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Abstract 

In this work a methodology is presented for the rigorous optimization of nonlinear programming 

problems in which the objective function and (or) some constraints are represented by noisy 

implicit black box functions. The special application considered is the optimization of modular 

process simulators in which the derivatives are not available and some units operations 

introduce noise preventing the calculation of accurate derivatives. The black box modules are 

substituted by metamodels based on a kriging interpolation that assumes that the errors are not 

independent but a function of the independent variables. A Kriging metamodel uses a non 

Euclidean measure of distance that avoid sensitivity to the units of measure. It includes 

adjustable parameters that weight the importance of each variable getting a good model 

representation, and it allows to calculate errors that can be used to establish stopping criteria 

and provide a solid base to deal with ‘possible infeasibility’ due to inaccuracies in the 

metamodel representation of objective function and constraints. The algorithm continues with a 

refining stage and successive bound contraction in the domain of independent variables with or 

without kriging recalibration until an acceptable accuracy in the kriging metamodel is obtained. 

The procedure is illustrated with several examples. 
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Introduction 

There is a growing interest in designing and optimizing process and products using complex 
mathematical models. Computer models facilitate the exploration of alternatives. However, 
although hardware and software are continuously increasing in computational power, there is 
also a growing demand in models with increased accuracy of the mathematical description. Due 
to the complexity of these computer models, a large number of specialized software has 
appeared to solve a wide variety of problems. The architecture of most of these programs is 
modular in order to use tailored numerical methods developed or adapted to each particular 
problem. In most situations, the user only can view a ‘black box model’ with limited access to 
the original code.  

Using optimization algorithms with these “black box models” is a challenging problem for at 
least two reasons. First, some of those models can require significant CPU computation time 
(e.g. a computer fluid dynamics model could take several hours of CPU time). Second, even in 
the case in which the CPU time is not excessive, derivatives for gradient based algorithms 
cannot be accurately estimated because most of these black box models introduce noise. This 
noise can be due to different reasons: small sensitivity of some variables, termination criteria in 
the algorithms or even rounding of some values in the final solution of the original model (i.e. 
rounding the diameter of a column to physically meaningful values). 

In cases in which it is not practical to calculate the model at each iteration of an optimization 
algorithm, a good approach may be to use the original model as a source of ‘computational 
experiments’ that produce data points in the same way as if we had performed a physical 
experiment. With these data we can use a simpler model that involves explicit functions. These 
new models are referred as surrogate, reduced order or metamodels 1. 

The Response Surface Methodology (RSM) to approximate functions has a long history at least 
in three areas: Geology, Global Optimization, and Statistics 2. In Geology, the approach is called 
‘kriging’ and is based on the pioneering works by G.G. Krige3 who was the first in using 
functions to approximate the underground concentration of valuable mineral using a statistical 
methodology. His work formed the base of a new entire field now known as geostatistics4, 5. In 
global optimization this approach is called ‘Bayesian Optimization’. The first important 
contribution was due to H. Kushner6, and developed by many authors7-10 In statistics, the initial 
interest relied on approximating difficult integrals or other difficult functions.  

At the end of the 1980s, a new research interest appeared in computer science and statistics for 
applying kriging techniques to deterministic computer experiments11, 12. This new methodology 
was named Design and Analysis of Computer Experiments (DACE) following the title of the 
paper that first introduced it. More than a specific algorithm, DACE refers to a set of tools for 
modeling and optimizing a complex system. The idea, as mentioned above, is very intuitive. 
Data obtained from computer experiments generated from complex models are fitted using 
some metamodel, and at the same time  statistical parameters are generated that allow 
determining how good the metamodel is. There is a secondary benefit, because it is possible to 
select those variables that most influence the behaviour of the system. The new estimations or 
optimization of the system is performed using the surrogate model instead of the original one. 
This methodology is especially good at modelling the non-linear function often appearing in 
engineering13.  



RSM methods can be differentiated in two ways: if they are non-interpolating (i.e. least squared 
error of some predetermined functional form) or interpolating (pass through all points). Jones13 
showed that non interpolating surfaces, such as quadratic surfaces, can be unreliable because 
they do not capture the shape of the function. He showed that it is usually better to use surfaces 
that interpolate the data with linear combinations of ‘basis functions’. Although the work of 
Jones mainly focused in global optimization, he showed that the interpolating approach is much 
more reliable showing some examples in which quadratic fitting could not even locate a local 
minimum.  

With interpolating methods it is possible to differentiate between fixed basis functions (i.e. linear, 
cubic or thin-plate splins) and basis functions with adjustable parameters (kriging). Furthermore, 
kriging has a statistical interpretation that allows the construction of estimations or the error in 
the interpolator, which can be crucial in the development of an accurate optimization algorithm. 
Due to these adjustable parameters kriging interpolation tends to produce the better results13, 14.  

In this work, we develop an algorithm based on fitting response surfaces –using a kriging 
metamodel- for the optimization of constrained-noise black box models. The system we are 
dealing with have some characteristics intermediate between classical Bayesian Optimization, 
pure DACE systems and very noisy geological models. The functions can be considered 
deterministic, but they introduce some noise. Here we are dealing with mixed systems in which 
a part can be represented by a metamodel and the rest with an accurate model. Besides, an 
important characteristic is that we deal with constrained problems in which the metamodel can 
represent either the objective function or some constraints (or both simultaneously). A typical 
case is the optimization of process flowsheets using modular simulators in which some units are 
represented by a metamodel. In these systems it is possible to include external constraints and 
even the result of some calculations could be constraints to the model. 

In the rest of the paper we first present an overview of kriging. Then an algorithm based on 
successive region refinement is introduced. Later we will show the special characteristics of 
process flowsheets as a typical example of constrained light-noise black box models, with some 
examples to illustrate the effect of noise in these systems, and the main considerations to take 
into account when kriging is used.  

 

Overview of kriging interpolation. 

When we evaluate a deterministic function in a set of given points we assume that the true 
function y(x) is approximated by a function f(x) with some error; 

( ) ( )y x f x ε= +         (1) 

Most metamodel techniques assume that the errors (ε ) are independent and identically 

distributed (with a normal distribution) 2~ (0, )N xε σ ∀ . However, the errors in the predicted 
values are usually not independent, but they are a function of x. In other words, it is expected 
that if the predicted value ( )if x  is far from the true value ( )iy x  then the predicted value of a 

point near ix , ( )ix h+  will also have a predicted value ( )if x h+  far from the true value 

( )iy x h+ . 

The kriging fitting approach is comprised of two parts; a polynomial term and a departure from 
that polynomial: 



 ( ) ( ) ( )y x f x Z x= +         (2) 

where Z is a stochastic Gaussian process, that represent the uncertainty about the mean of 

( )y x  with expected value zero ( )( ) 0E Z x =  and covariance for two points ,i jx x : 

( ) 2cov ( ), ( ) ( , )i j i jZ Z σ=x x R x x . Here 2σ  is a scale factor known as process variance that 

can be tuned to the data and ( , )i jR x x is the spatial correlation function (SCF). The choice of 

SCF determines how the model fits the data. There are many choices for the SCF, but the most 
common used in kriging models is the exponential function: 
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This SCF has the property that if i j=x x , then the correlation is one. The correlation tends to 

zero as the difference between both points increases. In other words, the influence of the 
sampled data point on the point to be predicted becomes weaker as their distance increases. 
The value of lθ  indicates how fast the correlation goes to zero as we move in a lth coordinate 

direction. Parameters lP  determine the smoothness of the function. Therefore, in engineering 

smooth functions this parameter is usually fixed to 2 in all coordinate directions. 

A polynomial choice for equation 2 has the form: 

 2
1 2( )f x x xμ μ μ= + +         (4) 

In kriging fitting, when a function is smooth, the degree of the polynomial f(x) does not affect 
significantly the resulting metamodel fit because Z(x) captures the most significant behaviour of 
the function1. This is an important advantage of kriging models. Usually a simple constant term 
(μ) is enough for a good prediction. 

To estimate the values of 2, , ,l lPμ σ θ , we maximize the likelihood of the observed data y. 
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In equation 5 y is the nx1 vector of observed responses, 1 is an nx1 vector of ones (a vector of 
unit elements) and n is the number of sampled points. 

