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Abstract 

Tactical planning models for the Fast Moving Consumer Goods (FMCG) industry can quickly become 

intractable due to the extremely large number of Stock Keeping Units (SKUs). We propose an SKU 

decomposition algorithm that is aimed at being able to solve cases containing thousands of SKUs. The 

full tactical planning model is decomposed into a set of single SKU models. These models are then 

solved sequentially. The capacity used by other SKUs is removed from the available capacity and, at a 

certain penalty cost, a violation of the capacity is initially allowed. By slowly increasing the penalty 

cost, the capacity violations are decreased until a feasible solution is obtained. Using the algorithm it 

was possible to obtain solutions within a few percent of optimality for example cases containing 10 and 

25 SKUs. It was also possible to solve a larger 100 SKU case for which the full space model was 

intractable. The main advantage of the algorithm is that the required CPU time scales approximately 

linearly with the number of SKUs. 
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Customers of Fast Moving Consumer Goods (FMCG) 

companies desire a large variety of products (Bilgen and 

Günther, 2010). Therefore, FMCG companies produce a 

wide range of products, differing both in composition and 

in packaging. Even within a single product category, such 

as ice cream, there can be as many as a few thousand 

different SKUs. Developing a tactical planning model for a 

FMCG company can be challenging due to this large 

product variety.  

The seasonality of the products and ingredients is 

another important challenge for a FMCG company. For 

example, the ice cream demand is far higher during 

summer than during winter. As a result, weekly time 

periods over a one year horizon are required in a tactical 

planning model to properly represent this seasonality. In 

addition, a tactical planning model should cover the 

complete supply chain to be able to consider all trade-offs. 

A schematic overview of a typical FMCG supply chain is 

given in Figure 1. 

In the FMCG industry, products are often produced in 

make-and-pack production (Bilgen and Günther, 2010). In 

such a production environment, products are processed  



 

   

 

Figure 1. Schematic overview of the supply chain.

in a first stage and subsequently packed in a second stage 

in the same factory. Most factories contain different types 

of processing and packing lines that can each only process 

a subset of all SKUs. 

Because of the large number of products, time periods 

and facilities in the supply chain, an MILP model for the 

tactical planning of a FMCG company would most likely 

be prohibitively large. This problem is not unique to 

FMCG companies. The tactical planning models for other 

industries tend to become large as well. One approach that 

is often used to decrease the model size is to aggregate 

products into product families. For example, Omar and 

Teo (2007) developed a tactical planning model using 

aggregated product families for a chemical multiproduct 

batch plant. Usually, these product families consist of 

products that can be produced on the same equipment. In 

addition, the changeover times between products of the 

same family are reasonably small. Therefore, the capacity 

required to produce the individual products can be 

estimated fairly well based on the aggregated amount. 

However, for the tactical planning of FMCG 

companies this aggregation of products into families is not 

straightforward. While products that are produced on the 

same type of processing and packing lines can be grouped 

into a family, these products may require completely 

different ingredients. Consequently, while the required 

capacity could be estimated accurately, it would not be 

possible to consider the suppliers when using aggregated 

product families. However, these suppliers clearly play an 

important role in determining the optimal product 

allocation.  

Decomposition methods are another commonly used 

approach to solve large problem instances. Decomposition 

methods are based on reducing the model size by dividing 

the model into several smaller submodels. Sousa et al. 

(2011) and Terrazas et al. (2011) give a review of 

decomposition methods used in literature. Many of the 

decompositions they discuss are spatial or temporal 

decompositions. The submodels in a spatial decomposition 

can either relate to different echelons of the supply chain 

or to different physical locations within an echelon. Spatial 

decomposition is unsuitable for our tactical planning model 

since each of these submodels would still be very large as 

they would contain thousands of SKUs over 52 periods.  

In temporal decomposition, the problem is 

decomposed into several independent submodels for each 

time period. Even though this would significantly reduce 

the size of our tactical planning model, the seasonality of 

the products and ingredients make temporal decomposition 

an unsuitable approach.  

Castro et al. (2009) developed an order decomposition 

approach for a scheduling problem. Instead of trying to 

solve the often intractable full scale scheduling problem, 

they optimized the schedule for a subset of orders at a 

time. During each optimization, the allocation decisions of 

all previous orders are fixed. The timing and possibly the 

ordering decisions of the other orders can still be changed 

in their approach.  

  We have developed a method based on decomposing 

the problem into single SKU models. In each of these SKU 

models the decisions of all other SKUs are completely 

fixed. In the remainder of this paper, we will first give a 

problem description, then describe the tactical planning 

MILP model, subsequently explain the SKU 

decomposition method used to increase the tractability of 

this model and finally discuss the results.  

Problem Description 

The tactical planning problem for the FMCG industry 

addressed in this paper can be stated as follows. Given is a 

set of SKUs that have to be produced and distributed in a 

supply chain network over a one year horizon that is 

divided into weekly periods. This supply chain network 

consists of suppliers, factories, warehouses, distribution 

centers and retailers, whose locations are all fixed. 

