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On the computational studies of deterministic global
optimization of head dependent short-term hydro

scheduling
Ricardo M. Lima, Marian G. Marcovecchio, Augusto Q. Novais, Ignacio E. Grossmann

Abstract—This paper addresses the global optimization of
the short term scheduling for hydroelectric power generation.
A Mixed Integer Nonlinear Programming (MINLP) model is
proposed for a cascade of hydro plants, each one with multiple
turbines, characterized by a detailed representation of the net
head of water and a nonlinear hydropower generation function.
In addition, a simplified model is also proposed where only the
linear coefficients of the forebay and tailrace polynomial func-
tions are retained. A deterministic global optimization approach,
denominated sHBB, is developed and its performance in four
case studies is compared with a commercial solver for global
optimization. The results show that the proposed approach is
more efficient than the commercial solver in terms of finding a
better solution with a smaller optimality gap, using less CPU time.
The proposed method can also find alternative and potentially
more profitable power production schedules. Significant insights
were also obtained regarding the effectiveness of the employed
relaxation strategies.

Index Terms—Short term hydro scheduling, MINLP, global
optimization.

NOMENCLATURE

A. Indices and sets

i,k,I Hydro plants
IC Pairs of upstream and downstream plants
qq,G Grid points for the relaxations of bilinear terms
j,J Turbines
M Pairs of plants and turbines
n,N Grid points for the relaxation of hdni,t
R Grid points for supporting hyperplanes
Tt,τk,iTime periods to build wrap around constraints
UI Turbines with identical features in the same plant

B. Parameters

ai,l Coefficients for the forebay level polynomials
bi,l Coefficients for the tailrace level polynomials
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Di,t,n Grid points for the partition scheme for di,t
Hi Water head [m]
SCi,j Start-up cost of turbine j in plant i [m.u.]
PUPi,j Maximum power of turbine j in plant i [MW]
QUi,j Maximum outflow of turbine j in plant i [m3/s]
Qi,j,t,qq Grid points for the partition scheme for qi,j,t
V UPi Target for the maximum storage of the reservoir

of plant i at the end of the time horizon [Hm3]
V LOi Target for the minimum storage in plant i at the

end of the time horizon [Hm3]
V 0i Initial storage of the reservoir of plant i [%]
V C Conversion factor from [m3/s] to [m3/h]
WIi Forecast natural water inflow of plant i [m3/s]
ηi,j Average generation efficiency [MW/((m3/s).m)]
λt Forecast price of energy in period t [m.u./MWh]
ξ Minimum water discharge factor
τi,k Time delay between plant i and plant k [h]
ϕi,j Penstock head losses as a fraction of the net head
φi,j Constant, where φi,j = ηi,j (1− ϕi,j)

C. Variables

ci,j,t Start-up cost of unit j in plant i in period t [m.u.]
di,t Total water discharge of plant i in period t [m3/s]
dni,t,n Disaggregated variable for di,t
hi,t Dummy variable defined as hi,t = hupi,t−hdni,t
hdni,t Tailrace level of plant i in period t [m]
hdni,t Overestimator variable for hdni,t
hdi,j,t,qq Convex-hull variable for water head [m]
hupi,t Forebay level of plant i in period t [m]
h1i,j,t Convex-hull variable for water head [m]
h2i,j,t Convex-hull variable for water head [m]
pi,j,t Power output of unit j in plant i in period t [MW]
pi,j,t Dummy variable given by pi,j,t = qi,j,thi,t
phi,t Total power output of plant i in period t [MW]
Profit Profit [m.u.]
qi,j,t Water discharge of unit j, plant i, period t [m3/s]
qdi,j,t,qq Convex-hull variable for flow [m3/s]
qhi,t Total water discharge in plant i in period t [m3/s]
si,t Spillage in plant i in period t [m3/s]
vi,t Volume of the reservoir in plant i [Hm3]
xi,j,t =1 if turbine j of plant i is on-line in period t,

otherwise 0
zi,j,t,qq Convex-hull 0-1 variable to assign partition
ydi,t,n 0-1 variable to assign partition
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I. INTRODUCTION

