 Schematic of the storage capacity assigned to the refineries connected to the São Sebastião terminal in  
São Paulo – The rectangles between refineries represent the tanks shared by them. 

 

2.5. Pipelines 

 

In this problem, pipelines are used to transport crude oil from platforms to terminals, and from 

terminals to refineries. We should mention that pipeline scheduling issues are out of the scope of this 

model, and basically we are only concerned with the estimated transfer time and daily maximum 

pumping rate. Regarding the pipelines that link platforms to terminals, transfer times are not 

considered, since they always handle the same crude oil. 

 

2.6. Refineries 

 

The refineries are the demand points of the problem considered, and need to be fed by the correct 

amount and type of petroleum in order to supply their market with the right products. We do not go 

into the detail of refinery modeling, furthermore we assume that the daily consumption rates by 

category of its crude distillation units are given. This information is usually obtained by analysis of the 

strategic planning directives.  In summary, the following data are taken into account in our study for 

each refinery: 



• Number of CDU 

• Storage capacity by petroleum category and total 

•  Terminals pumping to it. Figure 5 shows the terminals that can pump petroleum to each 

refinery in the actual problem configuration. 

• CDU’s campaigns. These data are given by the starting time, the ending time and the daily 

consumption rate by category. 

 

 
Figure 5 Connection between terminals and refineries 

 

2.7. Problem Description 

Given: 

(a) A set of production platforms P 

 (b) A set of terminals T 

(c) A set of Refineries R 

(d) A set of tanker classes Cl 



  

(e) The daily crude oil production of each platform 

(f) The consumption campaign of each crude distillation unit in refineries 

(g) The logistic infrastructure restrictions, namely, storage capacity of production sites, terminals, and 

refineries; maximum pipeline flow rate between terminals and refineries; number and transportation 

capacity of tankers available in each tanker class; number of tankers that can operate simultaneously in 

each terminal. 

Determine a minimum cost offloading scheduling for each platform in order to supply each 

refinery with the correct type and amount of oil indicated by the strategic planning.  

The costs considered in the objective function are as follows:  

- Tanker operational cost 

- Deviation penalty from strategic planning; 

- Penalty of petroleum shortage in refineries; 

- Freight cost of additional tanker 

 

3. Mathematical Model 

This model is based on a fixed charge network flow structure over a discretized time 

representation (Wolsey, 1998). Time intervals of equal duration are considered and activities allocated 

to a given interval must be capable of being performed within it. 

The nomenclature used in our model is as follows: 

Indices 

b: berth 

c: crude oil category 

cl: class of ship 



cp(u): campaigns of the crude distillation unit u 

p: is used interchangeably to refer to crude oil or platform 

r: refinery 

u: crude distillation unit 

t: time period 

z: terminal 

 

Parameters 

CAMPc,cp(u) : Consumption rate of category c in campaing cp(u) at CDU u 

CAPLc,r , CAPHc,r : Lower and higher ideal storage levels of category c at refinery r. Inventory 

below or above this ideal range is penalized. 

CAPTcl : Average transportation capacity of tanker class cl. 

CFcl : Freight cost of an additional tanker cl  

CPp,r : Penalty for deviation from strategic planning of crude oil p in refinery r. 

CRHc,r , CRLLc,r , CRIc,r : Penalty for having stock of category c at refinery r over interval t, high, 

low and infeasible, repectively. 

CTcl : Transportation cost of tanker cl per period t.  

FUcl : Fraction of the total number of tankers in class cl available to be used in a given time. 

MSPp : Maximum storage capacity at platform p. 

MSZz : Maximum storage capacity at terminal z. 

MSZRz,r : Maximum storage capacity at terminal z by refinery connected to it. 

NTcl  : Number of tankers in class cl. 

Pp,t : Production of crude oil p over interval t.  



  

PLAN1p,r, PLAN2p,r : Amount of crude oil p planned for refinery r for the first and second months, 

respectively. 

VTp,z : Voyage time between platform p and terminal z. 