From a practical point of view, it is more convenient to maximize the logarithm of the likelihood 
function 
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Differentiating equation 6 with respect to 2σ  and μ  and equating it to zero, and after some 

algebra we get the optimal values for μ  and 2σ : 
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Substituting equations (7) and (8) in (6) and neglecting the constant terms, the maximization of 
the concentrated log-likelihood function is given by: 
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To interpolate a new point newx  we add the point ( ),new newx y  to the data and compute the 

augmented likelihood function keeping all the parameters at the previous calculated values. 

With all the parameters constant, the log-likelihood function is only a function of newy . 

Therefore, The predicted value for newy  will be the value that maximizes the augmented 
likelihood function. The final predictor of the kriging method is given by equation 10. A detailed 
derivation can be found in Sasena15:  

 $ ( ) � �( )1new Ty x μ μ−= + −r R y 1        (10) 

where r is the nx1 vector of correlations ( , )new
iR x x  between the point to be correlated and the 

sample design points. 

We are more confident in the prediction if the new point is near a sampled point –the error drops 
to zero in all sampled points-, and at the same time we are more confident if the augmented log-

likelihood drops off rapidly as one moves away from the optimal value of newy . It is possible to 
derive the mean-squared error of the predictor, which yields: 
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There are two important differences between kriging and other basis function methods that 
make the kriging to usually outperform those methods. First, the other methods usually do not 
have parameters in their basis functions, or if there is any parameter, it is rarely optimized. 
Second, most of the methods use a Euclidean norm which makes them sensitive to the units of 
measurements. Kriging, however, capture all those effects in the θ ’s parameters through a 
non-Euclidean norm. 

As an example of the quality of kriging interpolation we use the ‘peaks’ function (a sample 
function in Matlab©16). Figures 1and 2 shows a graphical comparison using the 33 points market 



as dots. The fitted surface using only those 33 points is very close to the original one (at simple 
sight it is difficult to differentiate them). 

In highly noisy systems a non-interpolated approach is usually preferred in order to avoid 
oscillations of the fitted surface when it is forced to go through all data points. To allow kriging to 
smooth the data, an additional parameter is introduced in the SCF (equation 3). The kriging 
model takes the form15, 
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with a new adjustable parameter, Nu, that can be defined globally (a single parameter for all 
dimensions) or locally to smooth differently in each coordinate direction. An example of non-
interpolating kriging model is shown in Figure 3.  

 

Kriging Metamodels in Modular Chemical Process Simulators 

Modular Chemical Process Simulators are widely used tools used by  chemical process 
industries. This is because modern chemical process simulators include state of the art models 
for each of the unit operations. However, if we try to use these models to optimize a a process 
there are some important difficulties: 

1. The most efficient optimizers are ‘gradient based’ -Most of them are based on more or 
less sophisticated versions or Newton method, SQP, GRG17 -. If the simulator works 
like a ‘black box’ model –that is the most common situation-, automatic differentiation 
techniques cannot be used to accurately estimate derivatives and the usual approach 
consists of using finite difference approximations. Unfortunately, the ‘black box’ systems 
introduce some noise. The source of that noise can be a lack of sensitivity of some 
variables with respect to the design variables together with the stopping criteria in the 
intermediate calculations inside the modules. In some cases, truncation and rounding of 
decimals to provide the final user with physically meaningful values, can complicate 
even more the situation. In this case a detailed sensitivity analysis must be performed in 
order to determine the optimal perturbation length of each variable and the adequate 
approximation procedure1, 18.  

2. Even though the process simulators are very robust, it is not uncommon that some unit 
operations (i.e. distillation columns) do not easily converge for a set of design variables 
–assuming that there is a feasible solution for that set of specifications-. This problem 
can usually be solved by modifying initial guesses or by successive approximations 
following, for example, a continuation method. In gradient based algorithms steps are 
usually not too large which contributes to mitigate this problem. 

3. Direct search algorithms –derivative free- do not have the problems mentioned in 
previous points (in general it is not difficult to modify direct search algorithms to 
circumvent the lack of convergence in a given point). But these algorithms have two 
drawbacks: 1. The number of function evaluations tends to be large, which is important 
if the CPU time is significant. 2. They are usually designed to solve unconstrained 



problems. Several approaches have been developed to deal with constrains. Penalty 
methods in which the constrains are moved to the objective function and transformed in 
an unconstrained problem, multiobjective approaches, variable reduction, removing 
some variables by explicit or implicit elimination in equality constraints, restoration 
methods in which if a point violates some constraints there is a especial restoration 
step, special codification for constraints (i.e. genetic algorithms with especial 
codifications), etc. (Michalewicz19, 20 has published a review of these techniques). 
Although, some of these methods may show reasonable performance, in general they 
require a large number of function evaluations that greatly increases in constrained 
problems, and most of them also include parameters that must be tuned for each 
particular problem. 

Due to these difficulties some chemical process simulators have developed equation based 
versions, that have proved to be very useful in optimization, but often at the price of losing the 
robustness of the numerical methods especially developed for some unit operations. In general, 
as the complexity of the mathematical model increases the modular architecture tends to be 
more robust. 

In order to develop a reliable metamodel optimization algorithm for process simulators we must 
take into account the following facts: 

1. In general the CPU time per run is not too large (in comparison with CFD models that 
could take hours per run), but considerably longer than a simple function and 
constraints evaluation in an equation based approach. Hence, we can perform a 
moderate number of flowsheet evaluations without increasing too much the CPU time in 
the optimization. 

2. Flowsheets introduce noise in some situations that is not negligible and must be taken 
into account. 

3. In general, the lower the dimensionality of the metamodel, the higher its accuracy. A 
good approach is to use a metamodel for each unit operation (or reduced group of unit 
operations) to get metamodels with low dimensionality. Furthermore, if there are some 
units that do not generate noise and can be evaluated very quickly, a metamodel is not 
needed in that unit and the optimization can be performed using a mixed approach (i.e. 
in HYSYS.Plant©21  a  vapour-liquid flash almost does not introduce noise with the 
default parameters). 

 

An algorithm for constrained optimization using kriging metamodels 

Taking in mind all the considerations in the previous sections, it is possible to develop an 
algorithm for optimizing a flowsheet using a kriging metamodel approach that guarantees a local 
minimum within a pre-specified tolerance. The next paragraphs provide a comprehensive 
description of the main steps with comments about cautions, weaknesses and robustness of 
each of them. Figure 4 shows a block diagram of the algorithm. While the algorithm is described 
for optimizing process flowsheets, it can be used for any black box model with or without noise. 

1. Given a flowsheet to optimize, identify the unit operations that introduce noise or are very 
CPU time consuming in their simulation. These will be the units to be substituted by a 
metamodel, in our case a kriging model. The rest can be considered as accurate implicit 
models without any special treatment. If possible, group units to keep the dimensionality 



(independent variables) as low as possible. One should take into account that problems 
with a large number of independent variables could require an important number of sample 
points and the fitting surface step could become the limiting step – usually no more that 9-
10 dimensions-. Besides, the fitted surface in large dimensionality problems could be very 
inaccurate. Bounding the variables as much as possible, will increase the accuracy of the 
metamodel. 

2. It is important to have at least an estimation of the noise introduced by the dependent 
variables (especially if the noise introduced is important). In flowsheet optimization, a simple 
way of doing that consists of simulating the flowsheet for a fixed set of independent 
variables, starting from different initial points. Note that the accuracy of the final optimum 
point cannot be higher than the noise, but should be as close as possible.  

3. Select the domain of the independent variables for the sampling, and select an initial 
confidence domain for those independent variables. Here there are two options: a) select a 
hypercube than coincides with the limits of the independent variables (initially we select the 
full dominion space), or b) select a sub-region included in the original dominion space. The 
first approach is better if the initial kriging captures all the basic trends in the model, and it 
has the advantage that it reaches the optimum faster because in the first iteration it can 
locate a near optimal region. The second approach is adequate if the dimensionality of the 
model is large or the kriging cannot capture the main trends in the model (i.e. large 
predicted errors in kriging). The major drawback with this second approach is that the first 
movements lie in the limits of the hypercube that must be updated until a near optimal 
region is located, and the algorithm enters in the refinement stage (In next points a detailed 
explanation of this case is included). 

Whatever the initial sampling region selected, a key point is the sampling procedure. Two 
aspects must be taken into account: 1. The sampling procedure, including the distribution of 
points, and 2. The number of points. It is not the objective of this paper to provide a detailed 
description of sampling techniques, but to highlight the influence of a correct sampling over 
the final quality of the kriging. 

