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Abstract

In this work we propose a scheduling and control formulation for simultaneously

addressing scheduling and control problems by explicitly incorporating process dy-

namics in the form of system constraints that ought to be met. The formulation

takes into account the interactions between such problems and is able to cope with

nonlinearities embedded into the processing system. The simultaneous scheduling

and control problems is cast as a Mixed-Integer Dynamic Optimization (MIDO)

problem where the simultaneous approach, based on orthogonal collocation on fi-

nite elements, is used to transform it into a Mixed-Integer Nonlinear Programming

(MINLP) problem. The proposed simultaneous scheduling and control formulation

is tested using three multiproduct continuous stirred tank reactors featuring hard

nonlinearities.
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1 Introduction

Traditionally, scheduling and control problems in chemical processes have been addressed

in a separate way. From a scheduling point of view, the interest lies in determining opti-

mal assignments to equipment production sequences, production times for each product,

inventory levels that lead to maximum profit or minimum completion time [1]. Commonly,

during this task, features related to the dynamic behavior of the underlying process are

not taken into account. Similarly, when computing optimal transition trajectories (i.e.

optimal values of the manipulated and controlled variables) between different set of prod-

ucts, one of the major objectives lies in determining the transition trajectory featuring

minimum transition time [2]. When addressing optimal control problems, it is normally

assumed that the production sequence is fixed [3]. Hence, normally scheduling features

are neglected in optimal control formulations. In pure scheduling problems, normally

the transition times between the different product combinations are fixed , and hence,

the dynamic profile of the chosen manipulated and controlled variables is not taken into

account in the optimization formulation.

However, it is recognized [4],[5],[6],[7] that scheduling and control problems are closely

related problems and that, ideally, they should be addressed simultaneously rather than

sequentially or, even worse, solved without taking account the other part (i.e. pure

scheduling and control problems). Working along this line, the normal interactions be-

tween scheduling and control problems are taken into account, therefore leading to an

improved objective function value and avoiding suboptimal solutions that occur when

scheduling and control problems are addressed sequentially

Some early attempts to address the scheduling and control problem were made by

Bathia and Biegler [3] who fixed the production sequence and used dynamic optimization

for production planning optimization. Mahadevan et al. [4] analyzed grade transition

scheduling problems from a robust closed-loop point of view. They did not address the

problem as a MIDO problem, although it is recognized that optimal grade transition

and scheduling problems should be approached along this line. They obtained grade
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schedulings by defining easy and hard to carry out transitions. Chatzidoukas et al. [8]

proposed a MIDO formulation for analyzing polymer grade transition and optimal cam-

paign scheduling. For solving the MIDO problem, they used the algorithm proposed by

allgor [9]. Smania and Pinto [10] used steady-state models, and discrete time decisions,

for optimizing production campaigns.

There have been more recents works addressing the scheduling and control problem.

Mishra et al. [6] made a comparison between what they call the standard recipe approach

(SRA) and the overall optimization approach (OOA) for solving SC problems. In the

SRA approach process dynamics, trough the direct incorporation of a process mathemat-

ical model, is neglected and in its place a set of correlations, obtained from running local

optimizations, are developed to capture time domain behavior. On the other hand, in the

OOA approach, the process dynamic model is included into the formulation. The set of or-

dinary differential equations modeling the related process are discretized and transformed

in to a set of algebraic equations. Hence, in the OOA method, the resulting SC problem is

cast in terms of a MINLP problem. The authors claim that because in the OOA method

the number of available freedom degrees is larger than in the SRA method, the optimal

solution obtained by using the OOA method will be superior to the one obtained using

the SRA method as their two cases of study show. Although the superiority of the OOA

method for addressing SC problems is clear from their examples, they concluded that the

use of the discretization approach to transform a MIDO problem into a MINLP problem

is not feasible due to the large of number of constraints generated when discretizing the

process dynamic model. Moreover, the authors solved the MINLP problems by a direct

approach, meaning that they did not use any decomposition solution strategy aimed to re-

duce the computational complexity faced when solving MIDO problems. They concluded

that additional work is needed to improve MIDO solution techniques.

In another recent work [7], scheduling and grade transition for polymerization systems

has been addressed. The authors proposed a decomposition scheme specifically tailored

for the resulting MIDO problem. Based on previous work about MIDO problem solution
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strategies [9] they proposed to solve the MIDO problem as sequence of primal and master

problems. The primal problem contains the dynamic optimization part while the master

problem deals with the scheduling part. The authors report good convergence properties

when analyzing scheduling and grade transition for a polymerization plant, however no

details of the specific polymerization system are offered. As the authors recognize, their

MIDO solution strategy is highly application specific and therefore it would be difficult

to apply even to other polymerization systems. Without enough details about the poly-

merization process dynamics and nonlinearities embedded, it turns out to be difficult to

assess the robustness of the solution strategy.

In this work we propose a simultaneous approach to address scheduling and control

problems for a continuous stirred tank reactor (CSTR) that produces multiple products.

We take advantage of the rich knowledge of scheduling and optimal control formulations

and we merge them so the the final result is a formulation able to solve simultaneous

scheduling and control problems. We cast the problem as an optimization problem. In

the proposed formulation, integer variables are used to determine the best production

sequence and continuous variables take into account production times, cycle time and in-

ventories. Because, dynamic profiles of both manipulated and controlled variables are also

decision variables, the resulting problem is cast as a Mixed-Integer Dynamic Optimization

(MIDO) problem. To solve the MIDO problem we use a recently proposed methodology

[11] which consists in transforming the MIDO problem into a MINLP that can be solved

using standard methods such as the Outer-Approximation method [12],[13]. Roughly

speaking, the strategy for solving the MIDO problem consists in using the so-called Si-

multaneous Approach [2] for solving optimal control problems as the way to transform

the set of ordinary differential equations modeling the dynamic system behavior into a set

of algebraic equations. Because of the highly nonlinear behavior embedded in chemical

process models, the resulting MIDO formulation will be a MINLP problem featuring hard

nonlinearities such as multiple steady-states, parametric sensitivity, bifurcation and even

chaotic dynamics.
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2 Problem definition

Given are a number of products that are to be manufactured in a single continuous mul-

tiproduct CSTR. Steady-state operating conditions for manufacturing each product are

also specified, as well as the demand rate and price of each product and the inventory and

raw materials costs. The problem to be tackled consists in the simultaneous determination

of the best production wheel (i.e. cyclic time and the sequence in which the products will

be manufactured) as well as the transition times, production rates, length of processing

times, amounts manufactured of each product, such that the profit is maximized subject

to a set of scheduling and dynamic state constraints.