The availability and procurement costs of all 

ingredients at all suppliers are given for every period. The 



  

ingredient unit transportation costs for every supplier-

factory combination are also known. The ingredient 

inventory costs and the maximum ingredient inventory 

capacity at all factories are given as well. The ingredient 

consumption is linked to the production using given 

production recipes. For each factory, the aggregated 

available production time per week is given per type of 

processing and packing line. The processing and packing 

rates of all SKUs are also known.  An SKU must be 

processed and packed in the same factory in the same 

period. An average changeover time and cost are given for 

each SKU.  

The SKU unit transportation costs for all factory-

warehouse, warehouse-distribution center and distribution 

center-retailer combinations are known. In addition, the 

initial SKU inventory, desired SKU safety stock, safety 

stock penalty, unit inventory cost and maximum total 

storage capacity are given for all warehouses and 

distribution centers. It is assumed that no stock is kept at 

the retailers, that the amount sent to a retailer may not 

exceed the demand and that demand can only be met in the 

period in which it occurs. The demand is given per retailer 

per SKU per week and the penalty cost for missed sales is 

given as well. Given this problem, the objective is to find a 

procurement, production and distribution plan that 

minimizes the total costs.  

Model 

This problem can be described by the MILP model 

that will be explained in this section. The objective of the 

model is to minimize the total costs. The total costs 

contain the procurement cost, transportation cost, 

changeover cost, storage cost, safety stock penalty cost 

and missed sales penalty cost.  

 The total amount of an ingredient transported from a 

supplier to all factories is restricted by the maximum 

available in each time period. The total amount of all 

ingredients stored at a factory may not exceed the total 

storage capacity. The total ingredient amount stored at a 

factory is equal to the amount stored in the previous period 

plus the amount received from all suppliers minus the 

ingredient consumption. The ingredient consumption at a 

factory is determined based on the recipes and the amount 

of each SKU produced at this factory. 

The total amount of all SKUs that can be produced in 

a factory is limited by the available processing and 

packing time per type of SKU. An average changeover 

time is subtracted from the available packing time for 

every SKU that is assigned to a factory in each period. The 

assignment of SKUs to factories and periods is modeled 

by binary variables and no production is allowed if an 

SKU is not assigned.  

The total amount of an SKU transported in a period 

from a factory to all warehouses must be equal to the total 

amount produced in this factory in this period. The total 

amount of all SKUs stored at a warehouse or distribution 

center may not exceed the inventory capacity. A unit 

penalty cost is incurred if the inventory of an SKU at a 

warehouse or distribution center is lower than the safety 

stock. The total amount of an SKU stored at a warehouse 

is equal to the amount stored in the previous period plus 

the amount received from all factories minus the amount 

sent to all distribution centers. The total amount of an 

SKU stored at a distribution center is equal to the amount 

stored in the previous period plus the amount received 

from all distribution centers minus the amount sent to all 

retailers. The total amount of an SKU sent to each retailer 

in each period may not exceed the demand. If the demand 

is not fully met, a missed sales penalty cost is incurred.  

Algorithm 

For realistic cases, containing thousands of SKUs and 

52 time periods, this model would become extremely 

large. It would be in the order of tens of millions of 

continuous variables and hundreds of thousands binary 

variables. Therefore, we propose the following 

decomposition method based on single SKU models. 

These SKU models are the same as the full space model 

described above. However, the domain of all constraints 

and variables only includes a single SKU. These SKU 

models are solved sequentially for all SKUs. 

If these SKU models are solved separately, they 

would not consider the capacity required by the other 

SKUs and we would obtain infeasible solutions. Therefore, 

in each model we consider the capacity required by the 

other SKUs by adding a parameter to all capacity 

constraints. For example, the storage capacity constraint in 

warehouses is given by the inequality: 
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where WHinvi,w,t is the amount of SKU i stored in 

warehouse w at the end of week t, WHinvPi’,w,t is a 

parameter representing the amount of the other SKUs 

stored in warehouse w at the end of week t, and WHcapw is 

the capacity of warehouse w. After optimizing the model 

for SKU i, the parameter WHinvPi,w,t is set equal to the 

variable WHinvi,w,t for this SKU.  

Even though this formulation yields feasible solutions, 

the quality of the solutions could be very poor. The reason 

is that the early SKUs could be produced anywhere 

without any real restrictions on the capacity, whereas the 

later SKUs could only be produced in those locations that 

have not been fully occupied by earlier SKUs. To account 

for the cost of moving SKUs to alternative locations or 

periods, we add a nonnegative slack variable to the 

capacity constraints: 
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With this slack variable β, we initially allow the total 

production to exceed the capacity. This ensures that the 



  
 

later SKUs will be produced in those locations and periods 

that are optimal for them, rather than in the only available 

locations. A positive slack variable indicates that the 

capacity is exceeded and it thus indicates infeasibility. We 

add these slack variables with a penalty cost to the 

objective function. We then start with a penalty cost of 

zero and find the optimal plan for unlimited capacity. Next 

we slowly increase the penalty cost to force SKUs to be 

produced or stored in different locations until all slack 

variables are zero and we find a feasible solution. 