This work addresses the global optimization of head depen-
dent Short Term Hydro Scheduling (STHS) problems using
cascades of hydro plants. Mixed-Integer Linear Programming
(MILP) models have received a good deal of attention in the
literature for the STHS, due to the possibility of: 1) modeling
several operating constraints such as ramp constraints or
restricted operating regions; 2) using piecewise linear approx-
imation submodels to replace nonlinearities of hydro power
functions; and 3) using increasingly efficient MILP solvers
such as GUROBI and CPLEX. A detailed MILP model from
the point of view of operational constraints is proposed in [1].
These authors considered several operational constraints and
used a simplified linear model to approximate the nonlinear
hydro generation function, where the turbines within the plant
are considered to have identical characteristics and are aggre-
gated into one single unit. A more accurate piecewise linear
sub-model was proposed in [2] to approximate the nonlinear
relationship between the power output, the net water head, and
the water discharged within the hydro generation function.
This sub-model was further improved in [3], by including
interpolations between the piecewise functions and by adopt-
ing a tighter continuous relaxation. NonLinear Programming
(NLP) models have also been used to model the STHS [4],
although these models restrict the utilization of startup costs
or the enforcement of some operational constraints. The main
sources of nonlinearities in STHS are the following: a) the
hydro power generation function; b) the relation between the
forebay level and the volume of water in the reservoir; and
c) the relation between the tailrace level and the total water
discharged by the plant. In general, the power generated by a
turbine is given by the following equation [5]:

pi,j,t = Kηi,jζi,jqi,j,tHi,t ∀i, t, j, (1)

where pij,t denotes the output power of turbine j from plant i
in the time period t, K is a constant, ηi,j is the efficiency of
the generator, ζi,j is the efficiency of the turbine, qi,j,t the flow
discharged by turbine j and Hi,t the net water head. Assuming
that ηi,j and ζi,j are constants as proposed in [6], (1) involves a
bilinear term that is well known to give rise to nonconvexities
that may lead NLP solvers to local solutions. The relations
between the forebay and tailrace levels and the volume of
water in the reservoir and the total water discharged by the
plant, respectively, may be represented by linear functions, or
by more complex polynomial functions [5], [6]. The level of
detail used in the definition of these functions depends on
the accuracy desired, but also on the turbines and topological
characteristics of the plants. On the other hand, the utilization
of complex functions is driven by the accuracy obtained, which
in some cases may have a significant impact on the economic
analysis of the systems.

Mixed-Integer NonLinear Programming (MINLP) models
have been recently proposed for the STHS where detailed non-
linear expressions are considered [5]–[10]. The introduction of
these nonlinearities, even using simplified equations as in [4],
may lead to nonconvex MINLP models with multiple local
optima, whereby MINLP solvers that rely on convexity may
not guarantee global optimality of the solutions.

In terms of solution approaches the Lagrangian Relaxation
(LR) is the most popular to solve large scale hydrothermal
problems. The superior performance of LR is due to the
decomposition of the original model into sub-problems, and
the quality of the calculated bounds [11], [12]. A clear and
concise review of the advantages and drawbacks of LR is
given in [12]. LR has been also applied to the solution of
the STHS problems [9], [13]–[15]. However, for a cascade
of hydro plants the spatial-temporal interaction between the
plants requires additional linking variables when compared
with thermal systems. Additional decomposition algorithms
involve for example the bi-level decompositions based on two
levels of detail [8].

On the other hand, the direct solution of the STHS problem
has relied on dynamic programming methods [16], [17], and
on LP-based Branch & Bound (B&B) solvers for MILP prob-
lems [1]–[3], [11]. The recent trend on using nonlinearities in
the STHS models, and their solution using MINLP solvers has
led to the solution of nonconvex MINLP problems with solvers
developed for convex MINLP problems [7], [10]. The current
technology to solve MINLP problems is not as mature as
the technology to solve MILP’s. However, several algorithms
are available [18]–[20], and implemented into commercial
or open MINLP solvers such as DICOPT [21], α-ECP and
SBB in GAMS, AAOA in AIMMS, MINOPT [22], and
BONMIN [23]. Recently, significant advancements have also
been made on the development of theory and algorithms for the
deterministic global optimization of NLP and MINLP [24]–
[27]. This is currently an active area of research in which there
are currently available several solvers, such as BARON [28],
LINDOGlobal [29], and Couenne [30], which can address the
deterministic global solution of NLP and MINLP problems.

The objective of this work is to address the solution of
STHS problems defined by MINLP models using a determin-
istic global optimization approach. The main contributions for
this work are the following: 1) implementation of a spatial
B&B algorithm to address the global optimization within a
pre-specified tolerance of a detailed STHS MINLP model;
2) use of a specific type of constraints suggested by the
STHS MINLP model formulation, namely Symmetry Breaking
Constraints (SBC), applied to the binary variables associated
with the status of the turbines; 3) a specific partition scheme
for the relaxation of bilinear terms with semi-continuous
variables; 4) comparison of the proposed approach for STHS
models with a global optimization solver.

