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Abstract

This work presents a Mixed-Integer Dynamic Optimization (MIDO) formula-

tion for the simultaneous process design, cyclic scheduling, and optimal control of

a Methyl Methacrylate (MMA) continuous stirred-tank reactor (CSTR). Different

polymer grades are defined in terms of their molecular weight distributions, so that

state variables values during steady states are kept as degrees of freedom. The corre-

sponding mathematical formulation includes the differential equations that describe

the dynamic behavior of the system, resulting in a MIDO problem. The differen-

tial equations are discretized using the simultaneous approach based on orthogonal

collocation on finite elements, rendering a Mixed Integer Non-Linear programming

(MINLP) problem where a profit function is to be maximized. The objective func-

tion includes product sales, some capital and operational costs, inventory costs, and

transition costs. The optimal solution to this problem involves design decisions: flow

rates, feeding temperatures and concentrations, equipment sizing, variables values

at steady state; scheduling decisions: grade productions sequence, cycle duration,

production quantities, inventory levels; and optimal control results: transition pro-

files, durations, and transition costs. The problem was formulated and solved in

two ways: as a deterministic model and as a two-stage programming problem with

hourly product demands as uncertain parameter described by discrete distributions.
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1 Introduction

Design, scheduling and control of chemical processes are complex problems which are

usually approached independently. Typically, the design phase is carried out first, and

scheduling and control problems are solved once the process design has been solved. In

the first step, the design is carried out with certain goals regarding capacity, profitability,

environmental and safety concerns, while in a later step scheduling and control problems

are solved during process operation, usually with the objective of minimizing costs or

maximizing profit. This approach results in the loss of certain degrees of freedom due

to the sequential solution of the three problems, which in turn might render suboptimal

results for the overall process synthesis1. For this reason, the simultaneous solutions

of design and control2,3,4, scheduling and design5,6,7,8, and scheduling and control prob-

lems9,10,11,12,13,14,15,16 have been the subject of some works.

Determination of the optimal equipment dimensions and steady state operating condi-

tions as part of an independent design phase, has the risk of resulting in poor operability

conditions, and inadequate process control due to the decreased degrees of freedom. In

previous works3,4 the problem of simultaneously determining some process design vari-

ables, steady states and control structures has been addressed, and its solution has been

put into practice in processes involving grade transitions in polymerization reactors. An-

other recent work by Asteasuain et al.2 is relevant for the present work, since it deals with

the simultaneous process and control system design of a multi-grade continuous polymer-

ization reactor. The design problem concerns the determination of process equipment,

control structures and tuning parameters, as well as the choice of reaction initiator. From

the perspective of the present work, it should be noted that the steady states that corre-

spond to the different grade producing operations are also determined as part of the design

problem. Simultaneously, optimal transition trajectories between those steady states are

also evaluated as part of the control problem.

Simultaneous design and scheduling is also a common problem in the Process Systems
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Engineering literature. A detailed review involving scheduling and design of batch pro-

cesses is available elsewhere5. Optimizing highly non-linear and non-convex processes

poses many challenges, especially since many local optimal solutions can be present. Heo

et. al6 address this problem using an evolutionary design method that performs a search

near the optimal solution found by adding equipment units to the resulting configuration.

However, the rigorous global solution to the design and scheduling problem in non-linear,

non-convex problems remains a major challenge.

The robustness and flexibility of a process design is of major concern to process engi-

neers. One common approach in practice is to over-design so as to guarantee feasibility

of operating conditions for many possible scenarios. Obviously this approach has the

disadvantage of producing suboptimal solutions for the expected range of values of the

uncertain process conditions. Two main approaches have been used for the solution of

process design under uncertainty5: the so-called deterministic and stochastic approaches.

The first one involves a min-max formulation in the objective or in the constraints to

guarantee flexible operation for a range of uncertain parameters. In the stochastic ap-

proach17 the optimization of an expected value function based on distribution functions of

the uncertain parameters is undertaken using two or multi stages stochastic programming

formulations18,19. For the case of discrete distributions the deterministic equivalent of a

two-stage programming problem yields a formulation that is equivalent to a multiperiod

design problem5. Another stochastic formulation is the so-called probabilistic or chance

constraint framework20,21,22. In this latter approach, rather than considering the opti-

mization of an expected value function, the idea is to compute optimal conditions under

which a given constraint has the maximum probability to be met. We address in the

present work the simultaneous design, scheduling, and control of polymerization reactors

under uncertainty using a two-stage programming multiperiod approach for dealing with

discrete uncertainty.

The topic of simultaneous scheduling and control (or dynamic optimization) is the subject

of recent works. A comprehensive literature review on the subject literature can be found
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in a recent paper by Terrazas-Moreno et. al9. The basis of all solution methods is the dis-

cretization of the differential equations that describe dynamic behavior, and the addition

of the resulting non-linear algebraic equations into a scheduling formulation resulting in

MINLP problems.

The simultaneous solution of design, scheduling and optimal control under uncertainty

has been studied very little. The present work has the objective of simultaneously deter-

mining the optimal solution of these problems for a continuous polymerization reactor,

operating under a cyclic schedule assumption, and for which the simultaneous dynamic

optimization (SDO) technique is used23. Uncertainty in grade demand is handled in one

of the two case studies using a two-stage programming formulation with uncertain de-

mands represented by discrete distributions. Two similar works are those presented by

Bhatia and Biegler7,8, in which the dynamic optimization for batch design and scheduling

is solved. The main differences with the work of these authors is that no steady states

are calculated as part of the solution to the design problem, and that the uncertainties

are restricted to kinetic parameters.

