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Abstract
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1. Introduction

Petroleum allocation involves programming crude fooim platforms to refineries on a daily
basis. This must be done by taking into accoumttesgic planning and operational constraints in the
petroleum supply chain as follows. Crude oil cahegibe locally produced or imported from abroad.
Local crude oil comes from production sites, mosfifighore, and is transported either by tankers or
pipelines. Imported oil is only transported by tark After reaching maritime terminals, domestic
crude oils are either exported, or shipped to PEBRAS refineries. At the refineries, petroleum is
processed in crude distillation units (CDUs) onlydacheduled production campaigns. These
campaigns are defined by consumption rates of réiftepetroleum categories, and start and finish

dates to completing them.
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Figure 1. Infrastructure of PETROBRAS’ Petroleunpi@y Chain

The petroleum allocation activity at PETROBRAS exants a big challenge. Firstly, the size of
the network, as PETROBRAS has assets spreadimoyail the territory of Brazil. Secondly, these

operations have to be planned for an average homto/2 days. At present, these operations are



planned manually. Consequently, since a large nurobeimplifications is needed, this leads to
suboptimal operations. Moreover, as some conssraieéd to be disregarded, the flow of information
in the supply chain is not properly accounted faha low levels.

Applications of mathematical programming in therpletum industry date back from the 1950’s
with the work of Charnes et al (1952) and Sysmditb$). Since then, we have seen an enormous
advancement of algorithms and modeling technigoesolve problems related to the petroleum
industry. Today we can say that the relevance ehemaatical programming tools are common ground
among all oil companies (Forrest and Oettly, 2003)wever, most of the tools are focused on
specific parts of the petroleum supply chain, ofteading to a lack of integration. Lasschuit and
Thijssen (2004) stress the importance of achiewrfgll integration in the oil and chemical supply
chain and describe a tool developed by Shell Glsbaitions with this objective. Pinto and Neiro
(2004) point out the significance for the oil inttysto have a broader view of the supply chain and
propose a general framework for modeling operatianthie supply chain. Nonetheless, the offshore
portion of the problem is not considered. The moplesented in this paper is built with the
requirement of integration in mind, and intendgltwse the gap between the strategic and operational
levels at PETROBRAS.

We should mention that the problem addressed s whrk is particular to the PETROBRAS
logistic process, and to the best of our knowledgeeference can be found in the literature that
treats a similar problem in its whole extensionpitglly, this problem is divided into two sub
problems: inventory and ship scheduling (Miller,819 Brown, 1987), and planning operations at
refineries (Lee et al, 1996; Pinto et al, 2000; W& 2003). In this study we have chosen to model
the entire problem. Needless to say, if some sfiogtions are not performed, any real instancenisf t

problem would remain out of reach.



We propose a Mixed-Integer Linear Programming madeolve this important problem for the
integration of petroleum supply chain at PETROBRASBIS is a large scale problem, and despite all
the efforts that were spent to tighten the formaigtnot even a feasible solution was achieved afte
15 days of computation. To solve this problem, lyorithm is proposed in this paper based on a
heuristic to find a feasible solution, and on aalogearch procedure by optimization known as Local
Branching. Using this algorithm, we can find fok thle case studies considered a solution guaranteed
to be within 10% of optimality in less than 5 haw¢e compare our results against a standard solver
(XPRESS-MP, 2007) supplying the heuristically gatedl upper bound. Our approach outperformed
the standard solver in all instances.

This paper is organized as follows. In section 2, pvesent the problem and describe each
element that is considered in the mathematical dtation. The mathematical model is introduced in
section 3, along with an example solution, an esitenof the formulation, and a family of cuts. The
proposed solution algorithm is explained in sectigrwhile computational results supporting the
solution algorithm are shown in section 5. Finailysection 6 we draw some conclusions and discuss

future work.

2. Problem Description

To describe the problem, first we need to undedsthe logistic process of petroleum supply to
the refineries at PETROBRAS. This process follotws general hierarchical structure of a typical

supply chain and is divided into three levels: tegec, Tactical and Operational as shown in Figure
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Figure 2.Simplified Hierarchical structure of thefoleum Supply Chain at PETROBRAS

At the strategic level, a Linear Programming témipwn as PLANAB, is used to determine on a
monthly basis the amount and type of petroleumthihtbe processed in each refinery, as well as the
amount of petroleum exported and imported for azileorof three months. The Petroleum Allocation,
which is a tactical activity, refines this informat on a daily basis for a horizon of two and &f hal
months considering in greater detail the constsaimt the petroleum supply chain. This information
will be further used for refinery planning and tbe operational level activities.