A correct sample must cover all the space defined by the domain of the independent 
variables, However, simple Monte Carlo methods can result in large error bounds 
(confidence intervals) and variance. Variance reduction techniques are statistical 
procedures designed to reduce the variance in the Monte Carlo estimates22. Latin 
Hypercube sampling23, 24, Hammersley25, Halton o Sobol26 sequences or infill sample 
procedures (ISP) are examples of variance reduction techniques. In most applications, the 
actual relationship between successive points in a sample has no physical significance. 
Hence the randomness for approximating a distribution is not critical22. Moreover, the error 
of approximating a distribution by a finite sample depends more on the uniformity of the 
distribution than on its randomness. Therefore, the sampling must be done to preserve the 
uniformity of the distribution and avoid ‘correlation’. Methods based on Halton, Niederreiter, 
or similar sequences tend to produce good results for systems in which there is no further 
information. But all these series are generated based on prime numbers that must be 
carefully chosen in order to avoid correlation22. Infill sampling criteria, i.e. select a set of 
points that maximize the minimum distance between them, assures a good distribution – the 
33 points in Figure 1 were generated using this approach-. However, some care must be 
taken in large dimensional problems because most of the points tend to be placed in the 
edges of the hypercube (to maximize the distance). Also, in slightly noisy systems the 
sample points must be chosen separated enough to assure a good kriging model (in other 
case a non-interpolate approach must be used). Recall that one of the motivations to use a 



surrogate model is that accurate derivatives cannot be obtained in the original one, but this 
does not mean that the sampled value was not accurate enough to get a good metamodel. 

The number of sampling points is also important. If in one dimension we use N points to get 
the same ‘fill in’ in two dimensions we would need N2 points and in general Nk points in a kth 
dimensional space. We cannot increase the number of points for two reasons: the time to 
run the flowsheet for all the points can be very large, and surface fitting could be a 
cumbersome problem mainly due to the NxN matrix inversion at each iteration of the 
algorithm. Fortunately, the smaller the distance between the bounds of the hypercube the 
higher the accuracy of the metamodel. Therefore, in the worst case, initially only a 
metamodel that captures the main trends of the model is needed and successive refinement 
(contraction and movement of the hypercube) allows us to get a solution as accurate as 
desired. 

4. Fit all the surfaces using kriging and validate the model. Once all the variables (surfaces) 
have been estimated by kriging, it is important to validate the metamodel. In the ‘peaks’ 
function we assessed the validity of the kriging by comparing the contour plot of the 
matemodel with the true contours. A possible, more practical, validation consists of 
selecting a few additional points and a ‘test’ sample, and compare actual and predicted 
values on this small sample. But there is a better procedure called ‘cross validation’ that 
allows us to asses the accuracy of the model without extra sampling. The idea in cross 
validation is to leave out one observation and predict it back using the n-1 remaining 
points2. If the number of points is not too small and there are not too many outliers, a single 
point has not too much influence in the kriging and then it is not needed to re-estimate the 
kriging parameters. This procedure is repeated for all the points. In addition to the cross 
validated prediction of point xi, we also get a cross validated standard error of the 
prediction. These two values can be used to compute a confidence interval using the mean 
prediction plus or minus three standard errors (approximately 99.7 % confident that the 
interpolated point lies in that interval). However, instead of actually deriving???? confidence 
intervals, it is more convenient to compute the number of standard errors that the actual 
value is above or below the predicted value. If the model is valid, the value should be in the 
interval [-3,+3]. 

5. Perform the optimization of the flowsheet substituting the selected units by their metamodel. 
If in the constraints no variable appears from the metamodel then no special consideration 
is needed. However, if we are dealing with a constrained problem like the next one in which 
the constraints are calculated through a metamodel, 
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In equation 13 the error introduced by the metamodel can produce infeasible solutions even 
if the actual model is feasible. There are at least two ways for dealing with that problem. 
The first one consists of explicitly introducing the error in the model formulation: 
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The major drawback of the formulation in (14) is that it tends to underestimate the value of 
the objective function. The reason is that the error is usually a bound of the worst possible 
situation, but in most of the evaluated points this is not the case. (i.e. if the error is 
estimated as 3σ  -99.7% confidence- we are overestimating the error in the 99.7% of the 
evaluated points). 

Another alternative consists of removing the errors from model formulation in equation 13. If 
a problem is found to be infeasible we can follow two approaches: 1. solve a problem like 
that in equation 14 or 2. Simply consider that the problem is ‘possibly feasible’ if the 
infeasibilities for each equation are inside the errors estimated by the kriging metamodel. 
Note, however, that in this second case it is necessary to verify the feasibility (i.e. increasing 
the accuracy of kriging by adding new points or reducing the sampling hypercube).  

As we refine the model by successive reducing the size of the sampled hypercube, the 
accuracy of the surrogate model increases and we can approach the actual solution. 

6. Refinement without updating kriging parameters. It is possible to improve the solution 
obtained in point 5 by adding this new point to the kriging model. Like in the cross 
validation, a new point has little influence over the kriging parameters. Therefore, it is not 
needed to re-calculate them. With the new point added we reoptimize the model. This re-
optimization is expected to be very fast because the initial point should be near the optimal 
solution. The procedure is repeated until two successive results are inside a pre-specified 
tolerance. Note, however, that the new points added must be separated enough to avoid ‘ill 
conditioning’ in the correlation matrix. 

It is also possible to add a large number of new points to the kriging without re-optimizing 
the parameters. Since kriging is an interpolating procedure, all the new points are exact 
points (zero error) and it is possible to further reduce the error in the interpolation. The cost 
is that we have to sample in the new points and invert an NxN matrix (N is the number of 
sampled points) and deal with this large matrix each time we want to interpolate new data 
which can considerably slow the optimization. 

7. As will be mentioned in the section ‘algorithm convergence,’ the refinement step presented 
in point 6, even reoptimizing the kriging parameters each time we add a new point, does not 
necessarily guarantee convergence to a local optimum. Jones et al,13 presents an example 
of how this procedure can fail in a one dimensional problem. It is also necessary to force the 
gradient of the surface to match the gradient of the true function, for example adding new 
sample points in the neighborhood of the tentative solution. Furthermore, the termination 
criterion based on no improvement in two consecutive iterations does not guarantee even a 
local optima of the true model. Therefore, we propose to reevaluate the kriging in 
successive contraction or moving steps: 

Depending on where the solution of the previous step is located, we take different actions 
that redefine the domain of independent variables. Figure 5 helps to clarify the actions 
taken: 

• If the optimal solution obtained in steps 5 (or 6) is an internal point to the original 
hypercube, then select a contraction factor and reduce the size of hypercube. This 
new hypercube is center on the optimal solution of previous point. (Figure 5a) 



• If the optimal solution is in the limit of the hypercube, then do not reduce the size of 
the hypercube, simply move it to do that this last point be the center of the hypercube. 
(Figure 5b) 

• The limits of the hypercube can go further than the bounds of the variables, although 
the sampling is always performed inside those bounds. Therefore a contraction step 
is only performed if the last point is in the boundary of the hypercube, but not if it is 
only in the limit of the domain of a variable. Figure 5c and 5d will help to clarify this 
point. 

Go back to point 4 adding to the new sample the optimal point obtained in step 6. 

In each contraction step a new set of sample points is generated. Previous samples are 
discarded. Recall that we are looking for a local optimum, and points far away from this 
optimum do not provide valuable information and considerably complicate the re-
optimization of kriging parameters. However, to obtain sampling points near the optimum, 
and then decreasing the error, the best point in previous iteration is included as a sampled 
point in the new one. 

The procedure stops when the size of the search region (last hypercube) is small enough to 
be confident in the final result. Note that this does not necessarily mean a large number of 
contraction steps. i.e. if we use the metamodel for the’ peaks’ function showed in Figure 1, 
we do not need any contraction step. Eventually if in two consecutive iterations we get the 
same values of the independent variables with no improvement, we cannot guarantee an 
optimum in the actual model if the predicted errors in the surrogate model are greater than 
the tolerance. But if this situation occurs it is possible to force a large contraction to verify if 
this is a local optimum or not. 