 

Binary variables 

bpp,b,cl,t : 1 if  crude oil from platform p is sent to berth b by tanker cl over interval t; 0 otherwise. 

 

Continuous variables 

dfcl : Number of tankers of class cl having to be freighted during the study horizon. 

dplan1p,r, dplan2p,r : Deviation from strategic planning for crude oil  p in refinery r, for the first 

and second months, respectively. 

pzp,c,z,r,t : Amount of crude oil p of category c that arrives at terminal z to supply refinery r over 

interval t. 

spp,t : Amount of crude oil stored in platform p over interval t.  

strnc,r,t , strhc,r,t , strlc,r,t , stric,r,t : Stock of category c at refinery r over interval t, in the normal, 

high, low, and infeasible levels, repectively. 

stzc,z,t : Amount of category c stored at terminal z over interval t. 

zrc,z,r,t : Amount of category c pumped from terminal z to refinery r over interval t. 

 

Constraints: 

Inventory balance at the platforms for each time period t is given by, 

01 =⋅+−− ∑−
cl,b

t,cl,b,pclt,pt,pt,p bpCAPTPspsp    ∀ p, t  (1) 

 



 

The inventory at each platform p and time period t must be less than or equal to its maximum storage 

capacity, 

pt,p MSPsp ≤    ∀ p, t (2) 

 

At most one tanker should visit a given platform p at each time period t, 

1≤∑
cl,b

t,cl,b,pbp    ∀ p, t (3) 

 

At most one tanker should arrive at a berth b at each time period t, 

∑ ≤
cl,p

t,cl,b,pbp 1   ∀ b, t (4) 

 

The amount of petroleum p that arrives at each terminal z in each time period t is expressed by, 

0=−⋅ ∑∑ +
c,r

VTt,r,z,c,p
cl

t,cl,b,pcl z,p
pzbpCAPT    ∀ p, z, t∈[0, T – VTp,,z] (5) 

Notice that these constraints implicitly define the refineries to be supplied. 

 

Inventory balance at the terminals for each time period t is given by, 

∑ =−+− −−−
p

t,r,z,c,pt,r,z,ct,r,z,ct,r,z,c pzzrstzstz 0111    ∀ c, z, r, t (6) 

 

Observe that the equation (6) is for each refinery r and petroleum category c. Thus, we need 

additional inequalities to account for the storage limit by refinery and for the storage capacity in the 

terminal. These inequalities are written as follows, 



  

r,z
c

t,r,z,c MSZRstz ≤∑    ∀ z, r, t (7) 

and, 

z
r,c

t,r,z,c MSZstz ≤∑    ∀ z, t (8) 

  

Figure 6 illustrates the range of each variable as well as how the inventory is modeled. The 

middle portion of the figure represents the ideal inventory of a given category in the refinery. The 

upper portion corresponds to high inventory and, therefore, is penalized, since it can give rise to 

logistical problems in the refinery. The low inventory is depicted by the lower portion and, in the same 

way, is penalized because the refinery may need to shut down some units. The variables stric,r,t are 

associated with the highest penalty, and have an interesting interpretation as they indicate to the 

specialist the need to import more oil to supply this particular refinery. The equations describing the 

inventory balance are then as follows, 

 

t,r,z,cCAMPzrstri

strlstrhstrnstristrlstrhstrn

t,c),u(cpt,r,z,ct,r,c

t,r,ct,r,ct,r,ct,r,ct,r,ct,r,ct,r,c

∀=−++
++−−−−+

−−

−−−

011

111
 (9) 

 

In addition, there are bounds on the stock variables, 

r,ct,r,cr,c CAPHstrnCAPL ≤≤    ∀ c, r, t (10) 

r,ct,r,c CAPLstrl ≤    ∀ c, r, t (11) 

 



 

Figure 6. Schematic representation of the inventory in a given refinery 

 

Solution deviation from the strategic planning is written for each month as follows, 