The paper is organized as follows. In a first part, the problem is defined, detailing all

assumptions, and the optimization formulation is developed. This formulation is based

on previous work by our research group9. In a second part two case studies are presented:

the first one assumes deterministic values for all parameters, while the second includes

different scenarios depending on the realization of grade demand uncertainty from a set of

possible discrete values. Finally, conclusions and future research directions are presented.

2 Problem definition

A given number of polymer grades, specified in terms of molecular weight distributions

are to be manufactured using an industrial reaction system. The present work is con-

cerned with simultaneously determining the design for the reaction process, the cyclic

manufacturing operation, and the control profile during grade transitions that feature
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optimality conditions. Since no process design is known a priori, the process steady states

corresponding to different grade production conditions must be determined as part of the

solution. The problem is solved using a Mixed Integer Dynamic Optimization (MIDO)

approach in which the economic profit is to be maximized. The objective function in-

cludes the following terms: sales, inventory costs, transition costs, capital costs, and

steady state operation costs. The design parameters are taken as the reactor and jacket

volumes, the feed and cooling water flow rates and their respective temperatures, as well

as the monomer and initiator feed stream concentrations. The steady states describing

each polymer grade are also determined as part of the design. On the other hand, the

schedule is described by the sequencing of grades, the production mix, the duration of

the production runs, and the overall cycle duration. Finally, the control decisions involve

the optimal grade transitions and their duration, during which the initiator flow rate is

the manipulated variable.

The formulation includes the following assumptions: (a) Inventory, raw material, kinetic

parameters and utilities costs are deterministic parameters; (b) no model mismatch or

process perturbations are considered; (c) polymer production is bounded between the

minimum amount to satisfy grade demand, and an upper bound on this quantity, since in

almost all cases it is possible to sell a certain amount of overproduction, especially when

dealing with polymer products with high demand; (d) all grades are produced only once

during the production cycle; (e) once a grade has been produced it is stored and depleted

until the end of the cycle; (f) once a production wheel is finished it is immediately and

indefinitely repeated. In this way grade inventories allow the constant consumption of a

product until it is produced again, so that no product shortages occur. The mathematical

model, also assumes that the set of differential equations that describes the dynamic be-

havior of the system, accurately models the process over all the range of conditions used,

which is a reasonable assumption. For instance, the model presented in the case study

has been previously used under similar conditions, and it will be assumed to correctly

approximate the polymerization process under the relevant conditions.
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Although the problem formulation involves many significant simplifications, the need

for a robust process design able to deal with uncertainty in some parameters is not over-

looked. In this work uncertainty in product demands is handled through a two-stage

multiperiod formulation.

3 Design, Scheduling and Control MIDO Formula-

tion

The problem is solved using a MIDO formulation based on the simultaneous schedul-

ing and control (SSC) formulation proposed by our research group9. As in previous

works,9,10,11 the manufacturing operation is carried out in production cycles. The cycle

time is divided into a series of slots. Within each slot two operations are carried out:

(a) the production period during which a given product is manufactured around steady-

state conditions, and (b) the transition period during which dynamic transitions between

two products take place. The description of the formulation proposed in this work is di-

vided according to the characteristics of its different sections (objective function, design,

scheduling and optimal control). The notation is listed in detail in the appendix.

• Objective Function

max

{
Np∑
i=1

Cp
i Wi

Tc

−α
V

at

β

− FρCp(Tin − Tamb)C
st − Fcwρw(Ccw +

Cpcw(T ∗
j − Tw)

λhv

PewCmw)

−
Np∑
i=1

Cs
i (Gi −Wi/Tc)Θi

2
(1)

−
Ns∑

k=1

θt
kFmonCminMWmon

Cr

Tc

−



Ns∑

k=1

Nf e∑

f=1

hfkθ
t
kCIinMWini

Ncp∑
c=1

F I
fckγc


 CI

Tc




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The total process profit is given by the income of the manufactured products minus the

sum of some capital costs, operation costs, inventory costs and the product transition

costs. All terms are calculated on an hourly basis and are divided by the cyclic time

(Tc) so that the objective function value corresponds to the cyclic hourly profit. The

first term represents the amounts sold of each grade (Wi), times their respective prices

(Cp
i ) divided by cycle duration (Tc). The second, third and fourth terms in the objective

function represent the capital an operating costs related to design decisions. The second

term corresponds to reactor costs, considering a four year amortization2, where αV β is a

correlation of the equipment costs between 0.05 and 5 m3, 24. The denominator at provides

the hourly cost corresponding to the above mentioned amortization time. The third term

is related to the costs of heating the feed stream from room temperature Tamb up to the

desired feeding temperature Tin, where F is the feed stream flow rate, ρ is the feed stream

density, and Cp is its specific heat. The fourth term quantifies the costs related to cooling

water. FcwρwCcw is the cost of supplying cooling water to the reactor.
Cpcw(T ∗j −Tw)

λhv
PewCmw

represents the cost of the cooling water lost during cooling tower operation, where Cpcw

is the specific heat of water, T ∗
j is an expected average temperature of the jacket, Tw is

the room temperature of water, λhv is the latent heat of vaporization, Pew is an average

fractional loss of water due to vaporization and finally, Cmw is the unit cost of cooling

water.