In the following subsections we describe each efgroensidered in our mathematical model, as

well as some simplifications that are necessary.

2.1. Production Sites

A production site is one or more platforms thatallsuproduce oil from the same petroleum
field. They can be offshore or terrestrial. Howewerthe PETROBRAS case, almost 95% of them are

offshore. Moreover, depending on the infrastructunstalled, the petroleum can be shipped to



terminal via pipeline or tankers. Nonetheless, naz, only three production sites are linked to
terminals by pipelines. The petroleum that comesfoam a given production site is commonly
named after the offloading platform, as depicte#igure 3. This allows us to use interchangealsy th

same index for the production site and for the eroidl produced by it.

Figure 3. Schematic flow of the Xareu productide si Source: PETROBRAS

The data related to the production sites are thuiséhe offloading platforms and can be

summarized as follows:

+ Production rate per day
« Shipment transportation mode — Tankers or pipelines

« Anchorage restrictions that are translated into ¢tess of tankers that can be used for
offloading them

« Storage capacity - It can be either the storagaagpof the offloading platform, or the
auxiliary ship that is being used as a tank



2.2. Tanker Fleet

Regarding crude oil tankers, PETROBRAS owns orsrémttime charter contracts most of its
fleet. Crude oil tankers are used to transportopeEim from the production sites to the terminatg] a
occasionally if needed from terminals to termindlsey are usually classified according to theiesiz
and a common measurement unit to this purposesi®tad Weight Tonnage (DWT). In this work,
we consider the number of tankers in each clasedwn rented by PETROBRAS, and we associate
to each class an average transportation volumesitg@ad an average cost per day. Following are the
classes and corresponding average capacities migieid study:

« Handy — C (19,000 B

« Handy— R (30,000 i

« Handy - L (40,000 /)

« Panamax (65,000

« Aframax (100,000 r})

« Suezmax. (140,000

« New-Suezmax (160,0003n
« VLCC (350,000 m)

2.3. Petroleum Category

Petroleum category means a subset of the petrolewdes with the same properties and
equivalent product yields. It is introduced heredmnplification as we manage inventory by category
instead of by individual crude oil. This concepuiged in inventory management in terminals as well

as in refineries. In this work six petroleum catég®are used, namely:

« Lubricant

+ Light



+ Cracked Atmospheric Residues, named here Rat-Craq
+ Low Sulfur Content - LSC
« Marlim — a subset of petroleum produced in the Mafleld

« Asphaltic

2.4. Maritime Terminals

These are intermediate elements in the petroleupplguchain, where all petroleum from
offloading platforms is sent to before reaching théneries. They can be linked to one or more
refineries by pipelines. This imposes some diffiesl in the modeling, since we are not managing the
inventory tank by tank. Therefore, it is necesgarpre-assign tanks to refineries, and to leaveesom
volume corresponding to tanks that can be usectreltli one refinery or another for the sake of

flexibility, as explained in Figure 4. In termsmbdeling, the following data are considered:

« Number of berths

« Class of ships that can dock at the terminal — &luega depend on the Dead Weight Tonnage
(DWT) and the draft of ships, as well as the depittsea and the structure of piers at the

terminals.

« Storage capacity: by refinery connected to the itgain by petroleum category and refinery;

and total
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Figure 4 Schematic of the storage capacity assigogte refineries connected to the Sdo Sebastidwinal in
S&o Paulo — The rectangles between refineries sgprtethe tanks shared by them.