3 Scheduling and Control MIDO Formulation

In the following simultaneous scheduling and control (SSC) formulation, we assume that

all products are manufactured in a single CSTR and that the products follow a production

wheel meaning that all the required products are manufactured, in an optimal sequence to

be determined, and that the sequence is repeated cyclically (see Pinto and Grossmann [14]

for the scheduling formulation). As shown in Figure 1(a) the cyclic time is divided into a

series of slots. Within each slot two operations are carried out: (a) the production period

during which a given product is manufactured around steady-state conditions and (b)

the transition period during which dynamic transitions between two products take place.

According to this description, Figure 1(b) depicts a typical dynamic operating response

curve within each slot. At the beginning of each slot, material of a given product is

manufactured until the demand imposed on such product is met, during this period both

the system states x and the manipulated variables u remain constant. Afterwards, the

CSTR process conditions are changed (by modifying the manipulated variables u) until

new desired process operating conditions (as represented by the system states x), leading

to the manufacture of a new product, are reached. In this work we assume that only one

product can be produced in a slot and that each product is produced only once within
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Figure 1: (a) The cyclic time is divided into slots and within each slot a steady-state
production period is followed by a transition period. (b) Within each slot the system
states x and the manipulated variables u remain constant. However during the transition
period the manipulated variables change and so does the system states.

each production wheel. Also we assume that once a production wheel is completed, new

identical cycles are executed indefinitely.

All the indices, decision variables and system parameters used in the SSC MIDO

problem formulation are as follows:

1. Indices
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Products i, p = 1, . . . Np

Slots k = 1, . . . Ns

Finite elements f = 1, . . . Nfe

Collocation points c, l = 1, . . . Ncp

System states n = 1, . . . Nx

Manipulated variables m = 1, . . . Nu
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2. Decision variables

yik Binary variable to denote if product i is assigned to slot k

y
′
ik Binary auxiliary variable

zipk Binary variable to denote if product i is followed by product p in slot k

pk Processing time at slot k

tek Final time at slot k

tsk Start time at slot k

Gi Production rate

Tc Total production wheel time [h]

xn
fck N-th system state in finite element f and collocation point c of slot k

um
fck M-th manipulated variable in finite element f and collocation point c of slot k

Wi Amount produced of each product [kg]

θik Processing time of product i in slot k

θt
k Transition time at slot k

Θi Total processing time of product i

xn
o,fk n-th state value at the beginning of the finite element f of slot k

x̄n
k Desired value of the n-th state at the end of slot k

ūm
k Desired value of the m-th manipulated variable at the end of slot k

xn
in,k n-th state value at the beginning of slot k

un
in,k m-th manipulated variable value at the beginning of slot k

Xi Conversion

3. Parameters

Np Number of products

Ns Number of slots

Nfe Number of finite elements

Ncp Number of collocation points

Nx Number of system states

Nu Number of manipulated variables
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Di Demand rate [kg/h]

Cp
i Price of products [$/kg]

Cs
i Cost of inventory

Cr Cost of raw material

hfk Length of finite element f in slot k

Ωcc Matrix of Radau quadrature weights

x̄n
k Desired value of the n-th system state at slot k

ūm
k Desired value of the m-th manipulated variable at slot k

θmax Upper bound on processing time

ttip Estimated value of the transition time between product i and p

xn
ss,i n-th state steady value of product i

um
ss,i m-th manipulated variable value of product i

F o Feed stream volumetric flow rate

Xi Conversion degree

xn
min, x

n
max Minimum and maximum value of the state xn

um
min, u

m
max Minimum and maximum value of the manipulated variable um

γc Roots of the Lagrange orthogonal polynomial

In order to clarify the SSC MIDO problem formulation, it has been divided into two

parts. The first one deals with the scheduling part and the second one with the dynamic

optimization part.

• Objective function.

max





Np∑
i=1

Cp
i Wi

Tc

−
Np∑
i=1

Cs
i (Gi −Wi)

2ΘiTc

−
Ns∑

k=1

Nfe∑

f=1

hfk

Ncp∑
c=1

CrtfckΩc,Ncp

Tc

(
(x1

fck − x̄1
k)

2

+ . . . + (xn
fck − x̄n

k)2 + (u1
fck − ū1

k)
2 + . . . + (um

fck − ūm
k )2

)}
(1)

The total process profit is given by the amount and cost of the manufactured products

minus the sum of the inventory costs and the product transition costs. As a measure of
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the transition costs, we use a term that takes into account the amount of off-specification

material produced during product transition. At each slot, such term would have the

following form:

1

Tc

∫ tf

0

[∑
n

(xn − x̄n)2 +
∑
m

(um − ūm)2

]
Crdt (2)

where tf is the transition time in slot k, Cr is the cost of the raw material, Tc is duration of

the production wheel cycle, xn is the n-th system state and x̄n its desired value. Similarly,

um is the m-th manipulated variable and ūm its desired value. The above integral can be

approximated by Radau quadrature as follows:

Ns∑

k=1

Nfe∑

f=1

hfk

Npc∑
c=1

CrtfckΩc,Ncp

Tc

(
(x1

fck − x̄1
k)

2 + . . . + (xn
fck − x̄n

k)2 + (u1
fck − ū1

k)
2 + . . . + (um

fck − ūm
k )2

)

It should be noted that this form of the transition costs will force the system to carry

out product transitions as soon as possible, while at the end of a product transition the

states will take the steady-state values for manufacturing a new product.