This work is motivated by the current trend to develop more
detailed MINLP models for the STHS, and is supported by
the following advancements: a) on global optimization theory
for nonconvex MINLP problems; b) on the availability of
affordable multiple threads computer hardware; and c) on the
increasing sophistication of MILP solvers as a result of the
implementation of new cuts based on polyhedral theory, as
well as to the inclusion of heuristics and meta-heuristics within
the MILP solvers that help finding integer solutions [31]–[33].

II. PROBLEM STATEMENT

Given is a set of hydro plants in cascade that produce
electricity for the day-ahead market. Some plants can store
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water in a reservoir, while others are run-of-the-river plants.
Each plant has a set of turbines with a maximum output
flow and power generated, linked to the same reservoir. The
problem is to determine the start and duration of operation of
each turbine, and the respective power output that maximize
the operating profit, subject to the limits of the reservoirs,
the mass balances of water, and the operating limits of the
turbines. Each reservoir has as inputs a deterministic natural
inflow and the discharge from upstream plants, and as outputs
the flow discharged by each turbine linked to the reservoir. The
profit is calculated as the difference between the revenues of
selling electricity minus the start-up costs of the turbines. The
value of the water is not considered in the profit, since the
volume of each reservoir at the end of the time horizon must
be greater than or equal to the initial volume. The system
is considered as an electricity price taker, with the price of
electricity following a given hourly profile. The time horizon
is equal to one day, discretized in periods of one hour. For
each pair of plants (i, i′) there is a time delay between the
total flow discharged from plant i to plant i′. The system does
not have to match a specific demand pattern, since all energy
produced is delivered, without considering electrical network
constraints.

III. MINLP MODEL

In this work a MINLP model is proposed for STHS based
on the specific hydro parts of the test cases described in [6].
The mathematical formulation is the following:

MaximizeProfit =
∑
i

∑
t

λtphi,t −
∑
i

∑
j

∑
t

ci,j,t, (2)

subject to:

ci,j,t ≥ SCi,j (xi,j,t − xi,j,t−1) ∀i, j ∈M, t > 1, (3)

ci,j,t ≥ SCi,j (xi,j,t − xi,j,tt) ∀i, j ∈M, t = 1, tt = 24,
(4)

hupi,t = ai,0+ai,1vi,t+ai,2v
2
i,t+ai,3v

3
i,t+ai,4v

4
i,t ∀i, t, (5)

hdni,t = bi,0+bi,1di,t+bi,2d
2
i,t+bi,3d

3
i,t+bi,4d

4
i,t ∀i, t, (6)

di,t = qhi,t + si,t ∀i, t, (7)

qhi,t =
∑
j∈M

qi,j,t ∀i, t, (8)

vi,t = vi,t−1 + V C(Wi − di,t +
∑

k∈ICk,i

∑
tt∈Tt,τk,i

dk,tt)∀i, t,

(9)
pi,j,t = φi,jqi,j,t(hupi,t − hdni,t) ∀i, j ∈M, t, (10)

phi,t =
∑
j∈M

pi,j,t ∀i, t, (11)

ξQUi,jxi,j,t ≤ qi,j,t ≤ QUi,jxi,j,t ∀i, j ∈M, t, (12)

pi,j,t ≤ PUPi,j xi,j,t ∀i, j ∈M, t, (13)

vi,t ≥ V 0i ∀i, t = 24. (14)

ci,j,t, hupi,t, hdni,t, vi,t, di,t, si,t, pi,j,t ≥ 0, xi,j,t ∈ {0, 1}
∀i, j ∈M, t, (15)

The main features of this model are the following: a) the
utilization of a nonlinear function for the calculation of the
power generated, represented by (10); and b) the use of
polynomial functions to calculate the forebay and tailrace
levels, see constraints (5) and (6). In the current model it
is also assumed that each plant may have multiple turbines
linked to the same reservoir. Therefore, binary variables are
used to account for their startup costs and to enforce ranges
of operation. Note that with some exceptions, for example [8],
[9], there are few works in the literature that address multiple
turbines per hydro plant.

A. Simplified MINLP model

The proposed MINLP model can be simplified by neglecting
in (5) and (6) the terms of the polynomial function of order
greater than one, leading to the linear relationships:

hupi,t = ai,0 + ai,1vi,t ∀i, t, (16)

hdni,t = bi,0 + bi,1di,t ∀i, t. (17)

This is a rough but straightforward approximation to the
original polynomial functions, which is used here with the
objective of comparing the computational performance of
MINLP models with and without polynomial functions. Note
that better approximations of the equations may be obtained
by adjusting the coefficients of the linear equation with the
original data. However, this is out of the scope of this paper.
Therefore, a simplified model (S-MINLP) is proposed by
replacing (5) and (6) with (16) and (17) in the MINLP model.