2.5. Pipelines

In this problem, pipelines are used to transpartderoil from platforms to terminals, and from
terminals to refineries. We should mention thaepige scheduling issues are out of the scope sf thi
model, and basically we are only concerned with éeBmated transfer time and daily maximum
pumping rate. Regarding the pipelines that linktfplans to terminals, transfer times are not

considered, since they always handle the same cilde

2.6. Refineries

The refineries are the demand points of the proldensidered, and need to be fed by the correct
amount and type of petroleum in order to supplyrtherket with the right products. We do not go
into the detail of refinery modeling, furthermoresvassume that the daily consumption rates by
category of its crude distillation units are giv&his information is usually obtained by analydishe
strategic planning directives. In summary, théofwing data are taken into account in our study for

each refinery:



+  Number of CDU
« Storage capacity by petroleum category and total

« Terminals pumping to it. Figure 5 shows the teatsnthat can pump petroleum to each

refinery in the actual problem configuration.

+ CDU’'s campaigns. These data are given by the statime, the ending time and the daily

consumption rate by category.
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Figure 5 Connection between terminals and refirgerie

2.7. Problem Description

Given:

(a) A set of production platforms P
(b) A set of terminals T

(c) A set of Refineries R

(d) A set of tanker classes ClI



(e) The daily crude oil production of each platform
(f) The consumption campaign of each crude disitaunit in refineries
(9) The logistic infrastructure restrictions, nayeitorage capacity of production sites, terminaite)
refineries; maximum pipeline flow rate between teas and refineries; number and transportation
capacity of tankers available in each tanker clagsiber of tankers that can operate simultaneansly
each terminal.

Determine a minimum cost offloading scheduling é&ach platform in order to supply each
refinery with the correct type and amount of odizated by the strategic planning.

The costs considered in the objective functionaaréollows:

- Tanker operational cost

- Deviation penalty from strategic planning;

- Penalty of petroleum shortage in refineries;

- Freight cost of additional tanker

3. Mathematical Model

This model is based on a fixed charge network flstucture over a discretized time
representation (Wolsey, 1998). Time intervals afagluration are considered and activities allatate
to a given interval must be capable of being peréat within it.

The nomenclature used in our model is as follows:
Indices

b: berth

c: crude oil category

cl: class of ship



cp(u): campaigns of the crude distillation unit u

p: is used interchangeably to refer to crude oplatform
r: refinery

u: crude distillation unit

t: time period

z: terminal

Parameters
CAMP; ¢pwy: Consumption rate of categoryn campaingp(u)at CDUu
CAPL, , CAPH, : Lower and higher ideal storage levels of categoay refineryr. Inventory
below or above this ideal range is penalized.
CAPT; : Average transportation capacity of tanker cldss
CF : Freight cost of an additional tanksr
CPy, : Penaltyfor deviation from strategic planning of crude pih refineryr.
CRH.,, CRLL,, CRL,: Penalty for having stock of categarat refineryr over intervat, high,
low and infeasible, repectively.
CT. : Transportation cost of tankel per period.
FU, : Fraction of the total number of tankers in clelsavailable to be used in a given time.
MSR, : Maximum storage capacity at platfopn
MSZ : Maximum storage capacity at termirzal
MSZR , : Maximum storage capacity at termizddy refinery connected to it.
NTe : Number of tankers in clags

Pp.t : Production of crude oj over intervat.



PLANJ,,, PLANZ, : Amount of crude oip planned for refinery for the first and second months,
respectively.

VT,.: Voyage time between platformand terminak.

Binary variables

bpo.o,cit: 1if crude oil from platfornp is sent to bertbh by tankercl over intervalk; O otherwise.

Continuous variables

df.; : Number of tankers of clag$ having to be freighted during the study horizon.

dplanl,, dplanz, : Deviation from strategic planning for crude qilin refineryr, for the first
and second months, respectively.

PZ.czrt: Amount of crude oip of categoryc that arrives at termina to supply refinery over

intervalt.

Skt : Amount of crude oil stored in platformover interval.

strnert, Strhert, Strlert, Stricrt : Stock of categorg at refineryr over intervalt, in the normal,
high, low, and infeasible levels, repectively.

stz .- Amount of categorg stored at termina over intervak.

Zre r1 - Amount of categorg pumped from terminal to refineryr over intervat.