The remaining terms correspond to inventory and transition costs, as explained in detail

in a previous work9.

1. Design formulation.

a) Bounds on design variables:

The CSTR and process variables were bounded somewhere around the nominal

values reported by Silva-Beard et al.25.
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0.050 m3 6 V 6 5 m3 (2a)

0.010 m3/h 6 Fmon 6 20 m3/h (2b)

0.010 m3/h 6 Fcw 6 20 m3/h (2c)

0.010 kgmol/m3 6 Cmin 6 10 kgmol/m3 (2d)

0.010 kgmol/m3 6 CIin 6 10 kgmol/m3 (2e)

300 K 6 Tin 6 400K (2f)

273 K 6 Tw0 6 298K (2g)

0 6 X 6 0.5 (2h)

b) Equipment sizing relationships:

V0 =
1

5
V (3a)

A = 9.2995V 2/3 (3b)

Equation 3a states that the Jacket volume is one fifth of the reactor volume,

while equation 3b expresses the geometrical relationship between the reactor

volume and its surface area, where heat exchange takes place.

c) Steady States:

0 = fn(x1
ss, . . . , x

n
ss, u

1
ss, . . . u

m
ss,p), ∀n (4)

Equation 4 represents the dynamic model equations set to zero, denoting a
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steady state. Variables xn
ss and un

ss represent the values of the system states

and manipulated variables at steady state, whereas p stands for the design

parameters as described previously.

The variables selected as design variables strongly influence both capital and oper-

ating costs. In our formulation we assume that capital costs are mainly related to

reactor volumes. On the other hand, operating costs are mainly driven by cost of

raw materials (flow rate and temperature of monomer and initiator) and auxiliary

services (cooling water flow rate and temperature).

2. Scheduling formulation.

The scheduling formulation has been described in detail in previous works9,11, except

for equation 6b. This equation establishes an upper bound on production (Up,

chosen as one and half times the minimum demanded quantity). It is assumed that

some considerable (but not unlimited) amount of product can be sold, over the

minimum demand to be satisfied.

a) Product assignment:

Ns∑

k=1

yik = 1, ∀i (5a)

Np∑
i=1

yik = 1, ∀k (5b)

where

yik Binary variable to denote if product i is produced at slot k
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b) Amounts manufactured:

Wi > DiTc, ∀i (6a)

Wi 6 UpDiTc, ∀i (6b)

Wi = GiΘi, ∀i (6c)

Gi = F o
i Cm0

MWmonomer

1000
, ∀i (6d)

c) Processing times:

θik 6 θmaxyik, ∀i, k (7a)

Θi =
Ns∑

k=1

θik, ∀i (7b)

pk =

Np∑
i=1

θik, ∀k (7c)

e) Timing relations:

tek = tsk + pk + θt
k, ∀k (8a)

tsk = tek−1, ∀k 6= 1 (8b)

tek 6 Tc, ∀k (8c)

tfck = (f − 1)
θt

k

Nfe

+
θt

k

Nfe

γc, ∀f, c, k (8d)

3. Dynamic Optimization formulation.

To address the optimal control part, the simultaneous approach23 for addressing

dynamic optimization problems was used in which the dynamic model representing
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the system behavior is discretized using the method of orthogonal collocation on

finite elements26,27. According to this procedure, a given slot k is divided into a

number of finite elements. Within each finite element an adequate number of inter-

nal collocation points is selected. Using several finite elements is useful to represent

dynamic profiles with non-smooth variations. Thus, the set of ordinary differential

equations comprising the system model, is approximated at each collocation point

leading to a set of nonlinear equations that must be satisfied.

a) Dynamic mathematical model discretization:

xn
fck = xn

o,fk + θt
khfk

Ncp∑

l=1

Ωlcẋ
n
flk, ∀n, f, c, k (9)

Also note that in the present formulation the length of all finite elements is the

same and computed as,

hfk =
1

Nfe

(10)

b) Continuity constraint between finite elements:

xn
o,fk = xn

o,f−1,k + θt
khf−1,k

Ncp∑

l=1

Ωl,Ncpẋ
n
f−1,l,k, ∀n, f > 2, k (11)

c) Model behavior at each collocation point:

ẋn
fck = fn(x1

fck, . . . , x
n
fck, u

1
fck, . . . u

m
fck), ∀n, f, c, k (12)

d) Initial and final controlled and manipulated variable values at each slot:
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xn
in,k =

Np∑
i=1

xn
ss,iyi,k, ∀n, k (13)

x̄n
k =

Np∑
i=1

xn
ss,iyi,k+1, ∀n, k 6= Ns (14)

x̄n
k =

Np∑
i=1

xn
ss,iyi,1, ∀n, k = Ns (15)

um
in,k =

Np∑
i=1

um
ss,iyi,k, ∀m, k (16)

ūm
k =

Np∑
i=1

um
ss,iyi,k+1, ∀m, k 6= Ns − 1 (17)

ūm
k =

Np∑
i=1

um
ss,iyi,1, ∀m, k = Ns (18)

um
1,1,k = um

in,k, ∀m, k (19)

xn
o,1,k = xn

in,k, ∀n, k (20)

xn
tol,k > xn

Nfe,Nc,k − x̄n
k , ∀n, k (21)