B. MILP model

In this section an alternative model is proposed by further
simplifying the power generation function. Here, the variations
on the net water head are neglected, i.e. the difference between
the forebay and tailrace levels is assumed to be constant, and
denoted by Hi. Hi is defined as the difference between the
average forebay level calculated for the lower and upper values
of the variable vi,t, and the average tailrace level calculated
for the lower and upper values of di,t. With these assumptions
the power generated is given by the following equation:

pi,j,t = φi,jqi,j,tHi ∀i, j ∈M, t. (18)

In this case, the simplified MILP (S-MILP) model does not
involve bilinear terms nor the polynomial functions. This
means that from the original MINLP, (5), (6), and (10) are
not considered and (18) is added.

IV. SOLUTION APPROACH

In order to find the global optimum within a pre-specified
tolerance, a spatial Hydro Branch & Bound (sHBB) framework
is proposed, and tailored for the STHS. This approach is
based on a branch and bound search, where on each node an
MILP Overestimator Problem (MILP-OEP) and an MINLP
model are solved to obtain an upper and lower bound on
the profit, respectively. The MILP-OEP provides a tight linear
overestimation of the nonconvex region of the original MINLP
problem, and thus a valid upper bound of the profit on
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each node of sHBB tree. The MILP-OEP is built over the
relaxation of the nonlinearities, whereby the bilinear terms
and polynomial functions are replaced by polyhedral envelopes
that overestimate the feasible region of the original problem.

A. Relaxation of the bilinear terms

In the MILP-OEP the bilinear terms are replaced by a spe-
cific dynamic piecewise linear estimator model, which defines
the convex hull envelopes over partitions of the range of the
variables involved. In (10) the variables involved are qi,j,t,
hupi,t and hdni,t, which can be manipulated defining a new
variable hi,t = hupi,t−hdni,t ∀i, t, while the bilinear terms to
be tackled are defined as pi,j,t = qi,j,thi,t ∀i, j ∈M, t, which
leads to the following linearized equation for the hydro power
generation function used in the MILP-OEP:

pi,j,t = φi,jpi,j,t ∀i, j ∈M, t. (19)

The relaxation of the bilinear terms are built employing the
convex envelopes proposed in [34], whereby in the MILP-OEP,
pi,j,t = qi,j,thi,t is replaced by the following inequalities, the
well known McCormick inequalities,

pi,j,t ≥ QLi,j,thi,t+qi,j,tHL
i,t−QLi,j,tHL

i,t ∀i, j ∈M, t, (20)

pi,j,t ≥ QUi,j,thi,t+qi,j,tHU
i,t−QUi,j,tHU

i,t ∀i, j ∈M, t, (21)

pi,j,t ≤ QUi,j,thi,t+qi,j,tHL
i,t−QUi,j,tHL

i,t ∀i, j ∈M, t, (22)

pi,j,t ≤ QLi,j,thi,t+qi,j,tHU
i,t−QLi,j,tHU

i,t ∀i, j ∈M, t. (23)

Note that the variable qi,j,t is a semi-continuous variable
defined as qi,j,t ∈ {0} ∪ [QLi,j,t, Q

U
i,j,t], which in this work

is taken into account when the above convex envelopes are
built. This provides a tighter relaxation of the bilinear terms,
which is not taken into account for example by the solver
BARON. The error introduced by the relaxation, defined as
|pi,j,t − qi,j,thi,t|, may be reduced by considering the convex
envelopes built over a partition of the domain of the variables
qi,j,t as suggested in [26]. The formal definition of the convex
envelopes built over a partition scheme with grid points
qq ∈ G is defined by the following disjunction:

∨
qq∈G


Zi,j,t,qq

pi,j,t ≥ Qi,j,t,qq−1hi,t + qi,j,tH
L
i,t −Qi,j,t,qq−1HL

i,t

pi,j,t ≥ Qi,j,t,qqhi,t + qi,j,tH
U
i,t −Qi,j,t,qqHU

i,t

pi,j,t ≤ Qi,j,t,qqhi,t + qi,j,tH
L
i,t −Qi,j,t,qqHL

i,t

pi,j,t ≤ Qi,j,t,qq−1hi,t + qi,j,tH
U
i,t −Qi,j,t,qq−1HU

i,t


∀i, j ∈M, t, (24)

where Zi,j,t,qq is a boolean variable. This disjunction can
be re-written as a sub-MILP model by using a convex-hull
reformulation [35]:

pi,j,t ≥
∑
qq∈G

(
Qi,j,t,qq−1hdi,j,t,qq−1 + qdi,j,t,qq−1H

L
i,t

− Qi,j,t,qq−1H
L
i,tzi,j,t,qq

)
∀i, j ∈M, t, (25)

pi,j,t ≥
∑
qq∈G

(
Qi,j,t,qqhdi,j,t,qq−1 + qdi,j,t,qq−1H

U
i,t

− Qi,j,t,qqH
U
i,tzi,j,t,qq

)
∀i, j ∈M, t, (26)

pi,j,t ≤
∑
qq∈G

(
Qi,j,t,qqhdi,j,t,qq−1 + qdi,j,t,qq−1H

L
i,t

− Qi,j,t,qqH
L
i,tzi,j,t,qq

)
∀i, j ∈M, t, (27)

pi,j,t ≤
∑
qq∈G

(
Qi,j,t,qq−1hdi,j,t,qq−1 + qdi,j,t,qq−1H

U
i,t

− Qi,j,t,qq−1H
U
i,tzi,j,t,qq

)
∀i, j ∈M, t, (28)

qi,j,t =
∑
qq∈G

qdi,j,t,qq−1 ∀i, j ∈M, t (29)

h1i,j,t =
∑
qq∈G

hdi,j,t,qq−1 ∀i, j ∈M, t, (30)

h2i,j,t ≤ HU
i,tzi,j,t,qq ∀i, j ∈M, qq = 1, t, (31)

hi,t = h1i,j,t + h2i,j,t ∀i, j ∈M, t, (32)

qdi,j,t,qq−1 ≥ Qi,j,t,qq−1zi,j,t,qq ∀i, j ∈M, t, qq ∈ G, (33)

qdi,j,t,qq−1 ≤ Qi,j,t,qqzi,j,t,qq ∀i, j ∈M, t, qq ∈ G, (34)

HL
i,tzi,j,t,qq ≤ hdi,j,t,qq−1 ≤ HU

i,tzi,j,t,qq ∀i, j ∈M, t, qq ∈ G,
(35)∑

qq>1

zi,j,t,qq = 1 ∀i, j ∈M, t, (36)

Increasing the number of partitions reduces the gap between
pi,j,t and qi,j,thi,t, but also increases the number of equations
and continuous and binary variables, and consequently the
computational time associated with the solution of the MILP-
OEP. In the context of an hydrothermal model, Cerisola
et al. [36] have recently proposed the same type of linear
approximation using piecewise McCormick planes. However,
they use a Big-M reformulation, instead of the convex-hull.
Preliminary results have shown us that in the problems studied
in this work the convex-hull provides a tighter relaxation than
the Big-M reformulation.

B. Relaxation of the polynomial functions

In this work three polynomial relaxations (PR) are con-
sidered for building linear envelopes for the polynomial
functions: 1) PR1 - based on the determination of the in-
flection points of the polynomials that are nonconvex and
nonconcave and calculation of off-set values to be included
in the linear over and under estimators functions; 2) PR2 -
built by replacing each univariate nonlinear power function
of the polynomial function by a new variable, and then for
each univariate nonlinear power function an overestimation
model is built; and 3) PR3 - equal to PR2 but only built
over the nonconvex and nonconcave functions, while for the
remaining polynomial functions an overestimation is built over
the original function. The three relaxations are rigorous in the
sense that the linearizations do not cut-off any part of the
polynomial functions. However, PR1 and PR3 require a pre-
processing step to identify the characteristics of the polynomial
functions, while PR2 does not require that step.

An analysis of the properties of the polynomial functions
was made in order to determine the sign of the second deriva-
tive through the identification of the inflection points, and
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hence the polynomial functions that are concave, convex, and
nonconvex and nonconcave. Valid over and under estimators
for the concave and convex polynomial functions are built
using piecewise linear approximations between the bounds
of the variables and hyperplanes at given points. Due to
space limitations, only the construction of these estimators
are presented for the concave polynomials associated with the
tailrace level. The under-estimators are built over a partition
N with grid points n, where the over/under estimator value
is represented by hdni,t. In order to simplify the equations,
Θ(Di,t,n) is defined first as,

Θ(Di,t,n) = bi,0 + bi,1Di,t,n + bi,2D
2
i,t,n

+ bi,3D
3
i,t,n + bi,4D

4
i,t,n ∀i, t. (37)

The piecewise underestimation is as follows:

hdni,t ≥
∑
n∈N

[
Θ(Di,t,n)ydi,t,n +

Θ(Di,t,n+1)−Θ(Di,t,n)