1. Scheduling part.

a) Product assignment

Ns∑

k=1

yik = 1, ∀i (3a)

Np∑
i=1

yik = 1, ∀k (3b)

y
′
ik = yi,k−1, ∀i, k 6= 1 (3c)

y
′
i,1 = yi,Ns , ∀i (3d)

Equation 3a states that, within each production wheel, any product can only

be manufactured once, while constraint 3b implies that only one product is
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manufactured at each slot. Due to this constraint, the number of products and

slots turns out to be the same. Equation 3c defines backward binary variable

(y
′
ik) meaning that such variable for product i in slot k takes the value assigned

to the same binary variable but one slot backwards k − 1. At the first slot,

Equation 3d defines the backward binary variable as the value of the same

variable at the last slot. This type of assignment reflects our assumption of

cyclic production wheel. The variable y
′
ik will be used later to determine the

sequence of product transitions.

b) Amounts manufactured

Wi > DiTc, ∀i (4a)

Wi = GiΘi, ∀i (4b)

Gi = F o(1−Xi), ∀i (4c)

Equation 4a states that the total amount manufactured of each product i must

be equal or greater than the desired demand rate times the duration of the

production wheel, while Equation 4b indicates that the amount manufactured

of product i is computed as the product of the production rate (Gi) times

the time used (Θi) for manufacturing such product. The production rate is

computed from Equation 4c as a simple relationship between the feed stream

flowrate (F o) and the conversion (Xi).

c) Processing times

θik 6 θmaxyik, ∀i, k (5a)

Θi =
Ns∑

k=1

θik, ∀i (5b)

pk =

Np∑
i=1

θik, ∀k (5c)

The constraint given by Equation 5a sets an upper bound on the time used for
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manufacturing product i at slot k. Equation 5b is the time used for manufac-

turing product i, while Equation 5c defines the duration time at slot k.

d) Transitions between products

zipk > y
′
pk + yik − 1, ∀i, p, k (6)

The constraint given in Equation 6 is used for defining the binary production

transition variable zipk. If such variable is equal to 1 then a dynamic transition

will occur from product i to product p within slot k, zipk will be zero otherwise.

e) Timing relations

θt
k =

Np∑
i=1

Np∑
p=1

ttpizipk, ∀k (7a)

ts1 = 0 (7b)

tek = tsk + pk +

Np∑
i=1

Np∑
p=1

ttpizipk, ∀k (7c)

tsk = tek−1, ∀k 6= 1 (7d)

tek 6 Tc, ∀k (7e)

tfck = (f − 1)
θt

k

Nfe

+
θt

k

Nfe

γc, ∀f, c, k (7f)

Equation 7a defines the transition time from product i to product p at slot

k. It should be remarked that the term ttpi stands only for an estimate of the

expected transition times. Because such transition times depend upon process

dynamic behavior, they will be computed as part of the scheduling and control

formulation. Good estimates of the transition times can be obtained from open-

loop dynamic optimization runs between all pairs of products. If this terms

happens to be difficult to evaluate, or the number of combinations of product

schedules turns out to be large, ttpi values could be set as 4 times the reactor

open-loop residence time. In any case, transition times are obtained iteratively.

First, one needs to guess transition time values (ttpi), solve the MIDO problem
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and check if the computed transition time values (θt
k) are long enough to allow

safe and smooth grade transition dynamic behavior. Frequently, large dynamic

variations in the states and manipulated variables behavior are an indication

that by increasing the guessed ttpi values, better and smoother dynamic grade

transition behavior could be obtained. Normally, in a few number of iterations,

one can easily obtain acceptable grade transition dynamic behavior. Equation

7b sets to zero the time at the beginning of the production wheel cycle corre-

sponding to the first slot. Equation 7c is used for computing the time at the

end of each slot as the sum of the slot start time plus the processing time and

the transition time. Equation 7d states that the start time at all the slots,

different than the first one, is just the end time of the previous slot. Equation

7e is used to force that the end time at each slot be less than the production

wheel cyclic time. Finally, Equation 7f is used to obtain the time value inside

each finite element and for each internal collocation point.

2. Dynamic Optimization part.

To address the optimal control part, the so-called simultaneous approach [2] for

solving dynamic optimization problems was used. In this approach the dynamic

mathematical model representing system behavior is discretized using the method

of orthogonal collocation on finite elements [15],[16]. According to this procedure, a

given slot k is divided into a number of finite elements. Within each finite element

an adequate number of internal collocation points is selected as depicted in Figure

2. Using several finite elements is useful to represent dynamic profiles with non-

smooth variations. Thereby, the set of ordinary differential equations comprising

the system model, is approximated at each collocation point leading to a set of

nonlinear equations that must be satisfied.
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Finite Element

Slot k

Points
Collocation

Figure 2: Simultaneous discretization approach for dealing with dynamic optimization
problems. Each slot k is divided into Nfe finite elements. Within each finite element f a
set of Ncp collocation points c is selected.

a) Dynamic mathematical model discretization

xn
fck = xn

o,fk + θt
khfk

Ncp∑

l=1

Ωlcẋ
n
flk, ∀n, f, c, k (8)

The constraints given by Equations 8 are used to compute the value of the

system states at each one of the discretized points (xn
fck) by using the monomial

basis representation. xn
o,fk is the n-th system state at the beginning of each

element, Ωlc is the collocation matrix and ẋn
fck is the first order derivative of the

n-th state. Notice that when working with the first element xn
o,1k represents

the specified initial value of the n-th state. Also notice that in the present

formulation the length of all finite elements is the same and computed as

hfk =
1

Nfe

(9)

b) Continuity constraint between finite elements

xn
o,fk = xn

o,f−1,k + θt
khf−1,k

Ncp∑

l=1

Ωl,Ncpẋ
n
f−1,l,k, ∀n, f > 2, k (10)