First month, 

r,p
t,z,c

t,r,z,c,pr,p PLANpzdplan 11 ≥+∑    ∀ p, r (12a) 

r,p
t,z,c

t,r,z,c,pr,p PLANpzdplan 11 −≥−∑    ∀ p, r (12b) 

Second month, 

r,p
t,z,c

t,r,z,c,pr,p PLANpzdplan 22 ≥+∑    ∀ p, r (13a) 

r,p
t,z,c

t,r,z,c,pr,p PLANpzdplan 22 −≥−∑    ∀ p, r (13b) 

 

The maximum number of additional tankers required during the time horizon for each tanker class t is 

estimated by, 

  ∑−≥
b,p

t,cl,b,pclclcl bpNCL.FUdf    ∀ cl, t (14) 

It is important to point out that the ship routing is not being considered in this study. However, we 

use the parameter clFU  to have an estimate on the number of tankers available at each time period. In 



  

this study, we set 500.FU cl = , representing that we have only half of the tankers available in each 

tanker class as we are considering that the other half is already busy transporting crude oil to a 

terminal. 

 

The model attempts to minimize the total cost, which involves shipping costs, inventory costs, 

penalty for deviation from the strategic planning, and freight cost for additional tanker, 

 





⋅+⋅+





+⋅+⋅+⋅

∑∑

∑∑∑

cl
clcl

t,r,c
t,r,cr,c

t,r,c
t,r,cr,c

t,r,c
t,r,cr,c

t,cl,b,p
t,cl,b,pcl

dfCFstriCRI

strlCRLstrhCRHbpCTmin

 (15) 

 

3.1. Solution Example 

 

We present in this subsection part of the solution of a test instance to give some insights about the 

decisions that the model handles. Figure 7 summarizes the offload scheduling at platform P1. As we 

can see, the important questions confronted at the platform offload scheduling are to avoid that the 

inventory reaches its maximum capacity with subsequent platform shutdown, and prevent sending a 

ship before having sufficient inventory to fill it up completely. Additionally, each ship assigned to 

offload each platform has its terminal destination determined. The picture in the terminals is slightly 

complicated, since for each discharge of a ship the model has to determine how its volume will be 

split between possible refinery and category. In the case shown in Figure 8, the terminal T1 is only 

linked to one refinery and therefore the representation becomes easier as the model only needs to 

manage the classification into category. When it comes to the refineries, the most relevant issue is to 



keep the inventory inside the safe region delimited by the parallel lines in Figure 9. As pointed out in 

the modeling subsection every time the inventory goes beyond these limits the solution is penalized. 
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Figure 7. Summary of offload scheduling at Platform P1 

 

 



  

 

Figure 8. Summary of the inventory and discharging activity at Terminal T1 
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Figure 9. Summary of the inventory levels at Refinery R1 

 

3.2. Flexibility of campaigns 

 

In this model we study the effects of considering flexible dates for the initial campaigns defined 

by the specialist. In addition to the initial campaign given, we ask the user to inform the earliest, the 

latest, and the duration of each campaign. If it is worth to change the campaign dates, the model will 

perform it and can even break up the original campaign into the earliest and latest dates, on condition 
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that the crude oil estimate profiles match better with the refineries consumption. It should be noticed 

that every time the model divides a campaign, a changeover cost has to be paid. Hence, this is carried 

out only if it is absolutely necessary. Figure 10 illustrates how the assignment of campaigns works. As 

we can notice, the campaign 1 is initially set up to start on day 1 and finish on day 6. Nevertheless, the 

model could for instance move it to start on day 4 and finish on day 9. In the same way, the campaign 

2 is originally programmed to start on day 7 and finish on day 15. However, the model could split it 

into two campaigns, one starting on day 1 and finishing on day 3, and another taking place from day 

10 to 15. 