Di,t,n+1 −Di,t,n

(dni,t,n −Di,t,nydi,t,n)] ∀i, t, (38)

di,t =
∑
n∈N

dni,t,n ∀i, t, (39)

Di,t,nydi,t,n ≤ dni,t,n ≤ Di,t,n+1ydi,t,n ∀i, t, n ∈ N, (40)∑
n∈N

ydi,t,n = 1 ∀i, t. (41)

The over estimators are built using the supporting hyper-
planes:

hdni,t ≤ Θ(Di,t,r)+∇Θ(Di,t,r)(di,t−Di,t,r) ∀i, t, r. (42)

An equivalent rationale is employed to build under and over es-
timators for the concave polynomial functions for the forebay
levels. As discussed in [12] on the applicability of piecewise
linear functions for hydrothermal models, these functions
provide an approximation of the real function. However, in
this work, they are used to predict bounds.

C. Specific details and remarks

The length of the interval of the variables is known to
have an impact on the tightness of the relaxation provided by
MILP-OEP. Therefore, it is important to eliminate infeasible
regions out of the domain of the variables. In this work, a pre-
processing step is performed in order to contract the bounds
of the variables by solving two LP problems for each variable,
whereby a variable is minimized/maximized subject to the
constraints of the MILP-OEP. Through this procedure, the
lower and upper bounds of the variables may be tightened.
The formulation of the MILP-OEP is improved by enforcing
symmetry breaking constraints over the binary variables xi,j,t
for the turbines with identical specifications that operate in
parallel and are linked to the same reservoir. These constraints
are represented by:

xi,j,t ≥ xi,j+1,t ∀i, j ∈M ∩ UIi,j , i, j + 1 ∈M, t, (43)

where UIi,j represents the subsets of turbines with the same
characteristics in the same plant. The sHBB algorithm solves

an MILP-OEP and an MINLP model at each node of the tree.
The branching process involves splitting the feasible region of
the MILP-OEP based on the largest error of the relaxations
for the bilinear terms and for the polynomial functions. If
this error is associated with a bilinear term, the respective
semi-continuous variable qi,j,t is split into two regions in the
middle point, q

′

i,j,t, of the interval [QLi,j,t, Q
U
i,j,t], and two

new problems are generated, leading to two new nodes. On
each node the following procedure is applied: 1) the bounds
of qi,j,t are updated, and consequently the grid used in the
relaxation is updated; 2) the SBC induces an additional bound
contraction scheme, which is applied to the turbines with the
same characteristics of the turbine selected to make the branch.
If in one of the generated nodes, the upper bound is changed,
then the upper bounds of the turbines for j′ > j are also
updated:

QUi,j,t ≥ Qui,j+1,t ∀i, j ∈M ∩ UIi,j , i, j + 1 ∈M, t. (44)

Similarly, for the node where the lower bound is updated, the
following bounds are enforced:

QLi,j+1,t ≥ QUi,j,t ∀i, j ∈M ∩ UIi,j , i, j + 1 ∈M, t. (45)

3) If the MILP-OEP is solved to optimality within the maxi-
mum CPU time set to solve the MILP-OEP, one additional
partition is added to the piecewise partition scheme of all
variables qi,j,t′ ∀t′ in the two new generated nodes; otherwise
the number of partitions of the two new generated nodes is
set to the number of partitions of the precedent node, and the
number of partitions is not increased any further. Other details
of the sHBB implementation include: 1) the selection of the
next node to solve is made based on the node with the largest
upper bound; 2) the MILP-OEPs are solved within a specified
CPU time limit. If the problem is solved to optimality, then
the upper bound in the node is given by the integer solution;
otherwise, the best bound obtained is used as a valid upper
bound in the node; and 3) the lower bound of the original
MINLP problem is obtained by fixing the binary variables
associated with the turbines at the value of the MILP-OEP
solution, if they are equal to one, leaving the variables equal to
zero free and solving a reduced MINLP problem. This MINLP
problem provides a valid lower bound on the objective function
at a low computational cost since the number of free binary
variables is reduced. This approach proved to be a better option
than to fix all the binary variables and solve an NLP problem.