If the number of functions defined by black box relationships is large, the kriging generation can 
become the limiting step. The CPU time will depend on the number of independent variables in 
each kriging and on the number of sampled points. However, the time to generate the kriging 
models increases linearly with the number of black box functions (the time to calibrate two 
kriging metamodels that depend on the same number of independent variables and sampled 
points is similar). Therefore, in systems in which the sampling is very time consuming, the 
kriging calibration will have no important effect. If the sampling is relatively fast, the kriging 
calibration will be the most time consuming step, but for a moderate number of independent 
variables the time is not too large and we obtain robust models. 

Convergence of the Algorithm 

Once a kriging metamodel is generated, the simple substitution of this model by the actual one 
does not necessarily guarantee a local optimumFurthermore, a refinement procedure (as 
described in point 6 of previous section) that consist of solving the problem and successively 
update the kriging with the last obtained solution until there is no improvement in two 
consecutive iterations, does not guarantee a local optimum. As was mentioned, Jones et al,13 
presented an example of how this procedure can fail in a one dimensional problem. 

Biegler et al.27 proved that a necessary condition for an appropriate simplified model for 
optimization is that the gradients of the simplified and rigorous models be the same at the 
optimum. This, however, implies nothing about convergence to KKT points inherent in the 
simple model that may be absent in the rigorous model. Biegler et al.27 also proved that a 
sufficient condition for an appropriate simplified model is that it matches the gradients of the 
rigorous model at all points. Therefore, in order to ensure a local optimum it is not enough to 



add a new point but to force the gradient of the surface to match the gradient of the true 
function.  

Local convergence can be guaranteed, however, if the gradient matching is combined with a 
trust region approach. Alexandrov et al28, developed an algorithm that uses a correction factor 
to force gradient matching between the surface and function at the current iterate, in the next 
iteration the surface is optimized within a trust region around the last point. Basically they 
substituted the second order Taylor approximation by a response surface within the trust region. 
Because the response surface is usually more accurate than the Taylor approximation larger 
steps are taken to the optimal solution. They proved that this approach converges to a 
stationary point of the function.  

If the generation of the response surface is fast, the Alexandrov´s algorithm would be perfect for 
our flowsheet optimization using a kriging metamodel. But this is only the case if the 
dimensionality is not large (3 or 4 dimensions at most) and the number of points is relatively 
small. Therefore, we have proposed an approach that starts from a global approach (although 
maybe not be very accurate) and successive contraction and movement the searching region. 
The final result is a region in which we are confident enough in the metamodel and the gradient 
information obtained from it, and therefore we can guarantee that the local optimum of the 
metamodel coincides with the local optimum of the true function. The last step of the proposed 
algorithm is equivalent to a step in the Alexandrov’s approach. 

In noisy systems it is not possible to verify if the gradient of the metamodel matches the 
gradient of the true function. In this case the stopping criteria is based on the assumption that if 
in two successive major iterations (at least one contraction must be performed) the optimal 
solution is the same, we would expect that the gradients also match the ‘true gradients’. This is 
only a heuristic based on the observation that as the domain reduces, the accuracy of the 
kriging increases, and also the accuracy of the derivative information extracted from the kriging. 
However, this is only a heuristic –two iterations could eventually produce the same gradients 
and to be different from the actual ones-. Fortunately, if the statistical parameters obtained from 
the kriging predict a good metamodel, previous situation is not likely to be produced. 

Davis and Ierapetritou29 recently proposed an algorithm in which kriging is only used in the first 
step, as a global picture of the system, and then a non-interpolating approach combined with 
SQP algorithm is used to refine the search (although they constrained to single implicit 
function). This approach has proved to be robust, but it lacks the nice statistical predictions of 
the kriging that can be used as an accurate stopping criteria. Besides, the sampling is 
constrained to feasible points, which can be problematic in highly constrained problems. Instead 
in our algorithm we reevaluate the kriging approach in successive contraction or moving steps. 
We maintain a robust –statistical meaning- approach, which is very useful for dealing with 
feasibility in constraints and as stopping criteria, at the extra cost of the kriging re-evaluation. 

The kriging model is able of reproduce the actual model, and their gradients, not only in the 
optimum, but also in the domain of the last hypercube generated after successive contractions. 
Therefore, the sufficient condition mentioned above can also be ensured at least in a 
confidence region around the optimum. 

Example 1. 

This example is presented to illustrate the performance of the algorithm for a function with 10 
variables (in the limit of the recommended number of variables) in which we can control the 
noise to evaluate the performance of the model. Originally the model was in equation30 form. In 



order to simulate the behavior of a noise black-box system the objective function and the fourth 
constrain that is active in the solution were substituted by implicit equations with noise artificially 
introduced. The model is as follows: 
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          (15) 

Where ( , )N μ σ  is a normally distributed random variable with mean μ and standard deviation 

(σ).  

The optimal solution if the noise is removed is f = 24.1384; xT = (2.1811, 2.3676, 8.8263, 
5.3579, 0.9916, 1.4304, 1.3245, 9.8234, 8.2900, 8.3680) 

In general, it would be necessary to perform an analysis to determine the noise, if it is 
independent or not of the variables, and which is the minimum perturbation in a variable that is 
significant. Of course, we know that information a priori, but some Monte Carlo experiments 
would verify that the errors are independent, with a standard deviation around 0.01 in both 
cases (f and z), that differences around 0.01 are needed to get significant differences in both (f 
and z) when only one variable is modified. Therefore, the final error is expected to be larger. 
Also, the synergetic effect in the error of objective function and in the constraint is important, in 
this case both errors are independent but their interaction has higher impact that the simple sum 
of them. The value of the Lagrange multiplier in the original problem (without noise) is 0.305, 
which means that an error in the constraint of 0.01 can produce an error in the objective 
function around 0.07 to be added to the objective function own error. Fortunately this is not 
always the case.  

The kriging metamodel was generated using 107 and 55 points for objective function and 
constraint respectively. All the NLP sub-problems were solved using SNOPT. Table 1 shows a 
summary of the main steps in the algorithm.  



The last 2 iterations of the algorithm are performed to ensure that the kriging metamodel has 
enough accuracy. There is an important interval of values for the variables with values of 
objective function inside the error. Therefore in two consecutive iterations they are equal (below 
a tolerance) only by chance. Hence, the only valid stopping criterion is based on the errors 
provided by the kriging. In process flowheeting, as we will see in next examples, the error 
introduced by the noise is small enough to avoid this situation. 

Note that the generation of kriging metamodels consumes an important part of the total CPU 
time, therefore is important try to balance the accuracy of the metamodel (number of sampled 
points) with the number of times the kriging should be re-evaluated.  

The solution obtained using the kriging metamodel was [2.15, 2.45, 8.83, 5.32, 1.02, 1.46, 1.26, 
9.77, 8.21, 8.40] and objective function 24.19, that is close the solution without noise. 

 

Example 2. Separation of a mixture of hydrocarbons using a distillation column. 

Consider an example that illustrates the behavior of a modular process simulator when 
combined with a gradient based optimizer. Assume we want to determine the minimum heat 
load needed in the reboiler of a distillation column to separate an iso-molar mixture of butanes 
and pentanes (n-C4 i-C4, n-C5, i-C5), simulated in HYSYS.Plant21. We want to recover at least 
99% of the butanes fed with at least the 0.99 in combined molar fraction. (model M1) To keep 
the model as simple as possible, let us assume that we are using a column with 28 theoretical 
trays (feed in tray 14) and that the pressure in the column remains constant at 450 kPa.  
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With the pressure fixed there are only two degrees of freedom. In those conditions the distillate 
(or bottoms flowrate) is almost fixed, and it would be also possible to specify purity. However, in 
order to illustrate the procedure, we choose two independent variables that converge for almost 
any specifications: reflux ratio and reboil ratio, and let the optimization algorithm deal with the 
purity constraints. In general, it is better to use “difficult to converge” specifications to bound the 
optimal solution and perform the optimization using independent variables that produce “easy to 
converge” flowsheets. 