−xn
tol,k 6 xn

Nfe,Nc,k − x̄n
k , ∀n, k (22)

e) Lower and upper bounds on the decision variables

xn
min 6 xn

fck 6 xn
max, ∀n, f, c, k (23a)

um
min 6 um

fck 6 um
max, ∀m, f, c, k (23b)
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f) Smooth transition constraints

um
f,c,k − um

f,c−1,k 6 uc
cont, ∀m, k, c 6= 1 (24)

um
f,c,k − um

f,c−1,k > −uc
cont, ∀m, k, f, c 6= 1 (25)

um
f,1,k − um

f−1,Nfe,k 6 uf
cont, ∀m, k, f 6= 1 (26)

um
f,1,k − um

f−1,Nfe,k > −uf
cont, ∀m, k, f 6= 1 (27)

um
1,1,k − um

in,k 6 uf
cont, ∀k (28)

um
1,1,k − um

in,k > −uf
cont, ∀k (29)

Equations 24- 29 force the change between adjacent collocation points and finite ele-

ments to be within a certain acceptable range.

Two-stage programming approach for uncertainty in demand

In general, scheduling and optimal control problems, due to their nature, are able to han-

dle uncertainties from one scheduling period to the next. In other words, if uncertainties

are present at the beginning of each scenario, and remain fixed throughout it, then the

scheduling and the optimal control problems can be solved once for each scenario in order

to accommodate each uncertainty realization. On the other hand, the design problem can

only be solved once, and the design variable values, obtained from the solution cannot

be changed throughout the different scenarios. In this work we assume that product de-

mands are subject to uncertainties that are expressed as discrete distributions for hourly

product demands, which give rise to the different scenarios. The simultaneous design,

scheduling and optimal control problem is then formulated as a two-stage programming

problem, in which the scheduling and optimal control are selected in stage 2 for each sce-

nario. The context of uncertainty used in this paper is similar to the perfect information

context presented by Bhatia and Biegler8, in which once a design is implemented changes

in scheduling and optimal control can be made from scenario to scenario, based on the

fact that complete (perfect) information about demand uncertainties is resolved before
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every cycle begins.

An important assumption must be made in order to be able to use the proposed two-

stage programming approach. In cyclic scheduling, products are consumed constantly

throughout the cycle, and part of every product inventory carries over into the next cy-

cle, until production of the relevant product begins again. In this context, changing the

schedule order of production may cause product shortages if the production period of this

product begins later in the new cycle than in the previous one. In this work it is assumed

that a schedule switch caused by a change in demand scenario (if necessary) happens

only once in a large number of cycles. In fact, the number of cycles is assumed to be

large enough such that shortages that might occur during schedule switches need not be

modeled in the formulation.

The two-stage programming formulation in this work is similar to that used by Bhatia

and Biegler8, and it has the following form:

max
∑Nds

q=1 ωqφq(xq, uq, scq, d, θq)

s.t.

hz
q(xq, uq, scq, d) = 0

gz
q (xq, uq, scq, d) 6 0

hsc
q (scq, d, θq) = 0 (30)

gsc
q (scq, d, θq) 6 0

hd(d) = 0

dmin 6 d 6 dmax

uq, xq ∈ Z, scq ∈ SC, d ∈ D, θq = (θ1
q . . . θNds

q )
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The set q, corresponds to each different demand scenario, and ωq, is the probability

that a demand scenario q will occur. Optimal control state variables and manipulated

variables are designated as xq and uq respectively, scq are scheduling variables, d are design

variables, and θq represents the uncertain parameters, in this case the product demands.

Different scenarios have different scheduling and optimal control solutions, but are linked

by a fixed set of design variables.

4 Case Studies

In the following section the proposed formulation is used to solve the simultaneous de-

sign, scheduling and optimal control of a MMA polymerization reactor, where different

polymer grades are produced. First, the problem is solved as deterministic problem. In

a second case, uncertainty in three of five polymer grade demands is taken into account,

and the problem is solved using a two-stage programming formulation.

MMA polymerization

The MMA polymerization system used in this paper is that described by Silva-Beard et

al.25. The polymerization reactions take place in a CSTR. The variables that correspond

to the reactor design are bounded around the nominal values used in the above mentioned

work25. Table 2 shows kinetic constants and other relevant physical constants used in the

mathematical model that describes the bulk free-radical MMA polymerization using AIBN

as the initiator. This model is described below:
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dCm

dt
= −(kp + kfm)CmPo +

F (Cmin − Cm)

V
(31)

dCI

dt
= −kICI +

FICIin

V
− FCI

V
(32)

dT

dt
=

(−∆H)kpCm

ρCp

P0 − UA

ρCpV
(T − Tj) +

F (Tin − T )

V
(33)

dD0

dt
= (0.5Ktc + ktd)P

2
0 + kfmCmP0 − FD0

V
(34)

dD1

dt
= Mm(kp + kfm)CmP0 − FD1

V
(35)

dTj

dt
=

Fcw(Tw0 − Tj)

V0

+
UA

ρCpwV0

(T − Tj); (36)

where

P0 =

√
2f ∗CIkI

ktd + ktc

kr = Are
−E/RT , r = p, fm, I, td, tc

The average molecular weight distribution of the polymer is defined as the ratio D1/D0.