In the simultaneous approach for dynamic optimization problems, only the

states must be continuous when crossing from one given finite element to the

next one; algebraic and manipulated variables are allowed to exhibit discon-

tinuity behavior between adjacent finite elements. That is the reason why

continuity constraints are not formulated for algebraic and manipulated vari-
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ables. We use Equations 10 to force continuous state profiles on all the elements

at the beginning of each element (xn
o,fk) and they are computed in terms of the

same monomial basis used before for defining the value of the system states.

c) Model behavior at each collocation point

ẋn
fck = fn(x1

fck, . . . , x
n
fck, u

1
fck, . . . u

m
fck), ∀n, f, c, k (11)

Equations 11 are used for computing the value of the first order derivatives of

the systems at finite element f of collocation point c in slot k. Those equations

simply represent the right hand sides of the dynamic model. Because our

scheduling and control formulation is system independent, we have used the

notation fn to represent the right hand side of the n-th ordinary differential

equation describing any desired dynamic system.
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d) Initial and final controlled and manipulated variable values at each slot

xn
in,k =

Np∑
i=1

xn
ss,iyi,k, ∀n, k (12)

x̄n
k =

Np∑
i=1

xn
ss,iyi,k+1, ∀n, k 6= Ns (13)

x̄n
k =

Np∑
i=1

xn
ss,iyi,1, ∀n, k = Ns (14)

um
in,k =

Np∑
i=1

um
ss,iyi,k, ∀m, k (15)

ūm
k =

Np∑
i=1

um
ss,iyi,k+1, ∀m, k 6= Ns − 1 (16)

ūm
k =

Np∑
i=1

um
ss,iyi,1, ∀m, k = Ns (17)

xn
Nfe,Ncp,k = x̄n

k , ∀n, k (18)

um
1,1,k = um

in,k, ∀m, k (19)

um
Nfe,Ncp,k = ūm

in,k, ∀m, k (20)

xn
o,1,k = xn

in,k, ∀n, k (21)

Equations 12 define the values of the state variables at the beginning of each

slot k (xn
in,k). The desired value of each state at the end of the same slot k (x̄n

k)

is computed in Equations 13-14. It should be stressed that the state values at

the beginning and end of each slot k are given by the corresponding steady-

state values (xn
ss,i) calculated a priori. xn

ss,i simply stands for the steady-state

value of the manufacturing product i. They can be easily obtained from open-

loop steady-state simulation of the processing system. Similarly, Equations

15-17 define the values of the manipulated variables at the beginning of each

slot k (um
in,k) and at the end of the slot k (ūm

k ). Equations 18 enforce the system

states to take the desired state values at each slot k. A similar situation occurs

with the values of the manipulated variables. Equations 19 fix the values at
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the first finite element and first collocation point of each slot k (um
1,1,k) as the

value that such variable takes at the beginning of the same slot k. Equations

20 determine the values of the manipulated variables at the last finite element

and last collocation point of slot k (um
Nfe,Ncp,k) as the desired steady-state value

of the same variable at slot k (ūm
k ). Finally, Equations 21 determine the values

of the system states at the beginning of each slot (xn
o,1,k).

e) Lower and upper bounds on the decision variables

xn
min 6 xn

fck 6 xn
max, ∀n, f, c, k (22a)

um
min 6 um

fck 6 um
max, ∀m, f, c, k (22b)

Equations 22a-22b simply constrain the values of both the system states and

manipulated variables to lie within acceptable lower and upper bounds.

4 Case Studies

In order to test the proposed simultaneous scheduling and control formulation three case

studies, with different number of products and different degrees of nonlinear behavior

embedded in the model, were addressed. In all the cases, CSTRs were used to manu-

facture the desired products. The case studies range from CSTRs featuring quasi-linear

behavior to CSTRs with input multiplicities (second case study) and output multiplicities

(third case study). In all the cases with nonlinear behavior the operating conditions were

chosen around nonlinear behavior regions. We did so because most chemical processes

featuring optimality conditions tend to exhibit regions of highly nonlinear behavior [17]

and to have an exact idea about the complexities of solving MIDO problems with embed-

ded nonlinearities. Hopefully, this will allow us to identify research areas where MIDO

formulations/algorithms require improvements.
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Product Q CR Demand Product Inventory
[lt/hr] [mol/lt] rate [Kg/h] cost [$/kg] cost [$]

A 10 0.0967 3 200 1
B 100 0.2 8 150 1.5
C 400 0.3032 10 130 1.8
D 1000 0.393 10 125 2
E 2500 0.5 10 120 1.7

Table 1: Process data for the first case study. A,B, C, D and E stand for the five products
to be manufactured.

4.1 CSTR with a simple irreversible reaction

The following reaction,

R
k→ P, −RR = kC3

R

takes place in an isothermal CSTR for manufacturing 5 products A,B, C, D, E. The

dynamic composition model is given by,

dCR

dt
=

Q

V
(Co − CR) +RR (23)

where Q is the control variable for the dynamic transition in the production of one product

to another. Using the following values of the design and kinetic parameters: Co = 1 mol/lt,

V = 5000 lt, k = 2 lt2/(mol2-h), and the five values of the volumetric flowrate Q shown in

Table 1, the concentration five steady-states CR, shown in the same table, are obtained.

This table also contains information regarding the demand rate, products and inventory

costs that are involved.

Solving the MIDO scheduling and control problem using GAMS/DICOPT, the op-

timizer selects the cyclic A → E → D → C → B production wheel as the one which

maximizes the profit. The objective function value turned out to be $ 7889, while the

total cycle time with the the sequence A → E → D → C → B was 124.8 h. Additional

information concerning processing times at each slot, production rates, total amounts of

each product, transition times and initial and ending times at each slot are shown in Table

2. Regarding the dynamic behavior of the reactor during product transitions, Figure 3
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Slot Product Process time Production rate w Transition Time T start T end
[h] [Kg/h] [Kg] [h] [h] [h]

1 A 41.5 9.033 374.31 5 0 46.4
2 E 23.3 1250 29162.3 5 46.4 74.7
3 D 2.06 607 1247.7 5 74.7 81.8
4 C 4.48 278.72 1247.7 5 81.8 91.2
5 B 12.48 80 998.2 21 91.2 124.7

Table 2: Simultaneous scheduling and control results for the first case study. The objective
function value is $ 7889 and 124.8 h of total cycle time.

displays the dynamic profiles of both the manipulated variable (Q) and the controlled

variable (CR).