V. COMPUTATIONAL EXPERIMENTS

The computational performance of the proposed models
and of the global optimization approach are evaluated in
this section. We considered four test cases presented in [6]
involving cascades of hydro plants with different number of
plants, turbines and cascade topology: Case 1 - 4 plants, 24
turbines; Case 2 - 5 plants, 22 turbines; Case 3 - 7 plants,
29 turbines; Case 4 - 6 plants, 44 turbines. The configuration
of the cascades and the topological, reservoir and hydro data
are the same as those published in [6]. The size of the four
models is presented in Appendix A. The models and the global
optimization approach are implemented in GAMS [37] and
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TABLE I
COMPARISON BETWEEN SHBB AND BARON FOR THE DETAILED MINLP.

sHBB BARON

PR1 PR2

Case P (m.u.) G (%) T (s) P (m.u.) G (%) T (s) P (m.u.) G (%) T (s)

Case 1 1,249,705 0.19 404 1,249,705 0.20 52 1,249,243 0.50 106
Case 2 1,372,403 0.15 25 1,372,403 0.22 32 1,371,840 2.67 10,800
Case 3 2,552,090 0.22 71 2,551,783 0.38 65 -426,000 - 10,800
Case 4 2,847,564 2.68 10,800 2,847,392 3.44 10,800 2,845,660 6.04 10,800

P - Profit, G - Gap, T - CPU time, PR1, PR2 - Polynomial relaxations.The terminal criteria are set to 0.5% gap and to a maximum CPU time of 10,800s.

solved on a computer with an Intel Core i7@3.07GHz CPU,
64 bits, and 8Gb of RAM. The solvers used are CPLEX 12.4,
GAMS/DICOPT 23.8 and BARON 11.1. Table I summarizes
the computational performance of sHBB and BARON for
Cases 1, 2, 3 and 4 for the detailed MINLP (the indicated
CPU time set for sHBB preclude the time spent on bound
tightening, which was respectively 21, 15, 23 and 31 min).
The terminal criteria are set to 0.5% gap and to a maximum
CPU time of 10,800s. For sHBB, the table presents the results
with the polynomial relaxations PR1 and PR2, showing that
optimality gaps below 0.5% gap are obtained in Cases 1, 2
and 3, in short CPU times i.e. all below 404s and 65s for PR1
and PR2, respectively. However, for the larger Case 4, the
performance decreases and solutions with an optimality gap
below 0.5% are not reached within 10,800s. The computational
performance of PR3 is not presented due to space limitations,
but it is between PR1 and PR2. The results obtained with
BARON, show that for Case 3 it reveals difficulty in finding
a positive lower bound, and that comparing BARON with the
proposed approach, sHBB is found to achieve a greater or at
least equal lower bound for the four cases. BARON is only
able to solve Case 1 within the specified optimality gap in
106s, while for Cases 2, 3, and 4 it cannot reach solutions
within 0.5% optimality gap within 10,800s, which highlights
the performance of sHBB.

The results obtained with the S-MINLP with sHBB and
BARON present the same trend as obtained with the de-
tailed MINLP, but in general with shorter CPU times and
smaller optimality gaps for sHBB, see Table II. Comparing

TABLE II
COMPARISON BETWEEN SHBB AND BARON FOR THE S-MINLP. THE
TERMINAL CRITERIA ARE SET TO 0.5% GAP AND TO A MAXIMUM CPU

TIME OF 10,800S.

sHBB BARON

Case P (m.u.) G (%) T (s) P (m.u.) G (%) T (s)

Case 1 1,303,536 0.16 51 1,303,766 0.50 56
Case 2 1,447,638 0.14 16 -312,432 - 10,800
Case 3 2,699,187 0.21 39 2,681,850 2.18 10,800
Case 4 2,907,365 2.32 10800 2,906,790 3.48 10,800
P - Profit, G - Gap, T - CPU time.

the results of the MINLP model with the approximations for
the polynomial functions, and without them, S-MINLP, it is
clear that the bilinear terms have a major influence on the
observed gaps between the lower and upper bounds of the
objective function. This is supported by the small differences

between the performance of sHBB and BARON with the
MINLP and S-MINLP models. In order to assess the objective
function values obtained with sHBB, a local solver for MINLP
problems is used to solve the detailed MINLP and S-MINLP
models. The two models are solved either per se or including
the SBC, in order to check the effect of these constraints.
Table III shows the Symmetry Breaking Constraints (SBC)
to have an all-round strong impact on the performance of
DICOPT. This is explained by the symmetry breaking imposed
by these constraints during the solution of the master problem
within DICOPT. Within sHBB these constraints have also an
important role on the solution of the MILP-OEP problem and
on the solution of the MINLP problem used to calculate the
lower bound in each node.

TABLE III
MINLP MODELS SOLVED WITH DICOPT, AND S-MILP WITH CPLEX.