Constraints:

Inventory balance at the platforms for each timeogk is given by,

SPp; ~ SPpia ~ Py +ZCAPTc| bp,pq, =0 Up,t (1)

bl



The inventory at each platformand time period must be less than or equal to its maximum storage
capacity,

sp,, <MSE, Op,t (2)

At most one tanker should visit a given platfqurat each time periogd

prpb,cl,t <1 U p! t (3)

b.cl

At most one tanker should arrive at a bdrtkt each time periot

3P,y <1 Ob,t (4)

pel

The amount of petroleumthat arrives at each termirmin each time periotlis expressed by,

ZCAPTcl Ebpp,b,cl,t _z PZpczriovr,, = 0 Op,z 10, T-VE 4 (5)
cl re

Notice that these constraints implicitly define teéneries to be supplied.

Inventory balance at the terminals for each tim@opd is given by,

Stzl:,z,r,t - Stzl:,z,r,t—:L + Zrc,z,r,t—l _Z pzp,c,z,r,t—l = O D C' Z’ r’ t (6)
p

Observe that the equation (6) is for each refimreand petroleum categoky Thus, we need
additional inequalities to account for the storéget by refinery and for the storage capacity fe t

terminal. These inequalities are written as follpws



> stz <MSZR, Ozr,t 7)

and,

> stz <MSz, Ozt (8)

Figure 6 illustrates the range of each variablaval as how the inventory is modeled. The
middle portion of the figure represents the ideslentory of a given category in the refinery. The
upper portion corresponds to high inventory aneéydfore, is penalized, since it can give rise to
logistical problems in the refinery. The low invent is depicted by the lower portion and, in thenea
way, is penalized because the refinery may neexhtd down some units. The variabks, ; are
associated with the highest penalty, and have taresting interpretation as they indicate to the
specialist the need to import more oil to supplg tharticular refinery. The equations describing th

inventory balance are then as follows,

strn,,, +strh,,, —strl_,, —stri_,, —strn_,,_, —=strh,, ., +strl_, ., +

+ Stl’lcvryt_l + Zrczm_l - CAMF()lp(U),C,t = 0 |:| C,Z, r 1t ( )
In addition, there are bounds on the stock vargble

CAPL,, sstrn,,, <CAPH_,, Ogc,r,t (10)

strl,,, <CAPL,, Oc,r,t (11)
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Figure 6. Schematic representation of the inventorg given refinery

Solution deviation from the strategic planning istien for each month as follows,

First month,

dplarl,, +> pz,.,.,2PLANL  Op,r (12a)
czt

dplarl,, -> pz,.,.,2-PLANL  Op,r (12b)

czt
Second month,

dplan2,, +> pz,.,.. 2PLAN2  Op,r (13a)

czt

dplan2,, -> pz,.,.. =2-PLAN2 = Op,r (13b)

czt

The maximum number of additional tankers requirednd) the time horizon for each tanker class

estimated by,

df, =[FU,.NCL, |-> bp,,,, Oclt (14)
pb

It is important to point out that the ship routisghot being considered in this study. However, we

use the parametdfU , to have an estimate on the number of tankers dkaitt each time period. In



this study, we sefFU , =0.50, representing that we have only half of the tanlkessilable in each

tanker class as we are considering that the othdri$ already busy transporting crude oil to a

terminal.

The model attempts to minimize the total cost, Whitvolves shipping costs, inventory costs,

penalty for deviation from the strategic planniaggd freight cost for additional tanker,

mink > CT, bp,,., + D CRH,, Gtrh,,, + > CRL, Gtrl,,, +

pbclt crt crit (15)
+> CRI,, tri,, +> CF, mfc,}
crt cl

3.1. Solution Example

We present in this subsection part of the solutiba test instance to give some insights about the
decisions that the model handles. Figure 7 sumestize offload scheduling at platform P1. As we
can see, the important questions confronted apldwdorm offload scheduling are to avoid that the
inventory reaches its maximum capacity with subsagplatform shutdown, and prevent sending a
ship before having sufficient inventory to fill ip completely. Additionally, each ship assigned to
offload each platform has its terminal destinatilmtermined. The picture in the terminals is slightl
complicated, since for each discharge of a shipntbeel has to determine how its volume will be
split between possible refinery and category. & ¢hse shown in Figure 8, the terminal T1 is only
linked to one refinery and therefore the represemtabecomes easier as the model only needs to

manage the classification into category. When mes to the refineries, the most relevant issue is t



keep the inventory inside the safe region delimiigdhe parallel lines in Figure 9. As pointed out

the modeling subsection every time the inventomsgeeyond these limits the solution is penalized.