Looking at the results shown in Table 3, it turns out that the SSC formulation decided

first to manufacture product A because it is the most valuable product. In fact, the

process time allocated for this product is also the larger one. However, the total amount

manufactured of product A (w) is not the larger one because the feed stream volumetric

flow rate is the lowest one. We should remember that this is so because product A has the

higher conversion degree but it requires longer residence times to produce high conversion

products. Because we assume constant reactor volume, the only way to get high residence

times is allowing Q to be small giving rise to low production levels. After completing the

manufacture of product A, the optimizer decided to carry out a transition to product E,

the less valuable product (later we will discuss that process dynamics, instead of process

economics, dictates this transition). However, because for manufacturing product E a

small residence time is required, we can use larger feed stream volumetric flow rates

getting higher production rates but, of course, of a product stream which still contains a

significant portion of reactant. In fact, product E is manufactured in the largest amount

using the second largest process time. Starting from product E the optimizer moves always

towards more valuable products (D,C,B) of increasing reactant conversion. However,

because residence times tend to increase along the production sequence, the feed stream

volumetric flow rate decreases and so does the total amount manufactured of each one of

these products and the production rate.
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Figure 3: Optimal dynamic profiles for the volumetric flow rate and reactor concentration
during product transition for the first case study.
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To understand why the optimizer selected the cyclic A → E → D → C → B pro-

duction sequence as the optimal one, we analyze the process dynamic behavior. If we

obtain the transfer function, around each one of the process steady-states shown in Table

2, using CR and Q as the controlled and manipulated variables, respectively

G(s) =
b

s + a
(24)

where

b =
1

V
(Co − CR) (25)

a = 3kC2
R (26)

hence, from a process dynamics point of view, the process looks well behaved since it

will be always stable, minimum-phase and, because it is a first order system, it will never

display oscillatory behavior. For products (A,B, C, D, E) the open loop poles and time

constants are (0.0561,0.24,0.5116,0.9267,1.5) and (111.98,26.18,11.4,6.7,4.2), respectively.

It is a well known fact that state transitions from small to large poles are faster than in

the opposite direction because as the poles are located away from the imaginary axis, the

system response speeds up. For open-loop system a state transition from a small to a

large pole will take a longer time because the system dynamics turns out to be sluggish

as the system poles are located closer to the imaginary axis. Using these ideas it now

becomes clear why the optimizer picked up the cyclic A → E → D → C → B production

sequence. At the beginning the optimizer selected product A simply because it is the

most valuable one. Then, it decided to switch to product E because the transition time

from product A to prodict E is relatively small. From here, the quickest transitions are

to product D, then to product C and finally to product B. In table 2 we see that for

all those product transitions, the transitions times are always 5 h. At the end of the

production wheel the system must start again a new production wheel which implies a

transition B → A between the first and second production wheels. In terms of process
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dynamics, the transition times between two given open-loop stable products P1 and P2,

with |λ(P2)| > |λ(P1)| (where λ stands for the eigenvalue of a given product), will tend to

decrease as |λ(P2)| → |λ(P1)|. Therefore, if we are interested in minimizing the transition

time of the production sequence, then we should select products featuring open-loop poles

as close as possible. This explains why, starting from product E, the optimizer decides

to pick product D instead of product B.

It is interesting to compare the optimal MIDO solution against the second and third

best cyclic solutions. The second best solution is in fact a slight variation of the previous

one. In this case the optimizer selects the cyclic A → D → E → C → B processing

sequence. To learn the reasons why the first production sequence turns out to be better

than the second one, we have partitioned the objective function in three terms: φ1 dealing

with the product profits, φ2 which deals with the inventory costs and φ3 dealing with the

transition costs and defined as follows,

φ1 =

Np∑
i=1

Cp
i Wi

Tc

(27)

φ2 =

Np∑
i=1

Cs
i (Gi −Wi)

2ΘiTc

(28)

φ3 =
Ns∑

k=1

Nfe∑

f=1

hfk

Ncp∑
c=1

CrtfckΩc,Ncp

Tc

((x1
fck − x̄1

k)
2 + . . . +

(xn
fck − x̄n

k)2 + (u1
fck − ū1

k)
2 + . . . + (um

fck − ūm
k )2) (29)

hence, the [φ1, φs, φ3] values are [32397, 23262, 1247] and [32463, 23330, 1234] for the first

and second solutions, respectively (see Table 3 for information regarding optimal values of

the additional decision variables). From this information, we see that both solutions have

similar φ1 and φ2 values. However, the difference between those solutions is the transition

cost: the second solution features a larger transition costs and this makes it suboptimal

compared to the first one. Dynamic grade transitions for this production sequence are

depicted in Figure 4. As can be seen, the dynamic grade transitions feature a shape that

resembles the results of the best MIDO solution.
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Slot Product Process time Production rate w Transition Time T start T end
[h] [Kg/h] [Kg] [h] [h] [h]

1 A 41.5 9.033 374.31 5 0 46.4
2 D 2.06 607 1249.4 5 46.4 53.6
3 E 23.4 1250 29270.4 5 53.6 82
4 C 4.48 278.72 1249.4 5 82 91.5
5 B 12.48 80 999.5 21 91.5 125

Table 3: Simultaneous scheduling and control results for the first case study, second best
solution. The objective function value is $ 7791 and 125 h of total cycle time.

Slot Product Process time Production rate w Transition Time T start T end
[h] [Kg/h] [Kg] [h] [h] [h]

1 B 12.7 80 1012.5 21 0 33.7
2 A 42.04 9.033 379.7 5 33.7 80.7
3 E 23.3 1250 29125.4 5 80.7 109
4 C 4.6 278.72 1265.6 5 109 118.6
5 D 2.09 607 1265.6 6 118.6 127

Table 4: Simultaneous scheduling and control results for the first case study, third best
solution. The objective function value is $ 6821.6 and 127 h of total cycle time.