Using state of the art optimizers (CONOPT31, SNOPT32, KNITRO33) available in TOMLAB-
MATLAB34 and connected to Hysys.Plant through Windows COM capabilities, with default 
parameters and derivatives calculated by perturbing the independent variables, all the 
optimizers fail to obtain a solution. Increasing the perturbation parameter to 10-3 SNOPT found 
an optimal solution, the behavior of CONOPT and KNITRO was a bit erratic –sometimes 
stopped prematurely in an infeasible solution and others provided a solution-. It was necessary 
to increase the perturbation parameter to 5·10-3 to get convergence in almost all runs 
(sometimes the optimizer finished with an infeasible solution). In order to get a solution we must 
tighten the convergence tolerances in the process simulator –HYSYS- (mass and energy 
balances to 10-6), in this case we can use a perturbation parameter around 5·10-4 to obtain 



consistent solutions (objective function = 1556.69 kW; Reboil ratio = 1.3845; Reflux Ratio = 
2.5284). 

Consider now the case when we reformulate the problem by minimizing an auxiliary variable α  
that must be greater or equal than the condenser load (model M2). Clearly, the result should be 
the same. The first constraint in model M2 must be always active. However, in this case we 
need to modify not only the perturbation parameter in derivative calculation, but also to relax 
some tolerances, constraint satisfaction and KKT termination criteria. The reason is that solvers 
have problems in deciding if the first constraint is active or not, which is very dangerous 
because we can obtain false optimal solutions.  
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To substitute the model of the column by a kriging metamodel –in this case four metamodels 
(Distillate Flowrate ‘D’, Reboiler Heat Flow ‘Q, and two compositions in distillate) the first thing is 
to assess the amount of noise introduced by the flowsheet. One possibility is simulating the 
flowsheet from different starting points, and calculating the standard error. See Figure 6 as an 
example. It is also necessary to perform sensitivity analysis in order to estimate the influence of 
the independent variables. For example, the standard error (noise) in the reboiler heat flow is 
around 0.5-1.0 kW –depending on the values of the independent variables- and the values of 
reflux and reboil ratios should be separated around 0.01 units in order to get at least 1.5 kW of 
separation in the heat flow value. These results, although they represent only crude values, 
provide valuable information: 1. If we want a good interpolating kriging we need that sampled 
points are separated at least between 3σ  -and better at least 6σ - units (for both reboil and 
reflux ratios); in other case, we must use a non–interpolating version of the kriging. 2. We 
cannot expect accuracies higher than around 0.01 units in the independent variables. 
Therefore, as termination criterion we can establish that if the error in two consecutive iterations 
is in this limit we can stop. If the error estimated by the kriging is large we must confirm the 
result by contracting the bounds of the kriging to values around this point. Of course, if the 
statistics of kriging confirm that we have a model whose accuracy if below the fixed limits, we 
can also stop without further checking. A post optimality sensitivity analysis will confirm all these 
a-priori estimations  

Although for this example it is possible to get very tight bounds for the independent variables, in 
order to illustrate the procedure, let us start with a wide interval between 0.3 and 3 for both, 
reflux and reboil ratios. Table 2 shows some of the parameters in the iterations. Initially we used 
33 points. The CPU time spent evaluating the 33 sampled points was 2.33 seconds. Then the 
kriging model for each of the adjusted surfaces was adjusted (Q, D, molar fractions) takes 3.7 
seconds. A cross-validation confirms that the kriging is adequate. We consider that the kriging 
model is adequate if all the sampled points in the cross validation are in the interval [ 3 ,3 ]σ σ− . 
Figure 7 shows, as an example, the results of the reboiler heat flow. 

The model to solve now can be conceptually represented as follows: 
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where the superscript ‘M’ makes reference to the magnitudes calculated through a metamodel. 
The errors in constrained problems like M3 is that they can produce infeasible solutions, 
although in the actual model the solution is feasible. In this example we follow the criterion of 
removing the errors. If some of the sub-problems result to be infeasible, we will consider that 
the problem is feasible if the constraint(s) that produce infeasibility is under the error predicted 
by the kriging metamodel. 

The solution to this initial problem is x = [1.519, 2.643] (reflux and reboil ratios respectively) and 
objective function 1630.8 kW. But the solution is infeasible. The residuals in the solution for the 
two constraints are [0.0014, 0] respectively. The standard deviations calculated by the kriging 
(see also Table 2) are 

1 2
40.3 ; 10.0; 0.0139; 0.0061;Q D x xkWσ σ σ σ= = = =  Therefore, 

following the criteria of assuming that the solution can be considered feasible if the kriging error 
is larger than the infeasibility we can mark the problem as ‘possibly feasible’ and continue with 
the algorithm. Note that alternatively it would be possible to solve the problem like in equation 
14, but maybe except in highly constrained problems in which is difficult to find a feasible point, 
the previous approach usually works better. 

Instead of contracting the feasible region, it is possible to improve the kriging model by adding 
the optimal point without re-optimizing the kriging parameters. This procedure has almost no 
computational cost. Then, with the new point added, and starting from the previous obtained 
solution the problem is solved again. If the point found in the first problem was near optimum 
this second problem is expected to converge fast. Besides, if the new point is near the previous 
one, the error predicted by the kriging metamodel should decrease, because the interpolated 
point is expected to be near a sampled point. Note that in this example adding this new point 
produces a feasible solution. The procedure continues until there is not improvement in two 
iterations or a pre-specified number of iterations.  

However, in the previous refining stage one important consideration must be taken into account. 
The new sampled points must be separated enough to guarantee that the noise is not a 
dominant effect and to avoid ‘ill conditioning’ during the matrix inversion. The first is mitigated by 
the fact that sampling in the flowsheet starting from closed points tend to decrease the noise. 
The second is more related with the kriging implementation, in our case the independent 
variables are scaled to values between 0-1 which help to maintain stability. After this stage the 
results are:  f = 1556 kW x=[1.3842,  2.5281] and the standard deviations calculated by the 

model are 
1 2

4 51.2 ; 0.16; 1.7·10 ; 2.9·10Q D x xkWσ σ σ σ− −= = = = ,(see further details in 

Table 2): 

Although previous errors could be within the tolerance, at this stage we cannot ensure that we 
have obtained the optimal result. As mentioned in previous sections we must ensure that 
around the solution the model reproduces the functions and their derivatives. The next step is 
therefore, contracting the bounds of the independent variables, the new domain is centered in 
the last best point. At this point we sample again, inside the new domain, including as one of the 
sampled points the last obtained solution. In the example, in this second major iteration the 



optimal solution coincides with that in the first iteration and errors are inside tolerance, and 
search is stopped. 

The contraction factor is usually not critical (in this example we reduce the region in an 80%). If 
the reduction is too large and the optimal solution is inside the new region, the iteration will 
finish in a face (edge or vertex) of the hypercube. In the next iteration there will be only a 
movement of the domain without contraction. 

The total CPU time used in the optimization (including sampling, kriging optimization and model 
optimization) was around 13 s. 

 

Example 3. Sequence of two distillation columns 

In this example we separate a mixture of three hydrocarbons in their pure components using a 
direct distillation sequence of two columns. Table 3 shows the data for the example. 

The objective in this case consists of minimizing the sum of maximum vapor flows in both 
columns, and we want recovery the 95% (in molar basis) of each of the hydrocarbons in the 
initial mixture. To simplify the problem we assume that the pressure is known and constant. 
With this information it would be possible to get tight bounds of the independent variables, but 
as in previous examples, in order to illustrate the algorithm we started with a larger interval. 

In this example there are two columns. The first one is similar to the column in the second 
example. For the second one we have two approaches: 1. completely separate it from the first 
column (the independent variables for this model will be the two degrees of freedom of the 
column –i.e. Reflux and reboil ratios- and the independent variables in the feed –i.e. molar flow 
rates of each component-). 2. The feed to the second column depends on the first column 
(bottoms stream of the first column). Therefore, it is possible to remove the feed of this second 
column from the kriging and consider as independent variables for modeling the second column 
the reboil and reflux ratios of the first column together with its own reflux and reboil ratios.  

The second approach is more compact, but we lose information about the feed to the second 
column. In the first one, the kriging model for the second column has higher dimensionality (the 
number of components in the feed plus the specifications in the column). However, this situation 
is mitigated because the kriging metamodel for the second column is not developed for the 
entire domain of feed individual component flowrate values, but only for the domain of possible 
values obtained when fitting the kriging in the first column. It is worth noting that in the first 
major iteration errors larger than in the compact approach are expected. But as the feasible 
region is contracted, the possible values for the feed of the second columns are rapidly 
constrained to a small region and both approaches have similar behaviors. These two models 
can be conceptually represented as follows: 
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where c1, c2 make reference to columns 1 and 2, FCi is the feed flowrate to the second column. 
BCi is the bottoms stream errors of the first column. RR and RB are its reflux and reboil ratios 
respectively. 