Offload scheduling at Platform P1
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Figure 7. Summary of offload scheduling at Platfdtfn
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Inventory at Refinery R1 (103 m3)
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Figure 9. Summary of the inventory levels at Refifl

3.2. Flexibility of campaigns

In this model we study the effects of considerilexible dates for the initial campaigns defined
by the specialist. In addition to the initial cangragiven, we ask the user to inform the earlitss,
latest, and the duration of each campaign. If wasth to change the campaign dates, the model will

perform it and can even break up the original cagmpmto the earliest and latest dates, on conditio



that the crude oil estimate profiles match betteh whe refineries consumption. It should be natice
that every time the model divides a campaign, ageaver cost has to be paid. Hence, this is carried
out only if it is absolutely necessary. Figure ldstrates how the assignment of campaigns works. A
we can notice, the campaign 1 is initially setaigtart on day 1 and finish on day 6. Neverthelies,
model could for instance move it to start on dand finish on day 9. In the same way, the campaign
2 is originally programmed to start on day 7 amisfi on day 15. However, the model could split it

into two campaigns, one starting on day 1 andHinig on day 3, and another taking place from day

10 to 15.

Initial campaigns

campaign 1 campaign 2

Period | 1 2 1 3|4 |5]|6 7 8 19 |10|11|12| 13| 14| 15
categl| 50 [ 50 | 50 | 50 | 50 | 50 0| 0]0O0|O0]|O0]|O
categ2{ 10 (10 (10(210(10|20| O | O | O] O]J0O0O]J0O0]0O0]|]O]|O
categ3f O ( O | O | O | O| O | 70| 70| 70| 70| 70| 70| 70| 70 | 70

o
o
o

Period | 1 2 1 3|4 |5]|6 7 8|19 |10|11|12| 13| 14| 15

categl{ O [ O | O (5O (50| 50|50 |5 |5 | 0] 0]0]|0]|0]|O0

categ2f O [ O | O (10|(10|20| 2120|2020 O} O] O] O] O] O

categ3f{ 7/0 (70 (70| O | O | O| O)| O| O]|70] 70| 70| 70| 70 | 70

campaing 1’ Campaign 2’ campaign 3’
Campaigns proposed by the model

Figure 10. Flexibilility of campaigns at refineries

In order to model the flexibility of campaigns, weed the following additional definitions:

Parameters



CS: Set up cost for CDU campaign changes
DCecp(u) : Duration of campaigop(u)at CDUu.
TDcpwy: Deadline for completing campaigp(u)at CDUu
TScpw): Release date for campaigp(u)at CDUuU.
Binary variables
bepu,cpw).: 1 if CDU u processes campaigp(u)at CDUu over interval; O otherwise.

bsu,¢: 1 if a set-up is necessary in CDIAt timet.

The inequalities describing the flexibility of caaigns are as follows:

Assignment of production campaign to time slotdimitvalid time windows,

D bep, sy =1 OU, TSpw) <t < TDep) (16a)

cp(u)

The duration of each campaign must hold,

TDep(u)

Zbcpupp(u)’t =DC

t=TSp(u)

O u, cp(u) (16b)

cp(u)

If a change of campaign takes place from time petito t+1, then a crude distillation set-up is
necessary,

bsu,, + bcpupp(u),t+l - bcpupp(u),t >0 Ou,t a7

Moreover, we incorporate the changeover codsCSIbep,,, ., . to the objective function given in

(15).



Figures 11-12 show the advantage of flexible cagnmiWe observe that when the flexibility of
campaigns is considered we avoid in some time gersbockout of some petroleum categories in the
refineries.

This concept of flexible campaigns is not consideyet in practice in the Petroleum Allocation
activity. However, we introduce it in this modeldoaw attention to the importance of consideririg th

aspect in the problem, since as verified by Figdred 2, it allows us to manage our resources in a

more economic way.