Five different MMA grades with different molecular weights are produced, where each

grade corresponds to a different steady state. In this work, the only grade parameter

fixed a priori is the desired average molecular weight distribution. The values of the state

variables in the steady states that correspond to each desired molecular weight are kept as

degrees of freedom. The desired average molecular weight distributions are 15000, 20000,

25000, 35000, and 45000.

4.1 Deterministic approach

Under this case, all the parameters are assumed to be deterministic. Equations 1 to 29

are used directly to solve the simultaneous design, scheduling and optimal control of the

MMA polymerization CSTR. Information about each desired grade is shown in Table

3. Results were obtained using the MINLP solver DICOPT28, based on the outer ap-

proximation algorithm29 through the GAMS modeling system. The problem consisted of

5000 continuous variables and 25 binary variables, and its solution took 1855 CPU s in a
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2.86 GHz machine. Tables 4 and 5 show the values of all design variables at the optimal

solution point. Table 6 contains the scheduling variables that describe the optimal cycle,

including hourly profit, while Figures 1(a)-1(c) show the optimal dynamic profiles during

grade transitions. Table 7 shows the different contributions of each term in the objective

function.

It is interesting to notice how the largest contribution to the costs are related to the de-

sign as seen from Table 7. This indicates that any decision taken to decrease the design

costs would involve an undesirable trade-off in the transition and inventory costs. For

instance, a smaller reactor or feed stream flow rate would decrease the design costs, but

the production rate would necessarily be smaller, which in turn would increase the cycle

time and inventory costs.

On the other hand, the resulting optimal schedule (AEDCB) is dominated by tran-

sitions between grades that have similar molecular weights, occurring in the direction of

higher molecular weight to lower molecular weight, except of course, for the A to E tran-

sition, required at the beginning of the cycle. We have analyzed this type of transitions

in detail in previous works9,10. From a dynamic point of view, transitions between grades

with similar molecular weights are fast, since they involve similar steady state operat-

ing conditions (see Table 5). A long transition is allowed to occur in order to allow all

other transitions to take place faster between similar grades9. Another important dy-

namic behavior is the shutting down of initiator feed stream. Since the AIBN initiator is

expensive, transitions that involve shutting down initiator flow rate to the reactor result

in little AIBN wasted during transitions. As a final observation, it is interesting to see

that the resulting dynamic operation does not involve significant temperature change,

approximating an isothermal process.
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4.2 Two-stage programming approach for different demand sce-

narios.

In the second example uncertainty is introduced in the hourly demands of grades A, C, and

E. In real life operations, uncertain demand is a continuous quantity, which can usually be

described by a probabilistic distribution, but in this work, uncertainty in grade demand is

handled through a set of discrete values which represent different demand scenarios. The

problem is solved by using a two-stage programming approach for optimal design under

uncertainty5, in which each period represents a different demand scenario, and where the

objective function represents a weighted sum of the different possible scenarios. These

scenarios are independent from each other, except for the set of design variables that

remain constant throughout all of them8. The rigorous procedure for flexibility analysis

would call for a second step in which the optimal design is tested all over the uncertain

demand parameters domains5. The critical feasibility points would then be included as

part of the finite set of possible values for the uncertain parameters, and solved within

the multiscenario formulation, generating an iterative procedure. This procedure will not

be included in this paper. The discretized demand values include significant variations

from the nominal point, and although feasibility within the continuous domain estab-

lished by the extreme demand values cannot be rigorously guaranteed, the results from

the multiscenario formulation will show that finding critical feasibility points correspond-

ing to intermediate demand values is unlikely. The application of large scale MINLP

algorithms30 could allow a more exhaustive feasibility check for the computed optimal

solution along with other interesting possibilities, listed later in this paper.

The example described below involves five different demand scenarios where low and

high demand values for grades C and E are combined (demands for grade B and D

remain constant), generating four scenarios. An extreme demand combination involving

a significant change in demand for grade A generates the fifth scenario.

The different demand scenarios with corresponding discrete probabilities are detailed
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in Table 8. In order to efficiently solve the multiscenario formulation, it is initialized with

the independent solutions to each demand scenario8. In other words, each scenario is

solved as a deterministic problem, and the different solutions are passed on to initialize

the two-stage programming problem. The multiscenario problem was solved using the

MINLP solver DICOPT28, based on the outer approximation algorithm29 through the

GAMS modeling system. The problem consisted of 24704 continuous variables and 125

binary variables, and its solution took 87,676 CPU s (∼ 24 h) in a 2.86 GHz machine

using a full space solution approach (i.e. no decomposition optimization technique was

used). Tables 9, and 10 show the values of all design variables at the optimal solution.

Table 11 show the objective function value and other relevant values for the description

of each period solution, within the two-stage programming formulation.

As shown in Tables 4 and 9 the differences in terms of the CSTR design variables are

in the feed stream flow rate, monomer concentration and reactor size (which in turns

determines the area and volume of the jacket). However, the steady states determined

through both approaches are very similar. The first scenario or period of the two-stage

programming approach, corresponds to the deterministic problem. The solutions found

by both approaches for the same scenario show different sequences, cycle durations and

slightly different distribution of costs as shown in Table 11. The hourly profit of this par-

ticular scenario is lower in the two-stage programming solution than in the deterministic

solution. Intuitively, one would expect that this decreased profit for the multiscenario so-

lution, in scenario one, when compared against the deterministic solution is compensated

by a better performance in other demand scenarios. The results are found in Table 12.