All the NLP sub-problems were solved using SNOPT. Figure 8 shows the scheme of the 
columns with the optimal results. Tables 4 and 5 show the main statistics of the algorithm for 
both models, case 1 equation 16(a), and case 2 equation 16(b). It is interesting to note that the 
initial problem in the second approach is infeasible within the error predicted by the kriging. As 
soon as this point is added to the kriging and updated (without modifying adjustable 
parameters), the model become feasible. 

Example 4. Phthalic anhydride from O-Xylene 

This example uses the synthesis of Phthalic Anhydride from O-Xylene to illustrate how a unit 
operation, (a plug flow reactor), can be substituted by a kriging metamodel in a flow-sheet 
optimization.  

The most common method for production of phthalic anhydride is by catalytic oxidation of O-
Xylene, in vapour phase, with a V2O5 catalyst. Phthalic anhydride is used in the manufacture of 
plasticizers (additives to polymers to give them more flexibility) and polyesters, among other 
applications.  

Initially an air stream is compressed up to 3 atm, and mixed with a pressurized O-Xylene 
stream. The mixture is vaporized, heated and then introduced in a reactor. The reactions are 
highly exothermic, and the reactor must be refrigerated, in this case using the eutectic salt 



HiTecTM (40% NaNO2, 7% NaNO3, 53% KNO3), common in refrigeration of continuous 
processes at high temperatures. The reactor temperature must be between 300 and 400 ºC. 
The product is a mixture of phthalic anhydride, maleic anhydride, o-xylene, CO2, water, O2, and 
N2. The product mixture is cooled, depressurizes until 1.5 atm, and separated using a flash and 
a distillation column. The phthalic anhydride is obtained in the bottom stream, with a molar 
fraction higher than 0.999. Figure 9 shows the flow-sheet. 

The reaction is modeled as a non-isothermal plug flow reactor using the following reactions: 
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High pressure favors the main reaction, therefore it is fixed to the maximum recommended for 
the process. Independent variables are temperatures of the reactor inlet and outlet streams, 
reactor volume, temperature and pressure in the stream entering the flash. Relevant data are 
presented in Table 6.  

The objective of the optimization is to maximize the annual profit. The investment cost includes 
cost for compressor, pump, heater, cooler, reactor, flash separator and distillation column 
(vessel, trays, reboiler and condenser). These costs were calculated using the correlations 
presented in Turton et al.35 and annualized as described by Simth36. Services include heating 
and cooling utilities and electricity as well as raw materials and product (phthalic anhydride) 
prices. 

The major difficulty when optimizing the process is related with the reactor. The differential 
equations involved introduce noise and the time to solve them is not negligible. Therefore, the 
reactor is substituted by a kriging metamodel, while the rest of unit operations continue to be 
calculated by the simulator. Therefore we have a hybrid system. 

Although the reactor is substituted by a kriging model it is not convenient to substitute all the 
individual flows (phthalic anhydride, maleic anhydride, o-xylene, CO2, water, O2, and N2) by a 
kriging model. If we do that, the errors introduced by the model violate the mass and energy 
balances. Therefore we develop a metamodel for the phthalic anhydride, the maleic anhydride 
and CO2. The other components can be calculated at the exit by a simple mass balance. Once 
the mass balances have been calculated, the heat removed from the reactor is calculated by 
the simulator by an energy balance. 

In this example the limiting stage is the sampling. Therefore, in order to avoid excessive number 
of major iterations we use 71 points (relatively large if compared with previous examples) to get 
a good metamodel and avoid further contraction steps. The algorithm converges in 2 major 
iterations. Table 7 and Figure 9 show the statistics of the algorithm and the main results. 

 

Conclusions and Final Remarks 

In this work, a new algorithm for constrained optimization containing implicit noisy black box 
functions was presented. The noisy implicit functions are substituted by a kriging metamodel 



that allows the fast interpolation of new values and simultaneously calculate the standard error 
of the predicted point. The predicted errors in the model together with the knowledge of the 
error introduced by the system provide us with a reliable stopping criterion. 

In noisy constrained systems it is possible obtain infeasibility due to inaccuracies in the 
constraints and objective function. The standard deviation predicted by the kriging can be used 
a as criterion for infeasibility if it is larger than the error (for example if the infeasibility is larger 
than 3σ , with a 99.7% confidence), or it can consider the point as ‘possible feasible’ if the 
infeasibilities are below that error. The refining stage –without recalibrating the kriging- and the 
bounds contraction in order to improve the kriging interpolation will confirm if the point is 
feasible or not. In each iteration, the optimization is performed substituting the black box 
function by its kriging metamodel using a NLP solver (SNOPT). Each problem is solved to 
optimality, the kriging is updated (i.e. adding the last best point) and the procedure is repeated.  

It is worth mentioning that in all the examples presented, and in most of the applications it is 
possible to add new points without recalibrating the kriging parameters. Since kriging is an 
interpolating method, the value in these new points is exact, and the quality of the interpolation 
improves. However, the cost is that we have to invert a large matrix, which increases the CPU 
time in the optimization although it tends to decrease the total number of major iterations.  

The major capability of the kriging metamodel is that it captures the main trends in the model; 
even in the case in which the interpolation is not accurate. Successive contractions can locate 
the optimum in a reduced number of major iterations. However, the quality of the kriging 
metamodel depends on the number of variables and on how much the bounds of the 
independent variables can be tightened. A pre-processing stage whose objective is only to find 
a near optimal region would improve the performance of the optimization avoiding unnecessary 
contraction steps. If the algorithm is used to substitute deterministic models (without noise), the 
convergence of the model is guarantee to a local stationary point, because it is possible to 
assure that both the original model and their gradient information are matched by the 
metamodel within a given tolerance.  

The algorithm presented has proved to be robust and reliable when some of the most difficult to 
converge and usually noisy unit operations (distillation columns and reactors) are substituted by 
a kriging model. Finally, the statistical parameters calculated by the kriging approach, ensures a 
solution in the limits of the error introduced by the noise and (or) bound the errors assumed. 
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Table 1. Summary of results from example 1.  

Iteration 1: 
Number of sampled points in f = 107                  CPU time kriging f = 30.6 s 
Number of sampled points in z = 55                   CPU time kriging z =   6.6 s 
 
Optimal values (after refining stage) 

x1 2.06 x6 2.30 f 75.52 
x2 3.46 x7 0.52 z -50.58 
x3 7.21 x8 7.96 CPU time(s) 3.65 
x4 5.12 x9 7.65   
x5 1.40 x10 8..37   

Iteration 2: 
Number of sampled points in f = 108                  CPU time kriging f = 24.5 s 
Number of sampled points in z = 56                   CPU time kriging z = 4.98 s 
 
Optimal values (after refining stage) 

x1 2.13 x6 1.29 f 43.88 
x2 3.46 x7 1.44 z -64.0 
x3 6.88 x8 9.28 CPU time(s) 2.08 
x4 5.58 x9 7.24   
x5 0.98 x10 7.05   

Iteration 3: 
Number of sampled points in f = 108                  CPU time kriging f = 28.9 s 
Number of sampled points in z = 57                   CPU time kriging z =  4.9 s 
 
Optimal values (after refining stage) 

x1 2.14 x6 1.17 f 31.39 
x2 2.90 x7 1.01 z -34.44 
x3 7.62 x8 9.44 CPU time(s) 1.78 
x4 4.39 x9 7.70   
x5 0.95 x10 7.56   

Iteration 4: 
Number of sampled points in f = 108                  CPU time kriging f = 26.48 s 
Number of sampled points in z = 56                   CPU time kriging z =  5.98 s 
 
Optimal values (after refining stage) 

x1 2.21 x6 1.81 f 25.80 
x2 2.53 x7 1.25 z -18.50 
x3 8.26 x8 9.69 CPU time(s) 1.02 
x4 4.89 x9 8.21   
x5 1.18 x10 8.20   

Iteration 5: 
Number of sampled points in f = 108                  CPU time kriging f = 18.64 s 
Number of sampled points in z = 56                   CPU time kriging z =  5.73 s 
 
Optimal values (after refining stage) 

x1 2.21 x6 1.49 f 24.52 
x2 2.49 x7 1.27 z -10.28 
x3 8.56 x8 9.72 CPU time(s) 1.19 
x4 5.44 x9 8.33   
x5 1.04 x10 8.50   