 

Initial campaigns  

 campaign 1 campaign 2 
Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
categ1 50 50 50 50 50 50 0 0 0 0 0 0 0 0 0 
categ2 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 
categ3 0 0 0 0 0 0 70 70 70 70 70 70 70 70 70 
 

 

 

 

 

 
 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

categ1 0 0 0 50 50 50 50 50 50 0 0 0 0 0 0 
categ2 0 0 0 10 10 10 10 10 10 0 0 0 0 0 0 
categ3 70 70 70 0 0 0 0 0 0 70 70 70 70 70 70 

 campaing 1’ Campaign 2’ campaign 3’ 
Campaigns proposed by the model 

Figure 10. Flexibilility of campaigns at refineries 

 

In order to model the flexibility of campaigns, we need the following additional definitions: 

Parameters 



CS : Set up cost for CDU campaign changes 

DCcp(u) : Duration of campaign cp(u) at CDU u. 

TDcp(u) : Deadline for completing campaign cp(u) at CDU u 

TS cp(u) : Release date for campaign cp(u) at CDU u. 

Binary variables 

bcpu,cp(u),t : 1 if CDU u processes campaign cp(u) at CDU u over interval t; 0 otherwise. 

bsuu,t : 1 if a set-up is necessary in CDU u at time t. 

 

The inequalities describing the flexibility of campaigns are as follows: 

Assignment of production campaign to time slots within valid time windows, 

1=∑
)u(cp

t),u(cp,ubcp    ∀ u, TScp(u) ≤ t ≤ TDcp(u) (16a) 

 

The duration of each campaign must hold, 

)u(cp

TD

TSt
t),u(cp,u DCbcp

)u(cp

)u(cp

=∑
=

   ∀ u, cp(u) (16b) 

 

If a change of campaign takes place from time period t to t+1, then a crude distillation set-up is 

necessary, 

01 ≥−+ + t),u(cp,ut),u(cp,ut,u bcpbcpbsu    ∀ u, t  (17) 

 

Moreover, we incorporate the changeover costs, ∑ ⋅
u

)u(cp,ubcpCS , to the objective function given in 

(15). 



  

Figures 11-12 show the advantage of flexible campaigns. We observe that when the flexibility of 

campaigns is considered we avoid in some time periods stockout of some petroleum categories in the 

refineries.  

This concept of flexible campaigns is not considered yet in practice in the Petroleum Allocation 

activity. However, we introduce it in this model to draw attention to the importance of considering this 

aspect in the problem, since as verified by Figures 11-12, it allows us to manage our resources in a 

more economic way. 
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Figure 11. Comparison between inventory evolution of category c1 at refinery r1 using initial and flexible campaigns   

 

Inventory of petroleum category c1 in refinery r2
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Figure 12. Comparison between inventory evolution of category c1 at refinery r2 using initial and flexible campaigns 

 



3.2. Changeover cut  

 

As shown by Yee and Shah (1998), the presence of changeovers in an MILP scheduling model 

may lead to a large relaxation gap. To overcome this difficulty, usually some cut constraints are added 

to enforce that a minimum number of changeover tasks must be performed. It is easy to show that 

scheduling problems with changeover costs present a large integrality gap that increases the 

computation burden in branch and bound algorithms. The example in Figure 13 motivated this 

discussion and shed some light on the possible outcome when this aspect is disregarded. 

 

Figure 13. Motivated example to justify the changeover cuts 

 

It is likely that the LP relaxation solution to this example happens to be, 

  3
1=t),u(cp,ubcp    ∀ cp(u) , t  

Thus from (16), 

  0=t,ubsu    ∀t 

(*) E.D. – Early date to start the campaign  

      L.D. – Last date to finish the campaign 
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0 30 10 

E.D. L.D. Duration 

0 30 10 

E.D. L.D. Duration 

Crude distillation Unit 



  

Therefore, the changeover costs will be zero in the objective function. However, we can verify by 

inspection that at least two changeovers will be necessary, as three campaigns were initially assigned 

to this crude distillation unit. We can generalize this idea and write the following cuts for each crude 

distillation unit, 

1−≥∑ u
t

t,u NCPbsu    u∀  (18) 

where, |NCPu|, is the number of campaigns in CDU u. 