The overall profit (taking into account probabilities of each scenario) obtained by choos-

ing the two-stage programming design is only slightly better than the one found using the

deterministic approach. However, size and non-convexity of both problems are different,

and as with every non-linear, non-convex problem, local optimal points are present. A

way to compare both solutions in similar conditions was necessary before stating con-

clusions. The main expected advantage of the two-stage programming formulation over
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the deterministic solution is a more robust design. In some cases a certain design found

to be optimal for a deterministic problem might not be feasible (let alone optimal) for

all expected conditions. Being this case, a relevant comparison would involve comparing

the deterministic design vs. the two-stage programming design, using the same problem

conditions. This means that design variables found through both methods could be fixed

and the same scheduling and optimal control problem could then be solved using both

designs.

The results shown in Table 12 and 13 correspond to the proposed approach: they

are the result of using as fixed designs those found by the deterministic and two-stage

programming approaches, and solving each period independently as a scheduling and op-

timal control problem. The solution to example 1 in this paper (the original deterministic

problem) was used as initialization point for all scenarios and for both designs. In this

comparison it is clear that the design obtained from the two-stage programming formu-

lation performs better than the one obtained by using the deterministic approach. It is

worth noting that, in both cases, the production sequence is the same in all scenarios.

The main differences are found in total transitions durations and cycle times. In Figures

1(a) to 2(c) one can see that most transitions have similar durations, except for the tran-

sition corresponding to slot 3 for both cases (in both cases this transition corresponds to

a D → C transition). Cycle time differences can be attributed to faster transitions and

to faster process rates in the two-stage programming formulation.

A summary of how the two-stage programming approach compares against the de-

terministic approach is presented in Figure 3. From this figure one can see that there

is a clear trend in which, as total hourly demand (summation over all polymer grades)

increases, the two stage programming approach performs better than the deterministic

approach.
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5 Conclusions

The optimization formulation presented in this paper successfully addressed the simul-

taneous design (including steady state determination), cyclic scheduling and control of a

MMA polymerization reactor under deterministic and uncertain demand characteristics.

Since chemical process design must be flexible and robust enough to accommodate for

process uncertainties, a two-stage programming formulation which deals with demand

uncertainties with discrete distributions was proposed.

The two-stage programming problem was solved, and interesting observations can be

drawn from such a solution, and from its comparison versus a deterministic approach. The

hourly profit (objective function value) obtained by the complete two-stage programming

formulation was slightly better than the equivalent addition of the individual solutions of

different scenarios using the design results determined in the original deterministic prob-

lem as fixed parameters. However, when the design variables (including the determined

steady states) resulting from the two-stage programming solution, were also fixed and

different demand scenarios were solved independently, significantly better solutions than

those provided using the deterministic design were found. The comparison was made

using identical conditions (same constraints, objective function, solver and solver options,

computer hardware, etc.), including the same initialization point.

This work represents another step in the simultaneous solution of process and grade de-

sign, scheduling, and optimal control. The next steps can take many directions: process

design beyond reactor design, implementation of close-loop control schemes, inclusion

of more complex scheduling models, solution of larger dynamic models by optimization

decomposition techniques, parallel computing for scheduling and control, integration of

planning, scheduling and control, inclusion of uncertainty in model and other market pa-

rameters, and/or continuous probability distributions for uncertain quantities based on

stochastic optimization formulations, extension of most of the past research points to

deal with batch plants. Recent developments and improvements of large scale MINLP

problem30 solvers further encourages the exploration of all these research possibilities.
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Table 1: Objective function parameters

α??=688.351 λ?
hv[kJ/kg]=2417

β??=0.75 P ?
ew=0.3×10−2

at[hr/4 years]=35040 T ∗
j [K]=340

ρ† [kg/m3]=866 Cmw?[$/kg]=2.23×10−2
Cp† [kJ/(kg·K]=2 MWmon [kg/kgmol]=100.20
Tamb[K]=298 Cr‡ [$/kg]=1.5

Cst?[$/kJ]8.22×10−6 MW ‡
ini [kg/kgmol]=164.21

ρ†w [kg/m3]=1000 CI†† [$/kg]=11
Cp?

cw [kJ/kg·K]=4.2

?? Adapted from Matches 200724

? Turton et al.31

† Silva-Beard et al.25

‡32

†† Asteasuain et al.2

Table 2: Physical Constants

U = 720 kJ/(h· K· m2)
R = 8.314 kJ/(kgmol· K)
−∆H = 57800 kJ/kgmol
Ep = 1.8283 x 104 kJ/kgmol
EI = 1.2877 x 105 kJ/kgmol
Efm = 7.4478 x 104 kJ/kgmol
Etc = 2.9442 x 103 kJ/kgmol
Etd = 2.9442 x 103 kJ/kgmol
Ap = 1.77 x 109 m3/(kgmol· h)
AI = 3.792 x 1018 1/h
Afm = 1.0067 x 1015 m3/(kgmol· h)
Atc = 3.8223 x 1010 m3/(kgmol· h)
Atd = 3.1457 x 1011 m3/(kgmol· h)