Table 1. Summary of results from example 1.(cont) 

Iteration 6: 
Number of sampled points in f = 108                  CPU time kriging f = 16.89 s 
Number of sampled points in z = 56                   CPU time kriging z =  5.53 s 
 
Optimal values (after refining stage) 

x1 2.15 x6 1.52 f 24.28 
x2 2.44 x7 1.26 z -0.0004 
x3 8.84 x8 9.77 CPU time(s) 1.311 
x4 5.32 x9 8.14   
x5 1.04 x10 8.22   

Iteration 7: 
Number of sampled points in f = 108                  CPU time kriging f = 16.56 s 
Number of sampled points in z = 56                   CPU time kriging z = 5.72 s 
 
Optimal values (after refining stage) 

x1 2.15 x6 1.50 f 24.19 
x2 2.43 x7 1.27 z 0.00 
x3 8.81 x8 9.78 CPU time(s) 1.22 
x4 5.25 x9 8.22   
x5 1.03 x10 8.39   

Iteration 8: 
Number of sampled points in f = 108                  CPU time kriging f = 16.51 s 
Number of sampled points in z = 56                   CPU time kriging z = 4.11 s 
 
Optimal values (after refining stage) 

x1 2.15 x6 1.46 f 24.19 
x2 2.45 x7 1.26 z 0.00 
x3 8.83 x8 9.77 CPU time(s) 1.23 
x4 5.31 x9 8.21   
x5 1.02 x10 8.40   

Total CPU time (s) = 236.11 (94.3% kriging generation) 

 



 

Table 2. Summary of algorithm for example 2.  

Variables: Reflux ratio (RR); Reboil Ratio (RB) 

Initial interval:       0.3 3; 0.3 3RR RB≤ ≤ ≤ ≤  

Kriging metamodels: Q = Reboiler Heat Flor (kW) 
                                  D = Distillate Flow rate (kmol/h) 
                                  xD1 = molar fraction of n-butane in distillate 
                                  xD2 = molar fraction of iso-butane in distillate 

NLP Solver : SNOPT 

Iteration 1 
Number of sampled points = 33 
Sampling time = 1.927 s 
 

Metamodel Q  D  xD1 xD2 
μ  1103 67.3 0.560 0.357 
σ  254 18.1 0.052 0.037 
θ  [1.072, 4.346] [0.974, 3.749] [2.585, 2.090] [5.048, 9.728] 
P [1.318, 1.415] [1.070, 1.367] [1.398, 1.467] [1.675, 1.998] 

CPU time (s) 0.735 0.766 0.812 1.406 
     

Optimization and refinement 

 RR RB 
Q kW 
( Qσ ) 

D (kmol/h) 
( Dσ ) 

xD1 
(

1xσ ) 
xD2 

(
2xσ ) 

CPU time 
(s) 

1 1.519 2.634 1630 
(40) 

100.1 
(10) 

0.499 
(0.014) 

0.489 
(0.061) 0.344 

2 1.431 2.567 1581 
(44) 

100.0 
(3.7) 

0.499 
(0.007) 

0.491 
(0.002) 0.046 

3 1.409 2.549 1569 
(23) 

100.0 
(2.1) 

0.4996 
(0.004) 

0.4904 
(0.0014) 0.078 

4 1.386 2.529 1557 
(21) 

100.0 
(2.1) 

0.4999 
(0.004) 

0.4901 
(0.0014) 0.032 

5 1.384 2.528 1556 
(1.2) 

100.0 
(0.16) 

0.4998 
(0.0002) 

0.4902 
(0.0001) 0.047 

        

 



 

Table 2.(cont)  Summary of algorithm for example 2. 

Iteration 2 
Number of sampled points 34 
Sampling time = 1.823 s. 

        
Metamodel Q  D  xD1 xD2 

μ  1789 103.1 0.4904 0.4446 
σ  136 5.0 0.0243 0.0166 
θ  [1.463, 3.054] [2.779, 7.080] [2.948, 7.331] [7.729, 41.780] 
P [1.247, 1.331] [1.362, 1.373] [1.396, 1.377] [1.579, 1.888] 

CPU time (s) 0.688 0.828 0.734 1.828 
Optimization and refinement 

 RR RB 
Q kW 
( Qσ ) 

D (kmol/h) 
( Dσ ) 

xD1 
(

1xσ ) 
xD2 

(
2xσ ) 

CPU time 
(s) 

1 1.400 2.542 1564 
(27) 

100.0 
(1.3) 

0.4998 
(0.0061) 

0.4902 
(0.0034) 0.047 

2 1.388 2.532 1558 
(13) 

100.0 
(0.6) 

0.4998 
(0.0026) 

0.4902 
(0.0012) 0.063 

3 1.385 2.529 1557 
(6) 

100.0 
(0.2) 

0.4998 
(0.0011) 

0.4902 
(0.0005) 0.125 

4 1.384 2.528 1557 
(1) 

100.0 
(<0.1) 

0.4998 
(0.0001) 

0.4902 
(<10-4) 0.45 

Total CPU time (s) = 12.779 (29.4% sampling; 61.0% kriging generation) 

Q in kW, D in kmol h-1, xD molar fraction. 



Table 3 Data of example 3. 

Components : n-pentane; n-hexane; n-butane 
Thermodynamics: Peng Robinsong equation of state. 
Assumed constant pressure in the columns (200 kPa) 

Feed Column 1 Column 2 

P (kPa) 200 kPa Trays 25 Trays 32 
T (ºC) 83.89 Feed Tray 14 Feed Tray 16 

Molar Flow 
(kmol/h) 

200 Specifications
Reflux ratio 
Reboil Ratio 

Specifications 
Reflux ratio 
Reboil Ratio 

Composition 
(molar fract) 

[0.3, 0.4, 0.3]     

External constraints: Recovery of each component with a purity higher than 95% (molar) 

 



 

Table 4. Summary of the main steps in algorithm in example 3. Case 1. 

Variables: Reflux ratio (RR); Reboil Ratio (RB) in each column 

Initial interval:       0.3 3; 0.3 5; 1, 2.i iRR RB i≤ ≤ ≤ ≤ =  

Kriging metamodels: Vc1 = Maximum vapour flow rate in column 1 (kmol/h) 
                                     xC5 = C5 molar fraction in distillate of column 1 
                                    Vc2 = Maximum vapour flow rate in column 2 (kmol/h) 
                                    xC6 = C6 molar fraction in distillate of column 2 
                                    xC7 = C7 molar fraction in bottoms of column 2 

NLP Solver : SNOPT 

Iteration 1: 
Number of sampled points in Vc1, xC5=            35     
Number of sampled points in Vc2, xC6, xC7 =   73      
 
Independent variables Reflux ratio (RR) and Reboil ratio (RB) in each column 
 
CPU time kriging Vc1 = 0.92 s 
CPU time kriging xC5 = 1.27 
CPU time kriging Vc2 = 5.89 s 
CPU time kriging xC6 = 16.59 
CPU time kriging xC7 = 15.32 
 
Sampling time = 13.59 s 
 
Optimal values (after refining stage) 

RR1 1.948 RR2 1.511 F (kmol/h) 374.8 
RB1 1.172 RB2 2.992 CPU time (s) 7.9 

      

Iteration 2: 
Number of sampled points in Vc1, xC5=            36     
Number of sampled points in Vc2, xC6, xC7 =   74      
 
CPU time kriging Vc1 =  0.63 s 
CPU time kriging xC5 = 0.81 s 
CPU time kriging Vc2 = 5.82 s 
CPU time kriging xC6 = 6.59 s 
CPU time kriging xC7 = 7.50 s 
 
Sampling time = 12.9 s 
 
Optimal values (after refining stage) 

RR1 1.945 RR2 1.501 F (kmol/h) 374.8 
RB1 1.180 RB2 2.999 CPU time (s) 1.28 

      

Total CPU time (s) = 97.0 (27.3% sampling; 63.23% kriging generation) 

 



Table 5. Summary of the main steps in algorithm in example 3. Case 2. 