Inventory of petroleum category clinrefinery rl

© 100.0 ~
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o
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Figure 11. Comparison between inventory evolutiboadegory cl at refinery rl using initial and fible campaigns
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Figure 12. Comparison between inventory evolutiboadegory ¢l at refinery r2 using initial and fible campaigns



3.2. Changeover cut

As shown by Yee and Shah (1998), the presenceasfgaovers in an MILP scheduling model
may lead to a large relaxation gap. To overcongdtificulty, usually some cut constraints are atide
to enforce that a minimum number of changeoverstaskst be performed. It is easy to show that
scheduling problems with changeover costs presefarge integrality gap that increases the
computation burden in branch and bound algorithfitee example in Figure 13 motivated this

discussion and shed some light on the possiblemeéavhen this aspect is disregarded.

Campaign 1 (Lubricant)

E.DO | LD.Y | Duratior

0 30 10

Campaign 2 (Marlim)

E.D. L.D. Duratior

v

0 30 10

Crude distillation Unit
Campaign 3 (BTE)

E.D. L.D. Duratior

0 30 10

(*) E.D. — Early date to start the campaign
L.D. — Last date to finish the campaign

Figure 13. Motivated example to justify the changgauts

It is likely that the LP relaxation solution to shexample happens to be,
bcpupp(u),t = % D Cp(U) ’ t

Thus from (16),

bsy,, =0 [t



Therefore, the changeover costs will be zero inothjective function. However, we can verify by
inspection that at least two changeovers will beessary, as three campaigns were initially assigned
to this crude distillation unit. We can generalikes idea and write the following cuts for eachdsu

distillation unit,

bsy,, 2|NCR(-1 [u (18)
t ;

where,|NCP,|, is the number of campaigns in CIiU
To demonstrate the importance of adding changeawtsrto our formulation, in the sequel we
present some computational results on three instantiose sizes are detailed in Table 1. All the

results were obtained by setting the integralitgremce gap to 10%.

Table 1 — Dimension of test instances

Instances
Elements #1 #2 #3
Production sites 6 6 1]
Terminals 4 4 5
Berths 6 6 7
Refineries 5 5 6
CDUs 6 6 7
Crude oil categories 3 3 3
Ship classes 3 3 6
Horizon (days) 10 10 6(




Table 2 — Computational results for solving instardcusing changeover cuts.

Instance 1 Without changeover cuts With changeover cuts
no. of constraints 1550 1553

no. of variables 2740 2740

no. of binary variables 940 940

no. of visited nodes >> 1000000 202
CPU(s) >> 100000 3

LP relaxation solution (g 321,40 464,73

Best solution (@ - 605,50

Initial integrality gap * 47 % 23 %

Z -7 |
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Table 3 — Computational results for solving instai2cusing changeover cuts.

Instance 2 Without changeover cuts With changeover cuts
no. of constraints 1550 1553

no. of variables 2740 2740

no. of binary variables 940 940

no. of visited nodes 551 313
CPU(s) 4 3

LP relaxation solution () 539,00 832,00

Best solution (@ 1111,00 1104,50

Initial integrality gap 51 % 25 %




Table 4 — Computational results for solving instalcusing changeover cuts.

Instance 3 Without changeover cuts With changeover cuts
no. of constraints 13847 13855

no. of variables 46992 46992

no. of binary variables 22123 22123

no. of visited nodes >> 1000000 631243
CPU(s) >> 100000 32760

LP relaxation solution (g 16484,03 17471,83
Best solution (@ - 25743,72
Initial integrality gap 35% 32 %

Although these test instances do not representdaheplexity of the real problem, the results in
Tables 2-4 make clear the strength of the cutd8j. (After adding the changeover cuts, the intégral
gap was less than half its value compared to tlggnat formulation for instance tests 1 and 2. For
instance 3, although the decrease in the integrghp was smaller, the changeover cuts made it
possible to solve this very large problem. Morepwke number of changeover cuts introduced is
negligible compared to the size of the originalnfafation, and thus the time to solve the Linear

Relaxation at each node of the Branch and Boundtisiffected.

4. Solution Algorithm

As one can see from Tables 2-4, the changeovesabtantially improve the formulation of the
problem and allow solving test instances that cowtbe solved by the initial model. However, as
shown by the instance 3, which required about 9hob CPU-time, as the problem becomes larger
the computational time grows rapidly, making pratinie the use of this formulation for solving real

instances in reasonable time. To circumvent thisblem, we propose an algorithm based on a



heuristic to find a feasible solution, and on anPMieuristic known in the literature as Local
Branching (Fischetti and Lodi, 2003). The basipstef the algorithm are as follows.