 To demonstrate the importance of adding changeover cuts to our formulation, in the sequel we 

present some computational results on three instances whose sizes are detailed in Table 1. All the 

results were obtained by setting the integrality tolerance gap to 10%. 

Table 1 – Dimension of test instances 

 Instances 

Elements #1 #2 #3 

Production sites 6 6 11 

Terminals 4 4 5 

Berths 6 6 7 

Refineries 5 5 6 

CDUs 6 6 7 

Crude oil categories 3 3 3 

Ship classes 3 3 6 

Horizon (days) 10 10 60 

 

 

 

 



Table 2 – Computational results for solving instance 1 using changeover cuts. 

Instance 1 Without changeover cuts With changeover cuts 

no. of constraints 1550 1553 

no. of variables 2740 2740 

no. of binary variables 940 940 

no. of visited nodes >> 1000000 202 

CPU(s) >> 100000 3 

LP relaxation solution (Zpl) 321,40 464,73 

Best solution  (Zo)  - 605,50 

Initial integrality gap *         47 %             23 % 
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Table 3 – Computational results for solving instance 2 using changeover cuts. 

Instance 2 Without changeover cuts With changeover cuts 

no. of constraints 1550 1553 

no. of variables 2740 2740 

no. of binary variables 940 940 

no. of visited nodes 551 313 

CPU(s) 4 3 

LP relaxation solution (Zpl) 539,00 832,00 

Best solution  (Zo)  1111,00 1104,50 

Initial integrality gap           51 %         25 % 

 

 

 



  

Table 4 – Computational results for solving instance 3 using changeover cuts. 

Instance 3 Without changeover cuts With changeover cuts 

no. of constraints 13847 13855 

no. of variables 46992 46992 

no. of binary variables 22123 22123 

no. of visited nodes >> 1000000 631243 

CPU(s) >> 100000 32760 

LP relaxation solution (Zpl) 16484,03 17471,83 

Best solution  (Zo)  - 25743,72 

Initial integrality gap 35 % 32 % 

 

Although these test instances do not represent the complexity of the real problem, the results in 

Tables 2-4 make clear the strength of the cuts in (18). After adding the changeover cuts, the integrality 

gap was less than half its value compared to the original formulation for instance tests 1 and 2. For 

instance 3, although the decrease in the integrality gap was smaller, the changeover cuts made it 

possible to solve this very large problem. Moreover, the number of changeover cuts introduced is 

negligible compared to the size of the original formulation, and thus the time to solve the Linear 

Relaxation at each node of the Branch and Bound is not affected. 

4. Solution Algorithm 

As one can see from Tables 2-4, the changeover cuts substantially improve the formulation of the 

problem and allow solving test instances that could not be solved by the initial model. However, as 

shown by the instance 3, which required about 9 hours of CPU-time, as the problem becomes larger 

the computational time grows rapidly, making prohibitive the use of this formulation for solving real 

instances in reasonable time. To circumvent this problem, we propose an algorithm based on a 



heuristic to find a feasible solution, and on an MIP heuristic known in the literature as Local 

Branching (Fischetti and Lodi, 2003). The basic steps of the algorithm are as follows. 

1. Heuristic. Determine the tank classes and time periods to offload each platform. 

2. Solve the entire problem with variables fixed according to the heuristic. 

3. Apply Local Branching to the original problem with the initial solution found by step 2. The 

output is the best solution after 5 hours. 

 

In the following subsection, we describe in detail the heuristic and the Local Branching 

procedure. 