Regarding the third best MIDO optimal solution, the optimizer selected the cyclic

B → A → E → C → D production sequence. Information about the decision variables

of this solution can be found in Table 4. As we can see, the third optimal solution

has a larger objective function value decrease compared to the second one. Analyzing

the [φ1, φ2, φ3] = [31967, 23352, 1794] values we notice that the third solution features a

decrease in φ1 (the profit associated to product manufacture is smaller) and in increase in

φ3 (larger transition cost). This cost combination makes this production sequence worst

than the first and second ones. Even thought the shape of the dynamic transitions looks

also similar to the ones of first and second cases as depicted in Figure 5.
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Figure 4: Optimal dynamic profiles for the volumetric flow rate and reactor concentration
during product transition for the first case study, second best solution.
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Figure 5: Optimal dynamic profiles for the volumetric flow rate and reactor concentration
during product transition for the first case study, third best solution.
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4.2 CSTR with simultaneous reactions and input multiplicities

The following set of reactions

2R1
k1−→ A

R1 + R2
k2−→ B

R1 + R3
k3−→ C

is carried out in a continuous and isothermal stirred tank reactor displayed in Figure 6.

Products A,B and C are manufactured using different values of the feed stream volumetric

flow rates of the reactants R1, R2, R3.

C

R
R
R

1

2

3

A
B

Figure 6: CSTR flowsheet for the second case study. Products (A,B,C) are manufactured
using different combinations of the reactants (R1, R2, R3).

The dynamic mathematical model of the above system is as follows.

dCR1

dt
=

(QR1C
i
R1
−QCR1)

V
+Rr1 (30)

dCR2

dt
=

(QR2C
i
R2
−QCR2)

V
+Rr2 (31)

dCR3

dt
=

(QR3C
i
R3
−QCR3)

V
+Rr3 (32)

dCA

dt
=

Q(Ci
A − CA)

V
+RA (33)

dCB

dt
=

Q(Ci
B − CB)

V
+RB (34)

dCC

dt
=

Q(Ci
C − CC)

V
+RC (35)
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Parameter Value Units
Ci

R1
1 mol/l

Ci
R2

0.8 mol/l
Ci

R3
1 mol/l

C i
A 0 mol/l

Ci
B 0 mol/l

Ci
C 0 mol/l

V 6000 l
k1 0.1 l/(min-mol)
k2 0.9 l/(min-mol)
k3 1.5 l/(min-mol)

Table 5: Steady-state design and kinetic information for the second case study.

where the kinetic expressions follow simple mass action law kinetics,

RA = k1C
2
R1

(36)

RB = k2CR1CR2 (37)

RC = k3CR1CR3 (38)

Rr1 = −RA −RB −RC (39)

Rr2 = −RB (40)

Rr3 = −RC (41)

and

Q = QR1 + QR2 + QR3 (42)

where QR1 , QR2 and QR3 are the feed stream volumetric flow rates of reactants R1, R2 and

R3, respectively. Ci is the reactant concentration, C is the product concentration, V is the

reactor volume and k is the kinetic rate constant. Q is the total feed stream volumetricflow

rate. The design and kinetic parameters are shown in Table 5. The operating conditions

leading to manufacture each one of the A,B and C products are shown in Table 6; also

shown are the steady-state information concerning each product. From the information

contained in this table, we see that the residence time of product A is larger than the

corresponding ones of products B and C. In fact product A features a residence time
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Product QR1 QR2 QR3 CR1 CR2 CR3 CA CB CC

A 100 0 0 0.333 0 0 0.666 0 0
B 100 100 0 0.1335 0.0869 0 0.0534 0.3131 0
C 100 0 100 0.0837 0 0.1048 0.021 0 0.3951

Table 6: Processing conditions leading to the manufacture of the A,B and C products of
the second case study.

Product Demand Product Inventory
[Kg/h] cost [$/kg] cost [$]

A 5 500 1
B 10 400 1.5
C 15 600 1.8

Table 7: Demand rate and product and inventory costs for the second case study reaction
system.

value that is exactly the double of products B and C residence times. This indicates that

transition from any product to product A will be slower that from product A to any other

product. This observation will be verified later by computing the open-loop poles of each

product.

In reaction systems featuring intermediate products, as the problem at hand, there is

the risk of input multiplicities. Such kind of nonlinear behavior creates a situation where

the same state value is obtained for two different values of the manipulated variable. From

a closed-loop control point this behavior is undesirable since, under certain conditions, it

has been related to the presence of right-hand plane zeros [18], which limit the response

speed of the closed-loop system. The emergence of right-hand plane zeros makes the use

of PID controllers impractical because of slope sign changes [19]. Until now the only way

of dealing with input multiplicities has been to use a controller able to deal with those

systems or by system redesign. In our case, for the operating and processing conditions

shown Tables 5 and 6, the reaction system displays input multiplicities as shown in Figure

7. Input multiplicities were only found for the B and C products; monotonic behavior

was always observed for the A product.

Information regarding the demand rate, inventory and product costs is shown in Table
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Figure 7: Input multiplicities in the second case study. (a) and (b) refer to product B
using Qo

R1
and Qo

R2
as continuation parameters, respectively. Similarly, (c) and (d) refer

to product C using Qo
R1

and Qo
R3

as continuation parameters, respectively, while Cb and
Cc stand for composition of products B and C, respectively.

Slot Product Process time Production rate w Transition Time T start T end
[m] [Kg/m] [Kg] [m] [m] [m]

1 C 204.2 89.52 18273.3 15 0 219.2
2 B 44.5 71.31 3174.4 15 219.2 278.7
3 A 23.8 66.7 1587.2 15 278.7 317.5

Table 8: Simultaneous scheduling and control results for the second case study. The
objective function value is $ 32388 and 317.5 of total cycle time.
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Pole Product
A B C

1 -0.0167 -0.0333 -0.0333
2 -0.0167 -0.0333 -0.0333
3 -0.0167 -0.0333 -0.0333
4 -0.0833 -0.0486 -0.3258
5 -0.5167 -0.2431 -0.0405
6 -0.3167 -0.2335 -0.1087

Table 9: Open-loop poles for products A, B and C of the second case study.