Iteration 1: 
Number of sampled points in Vc1, xC5 , FC5, FC6, FC7 =  35     
Number of sampled points in Vc2, xC6, xC7 =   73      
 
CPU time kriging Vc1 = 1.77 s 
CPU time kriging xC5 = 1.33 s 
CPU time kriging FC5 = 1.42 s 
CPU time kriging FC6 = 1.78 s 
CPU time kriging FC7 = 3.13 s 
CPU time kriging Vc2 = 9.12 s 
CPU time kriging xC6 = 10.95 
CPU time kriging xC7 = 13.41 
 
Sampling time = 8.8 s 
 
Optimal values (after refining stage) 

RR1 1.934 RR2 1.518 F (kmol/h) 374.8 
RB1 1.175 RB2 2.999 CPU time (s) 14.53 

Iteration 2: 
Number of sampled points in Vc1, xC5 , FC5, FC6, FC7 =  36    
Number of sampled points in Vc2, xC6, xC7 =   74      
 
CPU time kriging Vc1 = 1.52s 
CPU time kriging xC5 = 1.53 s 
CPU time kriging FC5 = 1.72 s 
CPU time kriging FC6 = 1.36 s 
CPU time kriging FC7 = 2.33 s 
CPU time kriging Vc2 = 10.00 s 
CPU time kriging xC6 = 12.91 s 
CPU time kriging xC7 = 14.39 
 
Sampling time = 8.5 s 
 
Optimal values (after refining stage) 

RR1 1.939 RR2 1.509 F (kmol/h) 374.9 
RB1 1.180 RB2 2.994 CPU time (s) 2.09 

Total CPU time (s) = 16.62 (14.1 % sampling; 72.3% kriging generation) 

 



Table 6. Data for example 4 

Components: Air, o-xylene, phthalic anhydride, maleic anhydride, water, CO2. 

Thermodynamics: UNIQUAC 

Feeds Air o-xylene Distillation Column  

P (kPa) 101.3 30.82 Trays 10  

T (ºC) 25 25 Feed Tray 5  

Molar Flow 
(kmol/h) 

1000 30.82 Specifications
Reflux ratio 

Phthalic anhydride purity 
99.9% in bottoms strams 

Cost Data 

Phthalic anhydride 1554 $/ton Cooling water 0.354 $/GJ 

o-xylene 1106 $/ton Molten salt 12 $ /GJ 

  HP steam 9.83 $/GJ 

  Electricity 480 $/kW-year 



Table 7. Summary of the main steps in algorithm in example 4. 

Variables T1 = Temperature in the reactor inlet stream(ºC) 

                 T2 = Temperature in the reactor inlet stream (ºC) 
                 L = Reactor length (m);  
                 T = exit cooler temperature (ºC) 
 
Initial interval: 
              300 1 400; 300 2 400; 20 180; 25 3 300;T T L T≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  
 
Kriging metamodels:   Pht = Molar flow at the exit of reactor of phthalic anhydride 
                                       Ma = Molar flow at the exit of reactor of maleic anhydride 
                                       CO2 = Molar fraction at the exit of reactor of CO2 
NLP Solver : SNOPT 
 

Iteration 1: 
Number of sampled points =  71  
 
CPU time kriging Pht (T1, T2, L)  = 5.6  s 
CPU time kriging Ma (T1, T2, L)   = 6.5 s 
CPU time kriging CO2 (T1, T2, L) = 6.6 s 
 
Sampling time = 73.1 s 
 

Optimal values in first iteration before refining 

T1 323.4 T2 392.1 L 121.6 
T3 72.8 Objective 3.92 106 $/year   

      
Optimal values in first iteration after refining 

T1 306.7 T2 397.1 L 144.0 
T3 71.0 Objective 4.01 106 $/year   

CPU time (s) 13.1     
 
 
 
Iteration 2: 
Number of sampled points =  72  
 
CPU time kriging Pht (T1, T2, L)  = 5.3  s 
CPU time kriging Ma (T1, T2, L)   = 6.6 s 
CPU time kriging CO2 (T1, T2, L) = 6.2 s 
 
Sampling time = 70.4 s 
 
 

Optimal after refining 

T1 306.6 T2 396.8 L 144.0 
T3 71.0 Objective 4.02 106 $/year   

CPU time(s) 3.49     
Total CPU time (s) =  169.9 s (72.9 % sampling; 18.7 % kriging generation) 



Figure Captions 

Figure 1. Level curves for ‘peaks’ function. (a) Actual model (b) kriging interpolation using the 
33 points marked as dots in figure. In both figures level curves correspond to the same function 
values 

Figure 2. 3 D plot of the ‘peaks’ function. (a) actual model. (b) kriging interpolation using the 33 
points showed in Figure 1a. (c) standard error predicted by the kriging. 

Figure 3. Example of non-interpolating kriging. 3σ error lines, predicted by kriging, (99.7% 
confidence) are included. U makes reference to uniform random error. 

Figure 4. Flowchart of kriging based NLP optimization algorithm 

Figure 5. Graphical representation of the movements in the sampling hypercube –squares-. a) 
If the optimal point in iteration k is inside the sampling region in iteration k+1 the sampling 
region is contracted and centred in the best point from previous iteration. b) If the optimal point 
is in the limit of the sampling region, this region is simply moved. c) Same as case a but now the 
optimal point in iteration k is at a bound (dotted line). Note that the limits of the hypercube are 
used only to decide if there is or not contraction, but actual sampling is constrained to values 
inside the domain of variables. d) Same as b with optimal point simultaneously in the limit of 
sampling hypercube and domain of a variable. 

Figure 6. Value of the reboiler heat flow rate (kW) in distillation column of example 1 obtained 
from 100 runs starting from random initial points. For these 100 points the mean value is 1556.4 
kW with a standard deviation equal 0.49. 

Figure 7. Cross validation for the heat flow rate in reboiler of distillation column in example 1. 
(a) number of standard errors that a point is above or bellow the predicted value. All the values 
are clearly in the interval [-3,3]. (b) Comparison of actual an interpolated values. The outliers are 
points in the borders of the sampling region, when they are removed in cross validation the rest 
of the points are performing an extrapolation instead of an interpolation which justifies their 
deviation. 

Figure 8. Scheme of the columns sequence in example 3. Optimal solution and some relevant 
data are included. 

Figure 9. Hysys scheme of the Petlyuk flowsheet to obtain phthalic anhydride from o-xylene, 
example 4. . Optimal solution and some relevant data are included. 
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Pre-optimization step
Select implicit black –box models

Identify independent variables and fix bounds on 
variables as tight as possible

Estimate the noise introduce by each implicit model 

Set k = 1 : Iterations count

Select the number of sampling points (Ns) and the 
sampling region for each surface to be interpolated, and 

distribute these points to minimize the variance
Specify termination tolerances

Sampling
Sample to get [x,F(x)] and calibrate kriging parameters 

maximizing log-likelihood function
If k>1 the last best point (x*)k-1 must be a sampled point

Sample in the point (xj)k to get [xjk, F(xj)] 
Update kriging (no re-optimize parameters)

j = 1
Solve the NLP model using kriging metamodels for

the noise implicit functions. The optimal solution is (xj)k

Starting from (xj)k solve the NLP to get (xj+1)k

| (xj)k – (xj+1)k | < tol1j = j+1

No

(x*)k = (xj)k

|(x*)k – (x*)k-1| < tol2
or

Kriging error< tolk

Is (x*)k in a limit of 
sampling hypercube

yes

Contract sampling 
hypercube, centered 

in (x*)k

K = k+1

A

A

Move sampli
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Figure 4  
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Figure 7 

 

 

 

 

n-Pentane (0.3 mol fraction)
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Figure 8 

 



Air (1000 kmol/h)

O-xylene (3272 kmol/h)

Compressor 1303 kW

Pump 0.32 kW

183 ºC, 334 kPa

123.4 ºC 
Vapor fraction =1

Heater 1795 kW

306.6 ºC

Reactor 144 x 0

13790

59.9
160 

O-xylene 0.082 kmol/h
Oxygen 73.03 kmol/h
Nitrogen 790 kmol/h
Maleic Ah. 0.284 kmol/h
Phthalic Ah. 0.072 kmol/h
CO2 43.20 kmol/h
H2O        70.518 kmol/h

Distillation column 10 theoretical trays
Diameter = 1.06 m

1282 kW

1034 kW

Maleic An. 5.49 kmol/h
Water 32.78 kmol/h
O-xylene 0.034 kmol/h
Rest < 0.001 kmol/h

22.36 kmol/h phthalic An.
Purity > 0.999

Figure 9 

 

 