Table 3: pMMA Grade Information

Grade A Grade B Grade C Grade D Grade E
Desired MW [kg/kgmol] 15000 20000 25000 35000 45000
Demand [kg/hr] 1.6 1.4 1.0 0.8 0.6
Price [$/kg] 1.20 1.30 1.50 1.60 1.65
Inv. Cost [$/hr-kg)] 1.20×10−3 1.50×10−3 1.60×10−3 1.60×10−3 1.65×10−3
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Table 4: CSTR design variable results

F = 0.390 m3/h
Fcw = 0.010 m3/h
Cmin = 0.767 kgmol/m3

CIin = 10.000 kgmol/m3

Tin = 344.8 K
Tw0 = 298.0 K
A = 15.120 m2

V = 2.073 m3

V0 = 0.415 m3

Table 5: pMMA Steady State Results

Grade A Grade B Grade C Grade D Grade E
Cm [kgmol/m3] 0.4162 0.4749 0.5216 0.6070 0.6760
CI×103 [kgmol/m3] 1.5064 0.9056 0.5833 0.2195 0.0661
TR [K] 348.1 347.3 346.7 345.7 344.8
QI×104 [m3/h] 1.1486 0.6598 0.4105 0.1455 0.0419
X [%] 0.4574 0.3809 0.3199 0.2089 0.1186
MW [kg/kgmol] 15200 20200 24800 34800 44800

Table 6: Scheduling variables at the optimal solution. The objective function value is $
2.32/hr and 544.7 h of total cycle time.

Product Process T [h] production [kg] Trans T [h] T start[h] T end [h]
A 95.25 1307.34 14.21 0 109.47
E 137.32 490.25 1.74 109.57 248.52
D 104.16 653.67 1.26 248.52 353.95
C 85.07 817.08 2.58 353.94 441.59
B 100.06 1143.92 3.07 441.59 544.73

Table 7: Contributions to the objective function for the deterministic example.

Objective Function Term Contribution [$/hr]
Sales 11.27
Reactor ( 4 yr amortization) 2.22
Feed Stream Heating 0.26
Cooling Water 1.32
Inventories 2.63
Offspec during transitions 2.53
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Table 8: Demand Scenarios in example 2.

Grade A Grade B Grade C Grade D Grade E Probability
Demand scenario 1 [kg/h] 1.6 1.4 1.0 0.8 0.6 0.30
Demand scenario 2 [kg/h] 1.6 1.4 1.0 0.8 0.9 0.20
Demand scenario 3 [kg/h] 1.6 1.4 0.5 0.8 0.6 0.20
Demand scenario 4 [kg/h] 1.6 1.4 0.5 0.8 0.9 0.15
Demand scenario 5 [kg/h] 4.8 1.4 0.5 0.8 0.9 0.15

Table 9: CSTR design variable results in example 2

F = 0.431 m3/h
Fcw = 0.0100 m3/h
Cmin = 0.809 kgmol/m3

CIin = 10.000 kgmol/m3

Tin = 344.87 K
Tw0 = 298.00 K
A = 15.370 m2

V = 2.125 m3

V0 = 0.425 m3

Table 10: pMMA Steady State Results in example 2

Grade A Grade B Grade C Grade D Grade E
Cm [kgmol/m3] 0.4413 0.5045 0.5547 0.6487 0.7181
CI×103 [kgmol/m3] 1.4945 0.9047 0.5851 0.2112 0.0653
TR [K] 348.93 348.04 347.34 346.02 345.05
QI×104 [m3/h] 1.2798 0.7336 0.4553 0.1529 0.0450
X [%] 0.4545 0.3764 0.3143 0.1981 0.1124
MW [kg/kgmol] 15200 20200 24800 35200 44800

Table 11: Scenario by scenario results using the two-stage programming formulation. The
weighted objective function is 2.25 $/h. Scenario profits, sales, and costs are in $/h; cycle
and total transition times are in hours.

Scenario Sequence Cycle Trans. Sales Design Inventory Trans.
time time costs costs costs

1 A → E → D → C → B 542 20.97 11.27 3.87 2.69 2.69
2 A → E → D → C → B 546 20.97 12.01 3.87 2.80 2.67
3 A → B → C → D → E 652 27.74 10.14 3.87 2.92 2.92
4 A → E → D → C → B 561 20.97 10.88 3.87 2.60 2.60
5 A → E → D → C → B 598 21.86 14.24 3.87 2.96 2.50
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Table 12: Scheduling and control results using the deterministic design. The resulting
profit using the same probabilities (weights) as in the two-stage programming formulation,
is 2.23 $/hr. Scenario profits, sales, and costs are in $/h; cycle and total transition times
are in hours.

Scenario Sequence Cycle Trans. Sales Design Inventory Trans.
time time costs costs costs

1 A → E → D → C → B 554 22.86 11.27 3.80 2.67 2.48
2 A → E → D → C → B 556 22.86 11.27 3.80 2.68 2.47
3 A → E → D → C → B 562 22.86 10.14 3.80 2.45 2.45
4 A → E → D → C → B 580 22.86 10.61 3.80 2.58 2.37
5 A → E → D → C → B 627 22.86 12.07 3.80 2.76 2.19

Table 13: Scheduling and control results using the two-stage programming design. The
weighted objective function is 2.41 $/h. Scenario profits, sales, and costs are in $/h; cycle
and total transition times are in hours.