1. Heuristic. Determine the tank classes and timequrito offload each platform.

2. Solve the entire problem with variables fixed adiog to the heuristic.

3. Apply Local Branching to the original problem withe initial solution found by step 2. The

output is the best solution after 5 hours.

In the following subsection, we describe in dettie heuristic and the Local Branching

procedure.

4.1. Heuristic

We verified that the part of the model that givise to a weak linear relaxation is the platform
offloading sub-problem, since the transportatiostqoer volume decreases as the ship capacities
increase. The linear relaxation tends to use didra®f a bigger available ship instead of trying a
smaller ship or an entirely bigger ship. Therefave,propose an algorithm that fixes the time amd th

ship class that will be used to offload a givertfplan. A description of the algorithm is as follows

1- Define Ol, as the set containing all pairs of ship and tim®ffload platform p;
2- Construct a list L of platforms by sorting thendecreasing order of their total production;
3-foreach pin L do

OL, < empty;

stock =initial_stock

t=0



while t< T do
pick out a ship class cl to offload p; (*)
calculate the next time, tnext, when there is ehaigck to entirely load ship cl;
OL, « (cl,tnext);
sett = tnext;

end-while

end-for
4- fix all variables such that the indices cl anaté not in Ol, to zero;

5- solve_problem(P);

Note that in (*), the choice is made by spinningalette where the probability of each ship class
is calculated by the number of route frgmwvith shipcl over the total number of route from platform

p. Figure 14 illustrates how the heuristic works.

X routes with ship classi1 Calculate selection p(cll) =
probability

y routes with shiglass cl2

zroutes with shiglass cl3

neel is rota
e
Select ship class to offload

and update inventory

< ] selsction

Figure 14. Representation of the heuristic algarith



4.2. Local Branching

The Local Branching procedure was first proposedrisghetti and Lodi (2003) with the aim of
improving the efficiency of an exact algorithm lilB¥anch and Bound. It consists of reducing the
solution search space by introducing to the moolelesinequalities called “Local Branching cuts”, i.e
given a new incumbent solution and a nonnegative integer paramétéhe neighborhood size), the

space solution is reduced by means of the follownegualities:

A(XX)=>(1-% )+ D X <k (19)

jos joB
where B is the set of binary variables alis the index set of binary variables that takeigaif one

in the solutionX .

The basic idea of Local Branching is to optimizeeoa small neighborhood, given by
inequality (19), in an attempt for finding betteigions faster. It should be noticed that the lloca
Branching cuts embody the idea of a neighborhoaudcke similar to the idea present in most of
metaheuristics, as they express that the solutidrarad can be changed by at mkgilements. One
parameter of this procedure that needs to be detedns the neighborhood sikeThere is a trade-
off in choosing the value fdt, as we want it to be as small as possible to nizxgroblem easy to
solve, but large enough to contain solutions bdttan the given one. Fischetti and Lodi suggested
that a value ofk in the interval [10, 20] works best in the majpriof cases. Besides, in the
implementation of the procedure this parameter lsandynamically modified as the algorithm

proceeds.



In this work, we implement a version of the LocahBching, called asymmetric, that counts
only the number of variables changing from 1 ta®given by the expression (20). Furthermore, only
the platform offloading variables are consideredeaerate them, leaving more room to the solver for

finding a better solution.

D> (1-%,)<k (20)

i0s
where, k' O[k/ 2]