7, while simultaneous optimal scheduling and control results are shown in Table 8. As

shown there, the optimizer selected the cyclic C → B → A production sequence. Figure

8 depicts the optimal state transitions for this production sequence. From information

contained in Table 8, it is clear that the optimizer selects first to produce as much as

possible of product C because it is the most valuable product. Next, the optimizer

decides to switch to manufacture product B because transition time from product C to

product B is shorter than to product A. The points raised about the speed of response

between products can be explained by looking at the open-loop poles of each one product

shown in Table 9. From this table it is interesting to note that products B and C share

the same poles and therefore they feature the same time constant. The dominant pole of

product A is located closer to the imaginary axis, an indication that it has a larger time

constant and a slower speed of response. This partially helps to explain the reason why

the optimizer selected the cyclic C → B → A production sequence as the optimal one.
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Figure 8: Optimal schedule and dynamic profiles for reactor concentrations and volumetric
feed flow rates for the second example.
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Similarly to the first case of study, we tried to identify a second best optimal production

sequence solution. After some trials, the optimizer selected the cyclic A → C → B

production sequence as another optimal one. The first and second solutions feature the

same objective function value, production times, process rates, etc as shown in Table 8

for the first production sequence, being the sequence in which products are manufactured

the only difference between both production sequences. The reason why both production

sequences feature the same values of the decision variables is due to the fact that the

production sequence is cyclic and the time horizon is infinite. Another reason has to do

with the fact that , for the processing conditions shown in Tables 5 and 6, the transition

costs turn out to be small. This means that the resulting production sequence will be

almost independent of the transition dynamics and it will be most influenced by the cost

of the products and inventories. Anyway, it is interesting to remark that also in this case

the optimizer always select first the product transitions that feature easy to carry out

product transitions, leaving at the end the transition from the farthest to the closest to

the imaginary axis pole. Figure 9 depicts the dynamic optimal transition trajectories for

the second optimal production sequence. Analogously to the steady-state optimal results,

the dynamic optimal transition trajectories of the second and first solutions are the same.
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Figure 9: Optimal schedule and dynamic profiles for reactor concentrations and volumetric
feed flow rates for the second example, second solution.
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4.3 CSTR with output multiplicities

In order to compute dynamic optimal transition trajectories around highly nonlinear

regions, the CSTR model as proposed by Hicks and Ray [20] was used. Because the

original parameters set used by these authors did not lead to multiple steady-states, some

of the values were modified in order to end-up with a multiplicity map. In dimensionless

form the model is given by:

dy1

dt
=

1− y1

θ
− k10e

−N/y2y1 (43)

dy2

dt
=

yf − y2

θ
+ k10e

−N/y2y1 − αu(y2 − yc) (44)

where y1 stands for dimensionless concentration (c/cf ), y2 is the dimensionless tempera-

ture (T/Jcf ), yc is the dimensionless coolant temperature (Tc/Jcf ), yf is the dimensionless

feed temperature (Tf/Jcf ), and u is the cooling flowrate. Table 10 contains the numerical

values of the parameters used in this work; this set of parameter values lead to operate

around the multiplicity region shown in Figure 10.

Table 10: Parameters values for the third case study featuring output nonlineaties.

θ 20 Residence time Tf 300 Feed temperature
J 100 (−∆H)/(ρCp) k10 300 Preexponential factor
cf 7.6 Feed concentration Tc 290 Coolant temperature
α 1.95x10−4 Dimensionless heat transfer area N 5 E1/(RJcf )

Our goal is to manufacture four products denoted as A,B,C and D. Operating condi-

Product Demand Product Inventory
[Kg/h] cost [$/kg] cost [$]

A 100 100 1
B 200 50 1.3
C 400 30 1.4
D 500 80 1.1

Table 11: Process data for the third case study. A,B, C and D stand for the four prod-
ucts to be manufactured. Information about the steady-state design for each one of the
products is shown in Figure 10.
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Figure 10: Multiplicity map (— stable solution, −− unstable solution).

tions are also displayed in Figure 10. Note that the A and B products are manufactured

around open-loop stable steady-states. The C operating point is located at the point

where a stability interchange, together with a Hopf bifurcation point, takes place. Fi-

nally, the D product is manufactured around a completely unstable open-loop operating

region. In all the cases the manipulated variable is the cooling flow rate u. One of the

aims of this case study is to demonstrate that, even in the face of highly non-linear oper-

ating regions and open-loop unstable systems, our proposed simultaneous scheduling and

control formulation is able to perform satisfactorily and to determine an optimal schedul-

ing and control solution. Information regarding the production rate , demand rate and

inventory costs is shown in Table 11.

In this case, the A → B → C → D scheduling turned out to be the optimal cyclic
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Slot Product Process time Production rate w Transition Time T start T end
[h] [Kg/h] [Kg] [h] [h] [h]

1 A 28.3 559.9 15831.7 10 0 38.3
2 B 13.1 613.6 8044.9 10 38.3 61.4
3 C 13.4 656.1 8748.9 10 61.4 84.8
4 D 5.8 688.3 4022.5 10 84.8 100.6

Table 12: Simultaneous scheduling and control results for the third case study. The
objective function value is $ 7657 and 100.6 h of total cycle time.