 

4.1. Heuristic 

 

We verified that the part of the model that gives rise to a weak linear relaxation is the platform 

offloading sub-problem, since the transportation cost per volume decreases as the ship capacities 

increase. The linear relaxation tends to use a fraction of a bigger available ship instead of trying a 

smaller ship or an entirely bigger ship. Therefore, we propose an algorithm that fixes the time and the 

ship class that will be used to offload a given platform. A description of the algorithm is as follows: 

 

1- Define OLp  as the set containing all pairs of ship and time to offload platform p; 

2- Construct a list L of platforms by sorting them in decreasing order of their total production; 

3- for each p in L do 

 OLp ← empty; 

 stock  = initial_stock 

 t=0 



  

 while t ≤ T do 

pick out a ship class cl to offload p; (*) 

calculate the next time, tnext, when there is enough stock to entirely load ship cl; 

OLp ← (cl,tnext);  

set t = tnext; 

 end-while        

  end-for 

4- fix all variables such that the indices cl and t are not in OLp to zero; 

5- solve_problem(P); 

 

Note that in (*), the choice is made by spinning a roulette where the probability of each ship class 

is calculated by the number of route from p with ship cl over the total number of route from platform 

p. Figure 14 illustrates how the heuristic works. 

 

 

 

 

 

 

 

 

 

 

Figure 14. Representation of the heuristic algorithm 
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4.2. Local Branching 

 

The Local Branching procedure was first proposed by Fischetti and Lodi (2003) with the aim of 

improving the efficiency of an exact algorithm like Branch and Bound. It consists of reducing the 

solution search space by introducing to the model some inequalities called “Local Branching cuts”, i.e, 

given a new incumbent solution x  and a nonnegative integer parameter k (the neighborhood size), the 

space solution is reduced by means of the following inequalities: 

 

kx)x()x,x(
S\Bj

j
Sj

j ≤+−=∆ ∑∑
∈∈

1  (19) 

where, B is the set of binary variables and S  is the index set of binary variables that take value of one 

in the solution x . 

 

The basic idea of Local Branching is to optimize over a small neighborhood, given by 

inequality (19), in an attempt for finding better solutions faster. It should be noticed that the Local 

Branching cuts embody the idea of a neighborhood search, similar to the idea present in most of 

metaheuristics, as they express that the solution at hand can be changed by at most k elements. One 

parameter of this procedure that needs to be determined is the neighborhood size k. There is a trade-

off in choosing the value for k, as we want it to be as small as possible to make the problem easy to 

solve, but large enough to contain solutions better than the given one. Fischetti and Lodi suggested 

that a value of k in the interval [10, 20] works best in the majority of cases. Besides, in the 

implementation of the procedure this parameter can be dynamically modified as the algorithm 

proceeds. 



  

In this work, we implement a version of the Local Branching, called asymmetric, that counts 

only the number of variables changing from 1 to 0, as given by the expression (20). Furthermore, only 

the platform offloading variables are considered to generate them, leaving more room to the solver for 

finding a better solution. 

'k)x(
Sj

j ≤−∑
∈

1  (20) 

where,  2/k'k ≅  

We can better understand how this procedure works by its basic tree representation as given in 

Figure 15. The upshot of this method is that we build a search tree where only the nodes appended by 

triangles with an S (for Solver) are explored by an off-the-shelf MIP solver. We start out with an 

initial feasible solution 1x , and we add to the model the Local Branching constraint k)x,x( ≤∆ 1 that 

correspond to the node 2 in the tree. We solve the problem represented by node 2, and find the 

optimum solution 2x  which is better than 1x . At this point, we delete from our model the constraint 

k)x,x( ≤∆ 1 , adding simultaneously the constraints 11 +≥∆ k)x,x(  and k)x,x( ≤∆ 2 (these steps 

lead us to node 4). We keep on doing these basic steps until we reach a point where the problem is 

infeasible (node 6). In this case, we simply delete the last constraint k)x,x( ≤∆ 6  and add 

16 +≥∆ k)x,x( , abandoning the Local Branching procedure and proceed solving the problem 

represented by node 7 using an MIP solver. This is the most basic description of the implementation 

of the Local Branching procedure. A more elaborated algorithm can be found in Fischetti and Lodi 

(2003), where they borrowed some ideas from the metaheuristic community to improve the efficiency 

of this implementation. We implemented this algorithm in C++ using the modeling library provided 

by Dash Optimization (XPRESS-BCL, 2006) to add and remove constraints dynamically from the 

model. 