Scenario Sequence Cycle Trans. Sales Design Inventory Trans.
time time costs costs costs

1 A → E → D → C → B 542 20.93 11.27 3.87 2.68 2.68
2 A → E → D → C → B 554 20.93 12.01 3.87 2.83 2.62
3 A → E → D → C → B 570 20.93 10.14 3.87 2.55 2.55
4 A → E → D → C → B 560 20.93 10.88 3.87 2.59 2.59
5 A → E → D → C → B 590 20.93 14.25 3.87 2.92 2.46
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Figure 1: Dynamic Transitions in the pMMA CSTR, obtained through deterministic pro-
cedures: (a) Average molecular weight (b) Manipulated variable (c) Reactor temperature.
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Figure 2: Dynamic Transitions in the pMMA CSTR, obtained by simultaneous scheduling
and optimal control, using as fixed design the one obtained in the multiperiod example:
(a) Average molecular weight (b) Manipulated variable (c) Reactor temperature.
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Figure 3: Relative performance two-stage programming approach vs. deterministic ap-
proach
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Appendix

The indices, decision variables and system parameters used in the SSC MIDO problem

formulation are as follows:

1. Indices

Products i, p = 1, . . . Np

Slots k = 1, . . . Ns

Finite elements f = 1, . . . Nfe

Collocation points c, l = 1, . . . Ncp

System states n = 1, . . . Nx

Manipulated variables m = 1, . . . Nu

Demand scenarios q = 1, . . . Nds

2. Decision variables

yik Binary variable to denote if product i is assigned to slot k

pk Processing time at slot k

tek Final time at slot k

tsk Start time at slot k

tfck Time at finite element f and collocation point c of slot k

Gi Production rate

Tc Cyclic time [h]

xn
fck n-th system state in finite element f and collocation point c of slot k

ẋn
flk Value of n-th state derivative with respect to time in finite element f

and collocation point l of slot k

um
fck m-th manipulated variable in finite element f and

collocation point c of slot k
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Wi Amount produced of each product [kg]

θik Processing time of product i in slot k

θt
k Transition time at slot k

Θi Total processing time of product i

xn
o,fk n-th state value at the beginning of the finite element f of slot k

x̄n
k Desired value of the n-th state at the end of dynamic transition of slot k

ūm
k Desired value of the m-th manipulated variable at the end of dynamic

transition of slot k

xn
in,k n-th state value at the beginning of dynamic transition of slot k

un
in,k m-th manipulated variable value at the beginning of dynamic transition

of slot k

xn
ss,i n-th state value at steady state of product i

um
ss,i m-th manipulated variable value of product i

Xfck Conversion in finite element f and collocation point c of slot k

MWDfck Molecular Weight Distribution in finite element f

and collocation point c of slot k

Tin Monomer feed stream feeding temperature [K]

Tw Cooling water feeding temperature [K]

Fmon Monomer feed stream flow rate [m3/h]

Fcw Cooling water flow rate [m3/h]

Cmin Monomer feed stream concentration [kmol/m3]

CIin Initiator feed stream concentration [kmol/m3]

V Reactor volume [m3]

V0 Jacket volume [m3]

A Surface area for heat exchange [m2]

z Control-related variables

sc Scheduling-related variables

d Design-related variables
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3. Parameters

Np Number of products

Ns Number of slots

Nfe Number of finite elements

Ncp Number of collocation points

Nx Number of system states

Nu Number of manipulated variables

Nds Number of demand scenarios

Di Demand rate [kg/h]

θq Uncertain parameters values at period q

α Pre-exponential factor of reactor volume-cost correlation [$/m3]

β Exponential factor of volume-cost correlation

at Number of hours in the four year amortization period [h]

Cp
i Price of products [$/kg]

Cs
i Cost of inventory [$/kg-hr]

Cr Cost of raw material [$/lt of feed solution]

CI Cost of initiator [$/lt of feed solution]

Cst Cost of providing energy from steam [$/kJ]

Ccw Cost of supplying cooling water [$/kg]

Cmw Unit cost of replacing cooling water [$/kg]

hfk Length of finite element f in slot k

Ωcc Matrix of Radau quadrature weights

x̄n
k Desired value of the n-th system state at slot k

θmax Upper bound on processing time

ωq Probability associated with scenario q

MWDss,i Desired molecular weight distribution of grade i
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xn
min, x

n
max Minimum and maximum value of the state xn

um
min, u

m
max Minimum and maximum value of the manipulated variable um

ẋn
tol Maximum absolute value for state derivatives at the end of dynamic

transition

xn
tol Maximum absolute deviation from desired final value, allowable for

state variable xn at the end of dynamic transition

uf
cont Maximum absolute change for um between finite elements

uc
cont Maximum absolute change for um between collocation points

γc Roots of the Lagrange orthogonal polynomial

Qm
max Maximum monomer flow rate [lt/hr]

QI
max Maximum initiator flow rate [lt/hr]

T ∗
j An expected jacket temperature used to calculate average heat required

in order to cool down water after process

Tamb Room temperature [K]

λhv Water latent heat of vaporization [kj/kg]

Pcw Percent of water lost during cooling operations [%]

ρ Monomer feed stream density [kg/m3]

Cp Monomer feed stream heat capacity [kJ/kg-K]

ρw Cooling water density [kg/m3]

Cpw Cooling water heat capacity [kJ/kg-K]

MWmon Monomer molecular weight [kmol/kg]

MWini Initiator molecular weight [kmol/kg]

dmin, dmax Lower and upper bounds on design variables

Up Upper bound on production
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