production sequence. The profit is $ 7657 with a total cycle time of 100.6 hr. The rest

of the decision variables optimal values are shown in Table 12. It is again interesting to

notice that the optimizer decides first to manufacture as much as possible of the most

valuable product A. After that, the optimizer selected product transitions that are faster,

in the sense that the pole of each succesive product is closer to the imaginary exis (ex-

cept for product D). The open-loop poles of each product are shown in Table 13. It

should be remarked that, in this case study, we have two products (C,D) whose manufac-

ture demands to operate around open-loop unstable operating points. The computation

of open-loop dynamic optimal trajectories for open-loop unstable systems is difficult to

carry out using dynamic optimization strategies based upon the so-called sequential ap-

proach [21]. On the other hand, the simultaneous approach [22] efficiently and naturally

deals with this type of problems without using tricks such closed-loop stabilization of

the originally unstable system and then running the dynamic optimization problem. In

a previous work [22] we have provided some theoretical explainations why the simulta-

neous approach copes with open-loop unstable systems. Not surprisingly the minimum

transition time, independently of the type of transition, is 10 hr. This results is in agree-

ment with previous calculations related to the open-loop dynamic optimization of the

same reaction system [23]. Another point to stress is that our SSC formulation is able

to cope with product transitions between highly nonlinear regions. As a matter of fact,

the B → C transitions involves transition from a open-loop stable to an unstable system

through a Hopf bifurcation point where oscillatory behavior emerges.

From the open-loop poles shown in Table 13, we should expect to have oscillatory
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Pole Product
A B C D

1 -0.1352 + 0.1566i -0.0430 + 0.1548i 0.0164 + 0.1147i 0.0524 + 0.0440i
2 -0.1352 - 0.1566i -0.0430 - 0.1548i 0.0164 - 0.1147i 0.0524 - 0.0440i

Table 13: Open-loop poles for products A,B, C and D of the third case study.

Slot Product Process time Production rate w Transition Time T start T end
[h] [Kg/h] [Kg] [h] [h] [h]

1 D 6.07 559.9 4176.7 10 0 16.07
2 A 28.9 613.6 16177.2 10 16.07 55
3 C 13.9 656.1 9084.3 12 55 80.8
4 B 13.7 688.3 8353.4 10 80.8 104.4

Table 14: Simultaneous scheduling and control results for the third case study, second
solution. The objective function value is $ 6070.6 and 104.4 h of total cycle time.

response for product transitions because most of the poles have nonzero imaginary part.

Product transitions ending at product D should feature the weakest oscillatory behavior

because its imaginary part is rather small. These observations are supported looking at the

dynamic profiles of both the manipulated and controlled variables as depicted in Figure

11. Moreover, we would like to highlight the fact that the nonlinear nature of the product

transitions addressed in this case study can also be appreciated in the dynamic behavior of

the manipulated variable u. In the previous two case studies, the manipulated variable(s)

always featured a simple step-like form mainly due to the presence of mild nonlinearities

embedded into the system. However, in the present case study the dynamic optimal shape

of the manipulated variable is not obvious. This is particularly true for the B → C and

for the C → D product transitions that are placed deeper into the unstable region.

For comparison purposes of the present solution, we found a second suboptimal so-

lution featuring the cyclic D → A → C → B production sequence. In this case, the

objective function value was 6070.6 and 104.4 of total cyclic time. The rest of the opti-

mal values of the decision variables are shown in Table 14. This solution is suboptimal

because the optimizer decided first to manufacture product D and from there to carry

out the product transition for starting the manufacture of product A. This product tran-
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Figure 11: Optimal schedule and dynamic profiles for the third case study.
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sition turns out to be more expensive because it is hard to perform since it involves the

widest variation in the open-loop pole location. From there, the optimizer keeps making

product transitions that are not the best ones in terms of the transition costs. From

product A the optimizer selects to carry out a transition towards product C and from

here to product B. Those product transitions are definitely not the best ones in terms of

transition costs. To support the past statements, we computed the φ1, φ2 and φ3 terms,

as defined in Equations 27-29, of the objective function of the present case study. For

the first optimal solution these values turn out to be [φ1, φ2, φ3]=[25553.2, 17633.8, 263],

while for the second suboptimal solution those values are [25303, 18252,981], in the same

order. From this comparison, we can see that the profit associated with product manufac-

ture and inventory costs are similar for both production sequences. The main difference

lies in the transition costs. This explains why the cyclic D → A → C → B production

sequence is a suboptimal solution. The dynamic profiles of both systems states and the

manipulated variable are depicted in Figure 12. Again, the nonlinear behavior embedded

into the present system can be seen in the shape of the manipulated variable between

product transitions.

5 Conclusions

In this work we addressed the simultaneous cyclic scheduling and control problem for sev-

eral multiproduct CSTRs. Rather than assuming constant transition times and neglecting

process dynamics, a mathematical model, able to describe dynamic process behavior dur-

ing product transition, was embedded into the optimization formulation. Solving the

scheduling and control problem taking into account process dynamics is the rigorous way

to address scheduling problems. There is always a risk of getting suboptimal solutions

when process dynamics are neglected.

Because highly optimized chemical processes tend to operate around nonlinear oper-

ating regions, we selected as case studies three problems involving reaction systems, two

of which display highly nonlinear behavior in the form of input and output multiplicities,
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Hopf bifurcation points and open-loop unstable operating regions. Even in face of non-

linear behavior, the proposed simultaneous cyclic scheduling and control formulation was

able to find optimal production sequences. However, it was observed that convergence

towards the optimal solution turned out to be harder to achieve as the nonlinearity of the

system increased. Moreover, the presence of nonlinearities creates nonconvexities in the

optimization formulation probably leading to obtain suboptimal solutions.

From the results obtained in this work, we think that when dealing with larger di-

mension systems featuring stronger nonlinear behavior, MIDO formulations, like the one

presented, need to be improved to cope with such complex dynamic systems. In our opin-

ion, presently the direct solution of MIDO problems for systems with the above mentioned

characteristics does not look feasible and it might require excessive CPU time. Therefore,

a decomposition strategy that exploits the natural structure of scheduling and control

MIDO problems, need to be developed. Other interesting extensions of the present work

consists of the case when several reactors operate in parallel [24] and in the simultaneous

optimization of planning, scheduling and control [25], [26].
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Figure 12: Optimal schedule and dynamic profiles for the third case study, second best
solution.
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