 

 

 

 

 

 

 

 

 

 

Figure 15 . Basic Tree representation of the Local Branching procedure 

 

In summary, the key points of this method are: 

- The search is concentrated on a reduced part of the search space defined by the left nodes in the tree 

in Figure 15. 

- The neighborhood of a given solution is explored with an MIP solver. 

5. Results 

Experiments were conducted on a Pentium IV 2.0GHz 1.0Gb RAM PC and the code was 

compiled with Visual C++ 6.0 under a Windows Platform. Our algorithm was tested on real instances 

of the problem involving 42 platforms/crude oils, 6 tanker classes, 8 maritime terminals involving 13 

berths, 11 refineries, and 20 distillation units over a time horizon of 72 discretized intervals. The 

typical instance gives rise to a model with approximately 40,000 binary variables, 45,000 continuous 

variables, and 32,000 constraints. Tables 5 and 6 show the results for 4 different real instances of the 

S 

S 

S 

S 

Initial solution 1x  

11 +≥∆ k)x,x(  

1

3

4

2

5

6 7

k)x,x( ≤∆ 1  

k)x,x( ≤∆ 2  12 +≥∆ k)x,x(  

k)x,x( ≤∆ 3  13 +≥∆ k)x,x(  

Improved solution 3x  

Improved solution 2x  

              Infeasible                  • • • • 

S 



  

problem where the efficiency of Local Branching and the quality of solution for the minimization 

problem are reported. In all instances the heuristic solution were found in less than 3 minutes. We 

used a value k’ = 6 for the local branching cuts, and set a time limit of 5 hours for XPRESS and Local 

Branching referred to as LBr in Tables 5 and 6.  

 

Table 5. Comparison of best solution 

Instance Heuristic solution XPRESS LBr 

4 68021.2 68021.2 62939.8 

5 13883.6 12561.6 10424.8 

6 19231.2 19231.2 16760.4 

7 223522.0 223522.0 207519.0 

 

 

 

Table 6. Quality of Local Branching solutions 

Instance Best Lower Bound (ZLB) LBr (Z*) Gap* (%) 

4 57435.4 62939.8 9.6 

5 9532.6 10424.8 9.4 

6 15240.1 16760.4 10.0 

7 193814.3 207519.0 7.1 

(*) Gap =100.(Z*-ZLB)/ZLB 

 



The performance of the Local Branching procedure was quite impressive as shown in Tables 5-6. 

As we can observe in Table 5, XPRESS could not improve the initial solution in 3 out of 4 instances 

and the only one that was possible, the result was only marginally better. On the other hand, the Local 

Branching procedure was able to considerably reduce the cost of the initial solution for all instances, 

with average improvement of 13%. The results in Table 5 clearly show the significance of optimizing 

a large scale problem over a small region in order to obtain good solutions faster. Furthermore, Table 

6 shows that the solutions obtained by the Local Branching procedure are within 10% of the optimum, 

even though this is not guaranteed by the procedure. 

6. Conclusions 

In this paper we have presented a Mixed-Integer Linear formulation to a problem faced by an 

integrated petroleum company. The problem is of considerable importance in the petroleum supply 

chain as it provides a link between strategic and operational decisions. It is a large scale problem and 

even finding a feasible solution has not been possible using commercial solvers. 

An extension of the initial problem was proposed, namely the flexibility of campaigns, and we 

showed its benefits in terms of the solution quality. Additionally, we presented some cuts that allow 

curbing the poor relaxation introduced by the changeover costs. To overcome the computational 

expense for finding a feasible solution, we designed a heuristic to schedule the offloading of 

platforms, greatly reducing the search space, and allowing the solver to find a feasible solution 

rapidly. In addition, we showed that the Local Branching procedure is an important tool to find good 

solutions for large scale problems. 

Future work will try to exploit the fact that the problem becomes easier to solve when the 

offloading variables are fixed. Another alternative is to use some decomposition technique, as the 

problem can be naturally split up into a platform offloading problem and a refinery planning problem. 
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