We can better understand how this procedure workts basic tree representation as given in
Figure 15. The upshot of this method is that wédbaisearch tree where only the nodes appended by
triangles with an S (for Solver) are explored byddfithe-shelf MIP solver. We start out with an
initial feasible solutionx;, and we add to the model the Local Branching camgtA(x,x, ) < k that
correspond to the node 2 in the tree. We solveptioblem represented by node 2, and find the

optimum solutionx, which is better tharx,. At this point, we delete from our model the cosisit
A( XX, )<k, adding simultaneously the constraim x,x, )2 k+1 and A(Xx,X,) <k (these steps
lead us to node 4). We keep on doing these basis stntil we reach a point where the problem is

infeasible (node 6). In this case, we simply deldte last constraintA(x,X,)<k and add
A(XxXs)=k+1, abandoning the Local Branching procedure and gamwcsolving the problem

represented by node 7 using an MIP solver. Thikasmost basic description of the implementation
of the Local Branching procedure. A more elaboratkgbrithm can be found in Fischetti and Lodi
(2003), where they borrowed some ideas from theh®etristic community to improve the efficiency
of this implementation. We implemented this aldomtin C++ using the modeling library provided
by Dash Optimization (XPRESS-BCL, 2006) to add amchove constraints dynamically from the

model.



Initial solution X

Improved solutionX,

i A( X%, )<k

Improved solutiorX,

Infeasible

Figure 15 . Basic Tree representation of the Ld&@alnching procedure

In summary, the key points of this method are:
- The search is concentrated on a reduced paleadg@arch space defined by the left nodes in dee tr
in Figure 15.

- The neighborhood of a given solution is explongth an MIP solver.

5. Resaults

Experiments were conducted on a Pentium IV 2.0GH¥Gh RAM PC and the code was
compiled with Visual C++ 6.0 under a Windows Platfio Our algorithm was tested on real instances
of the problem involving 42 platforms/crude oilstabhker classes, 8 maritime terminals involving 13
berths, 11 refineries, and 20 distillation uniteiowa time horizon of 72 discretized intervals. The
typical instance gives rise to a model with appmately 40,000 binary variables, 45,000 continuous

variables, and 32,000 constraints. Tables 5 artib@ $he results for 4 different real instanceshef t



problem where the efficiency of Local Branching ahd quality of solution for the minimization
problem are reported. In all instances the hearstlution were found in less than 3 minutes. We
used a valu&’ = 6 for the local branching cuts, and set a timmt lof 5 hours for XPRESS and Local

Branching referred to as LBr in Tables 5 and 6.

Table 5. Comparison of best solution

Instance Heuristic solution XPRESS LBr
4 68021.2 68021.2 62939.8
5 13883.6 12561.6 10424.8
6 19231.2 19231.2 16760.4
7 223522.0 223522.0 207519.0

Table 6. Quality of Local Branching solutions

Instance Best Lower Bound (&) LBr (Z') Gap* (%)

4 57435.4 62939.8 9.6
5 9532.6 10424.8 9.4
6 15240.1 16760.4 10.0
7 193814.3 207519.0 7.1

(*) Gap =100.(Z-Z.p)/Z,5



The performance of the Local Branching procedurs euate impressive as shown in Tables 5-6.
As we can observe in Table 5, XPRESS could notavgtthe initial solution in 3 out of 4 instances
and the only one that was possible, the resultomsmarginally better. On the other hand, the Loca
Branching procedure was able to considerably retlueeost of the initial solution for all instances
with average improvement of 13%. The results inl@&bclearly show the significance of optimizing
a large scale problem over a small region in otdexbtain good solutions faster. Furthermore, Table
6 shows that the solutions obtained by the LocahBhing procedure are within 10% of the optimum,

even though this is not guaranteed by the procedure

6. Conclusions

In this paper we have presented a Mixed-Integeedirformulation to a problem faced by an
integrated petroleum company. The problem is ofsm®rable importance in the petroleum supply
chain as it provides a link between strategic goerational decisions. It is a large scale problech a
even finding a feasible solution has not been ptessising commercial solvers.

An extension of the initial problem was proposedamely the flexibility of campaigns, and we
showed its benefits in terms of the solution gyakdditionally, we presented some cuts that allow
curbing the poor relaxation introduced by the clemvgr costs. To overcome the computational
expense for finding a feasible solution, we desgigre heuristic to schedule the offloading of
platforms, greatly reducing the search space, dlodviag the solver to find a feasible solution
rapidly. In addition, we showed that the Local Braing procedure is an important tool to find good
solutions for large scale problems.

Future work will try to exploit the fact that thegblem becomes easier to solve when the
offloading variables are fixed. Another alternatigeto use some decomposition technique, as the

problem can be naturally split up into a platforfiloading problem and a refinery planning problem.
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