Without SBC With SBC

Cases P (m.u.) T (s) P (m.u.) T (s)

MINLP

Case 1 1,249,705 9 1,249,705 9
Case 2 1,364,140 10,800 1,369,935 39
Case 3 2,545,173 10,800 2,551,687 8,934
Case 4 2,846,776 10,804 2,848,254 10,654

S-MINLP

Case 1 1,303,782 5 1,303,782 6
Case 2 1,441,263 10,800 1,436,125 43
Case 3 2,685,520 10,800 2,690,461 291
Case 4 2,906,996 10,803 2,906,496 7,422

S-MILP

Case 1 1,253,778 0.1 1,253,778 0.1
Case 2 1,363,801 1.1 1,363,801 0.2
Case 3 2,546,971 11.8 2,546,971 1.4
Case 4 2,867,973 31.9 2,867,973 2.4

P - Profit, T - CPU time.

A. Scheduling results

Analyzing the daily profit for Case 2 of MINLP-PR1 found
with the proposed approach, i.e. 1,372,403m.u., it presents a
higher profit of 2,468m.u. compared to DICOPT with SBC
(1,369,935m.u.) which yields to an additional yearly profit
of 900,820m.u. Similar analysis can be made for the other
cases resulting always in a positive gain by using the sHBB.
The exception is Case 4, where DICOPT obtained a better
profit, most likely as a result of the implemented integer
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cuts forcing the algorithm to fix a different combination
of binary variables on each iteration, which are missing in
sHBB. As for the S-MILP model, the CPU times required for
solving it with CPLEX are significantly lower than the ones
obtained with the global optimization approach. Fig. 1, 2 and
3 illustrate the power production schedule for Case 2 obtained
with sHBB, BARON and the S-MILP model. These schedules
have the same general trend, however a thorough analysis
shows differences on the turbines activated and respective
water flows. As an example, in the periods 4, 5 and 6, the
S-MILP does not activate the turbines from plant H6, which
activate in the remaining two schedules. As a consequence,
different operating conditions in terms of the profile of the
volume of water in the reservoir H6 and the spillage of the
downstream run of the river plant H7 are obtained with each
model (see Fig. 4 and 5). The analysis and comparison of
the results obtained should take into consideration that the
models have different levels of accuracy and constraints. For
example, the detailed MINLP relates the forebay and tailrace
levels, respectively, with the volume and water discharged,
leading to a variable net water head, while for the S-MILP
it is constant. This feature alone has a major impact on the
power generated and consequently on the profit obtained.
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Fig. 1. Case 2 production schedule obtained with sHBB.
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Fig. 2. Case 2 production schedule obtained with BARON.

VI. CONCLUSIONS

In this paper a tailored global optimization algorithm,
sHBB, is proposed for the STHS of a cascade of hydro plants.
A nonconvex MINLP model for the operation of the cascade
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Fig. 3. Case 2 production schedule obtained with S-MILP.
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is formulated and an overestimator model based on a relax-
ation framework for: a) the polynomial functions describing
the forebay and tailrace levels; and b) the bilinear terms
in the power generation function. The overall performance
of the proposed approach is the result of the combination
of several algorithmic implementations, such as a specific
dynamic partition relaxation of the bilinear terms exploiting
the semi-continuous characteristics of one of the variables,
and of the symmetry breaking constraints that were shown
to play an important role in the solution of the MILP over-
estimator problem. One relevant conclusion achieved is the
establishment of the bilinear terms as the nonlinear functions
with a major contribution for the gap between the lower and
the upper bound with sHBB. This assessment arises from
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comparing the approximations errors and final gaps obtained
with sHBB for the detailed MINLP and simplified model,
S-MINLP. Another important result obtained with sHBB is
the identification of alternative power production schedules,
which come associated with higher profits, a possibility worth
of further investigation. The proposed framework was found
to exhibit better computational performance than a current
available standard global optimization solver and provide
better solutions than a local MINLP solver, making it po-
tentially suitable to build relaxation models for nonconvex
hydrothermal models in diverse optimization frameworks. The
algorithmic implementations proposed are a contribution for
the application of deterministic global optimization in power
systems.

APPENDIX A

TABLE IV
SIZE OF THE MODELS, MINLP/MILP-OEP/S-MILP-OEP

Cases Equations Variables 0-1 Variables

Case 1 3,889/22,321/20,017 2,977/14,185/13,081 576/4,200/3,720
Case 2 3,697/13,825/11,209 2,953/ 7,921/ 6,769 528/2,064/1,584
Case 3 4,945/18,673/14,857 3,961/10,729/ 9,001 696/2,808/2,088
Case 4 6,937/24,049/21,865 5,233/13,513/12,769 1,056/3,408/3,168

MILP-OEP - Overestimation model of the original MINLP model with PR1
at the root node. S-MILP-OEP - Overestimation model of the S-MINLP
model at the root node.
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