Basically, we continue to increase the penalty cost and 

solve the model for the next SKU until a feasible solution 

is obtained. Each SKU model only updates the decisions 

of the current SKU while keeping all other decisions fixed. 

A summary of this SKU decomposition algorithm is 

given in Figure 2. Pen is the penalty cost applied to the 

objective function per unit that the capacity is exceeded, 

CO variables are the changeover variables, NSKU is the 

total number of SKUs and α is the fraction by which the 

penalty cost are increased after every optimization. The 

SKU decomposition algorithm requires the specification of 

an initial value of the penalty cost and the increase in 

penalty cost per optimization. These two parameters can 

be used to fine-tune the performance of the algorithm.  

 

Figure 2. SKU decomposition algorithm 

If the initial penalty cost is set to a relatively large 

number, a feasible solution will be found quickly because 

the penalty cost will soon be large enough to prevent any 

infeasible capacity allocation. However, this is also the 

reason why the solution quality could be poor. Already in 

the first iteration, the penalty cost will be high enough to 

prevent most over-allocation. Since the SKUs are 

optimized sequentially, the first few SKUs will be heavily 

reallocated to reduce the high penalty cost. On the other 

hand, the last few SKUs may hardly see any reallocation 

since the capacity might no longer be exceeded when these 

SKUs are optimized. Therefore, even though reallocating 

part of the later SKUs may be less expensive, the high 

initial penalty cost will force the reallocation mostly on the 

first SKUs. Alternatively, when starting with a low penalty 

cost, this phenomenon is greatly reduced since the initial 

cost of exceeding the capacity is very low. Therefore, the 

total reallocation in the first iteration will be low. 

Similarly, a large increase in penalty cost per 

optimization would yield a feasible solution quickly but the 

quality could be worse. A feasible solution would be found 

quickly because the penalty cost would soon be large 

enough to prevent any infeasible allocation. However, 

quickly increasing the penalty cost may again lead to the 

wrong SKUs being reallocated. For example, consider a 

case with 10 SKUs and an α of 1%. After the optimization 

of the first SKU, the penalty cost is thus increased by a 

factor of (1+0.01). After a single iteration, all 10 SKUs 

have been optimized once and the penalty cost has 

increased by a factor of (1+0.01)10=1.1046. Therefore, in 

the worst case, if SKU 10 is reallocated, reallocating SKU 

1 could have been 10.46% less expensive. A larger number 

of SKUs thus requires a smaller α to give an equivalent 

increase in penalty cost per iteration. 

Results 

We will compare the SKU decomposition algorithm to the 

full space model for five example cases. In all cases, the 

supply chain consists of 10 suppliers, 4 factories, 5 

warehouses, 10 distribution centers and 20 retailers. Cases 

1 to 5 contain 10, 25, 50, 75 and 100 SKUs respectively. 

All cases contain 10 different ingredients and each SKU 

requires 2-3 ingredients. The data for these cases was 

randomly generated.  

We performed all optimizations using Gurobi 4.0 in 

AIMMS 3.12 on a computer with an Intel(R) Core(TM)2 

Duo CPU P8700 2.53 GHz and with 4 GB of memory. All 

optimizations were performed with a 1% MIP relative 

optimality tolerance. The computational results of the full 

space model are given in Table 1 and those of the 

algorithm are given in Table 2. Pen is the initial penalty 

cost, α is the increase in penalty cost, Time is the required 

CPU time and Deviation is the percentage increase in costs 

compared to the best obtained lower bound (LB). For case 

1, this was the LB after the optimization of the full space 

model terminated once a solution within the 1% optimality 

gap was found. For cases 2 and 3, this was the LB after the 

optimization of the full space model was terminated after 6 

hours. For cases 4 and 5, the optimization of the full space 

model did not yield a solution within 6 hours. For these 

cases, the LB was taken as the best solution found using 

the algorithm. A greater than sign is added to the deviation 

for these cases to indicate that the real deviation may be 

larger.  

Table 1. Computational results full space models 

Case Time Deviation 

1 

2 

3 

4 

5 

870s 0.31% 

>6hr 1.50% 

>6hr 83.8% 

>6hr No solution 

1220s Memory Error 



  

Table 2. Computational results SKU algorithm 

Case Pen α[%] Time [s] Deviation 

1 

1 1 49 8.12% 

0.1 5 111 2.22% 

0.1 1 418 1.71% 

0.1 0.5 803 1.65% 

0.01 1 1052 1.47% 

2 

1 0.4 174 3.9% 

0.1 2 299 2.7% 

0.1 0.4 1322 2.9% 

0.1 0.1 4589 2.3% 

0.01 0.4 2866 2.7% 

3 

1 0.2 278 5.6% 

0.1 1 605 4.2% 

0.1 0.2 2500 3.7% 

0.1 0.1 5156 3.3% 

0.01 0.2 5700 3.5% 

4 

1 0.13 248 >6.9% 

0.1 0.65 1354 >1.0% 

0.1 0.13 5548 >0.3% 

0.1 0.07 11323 >0% 

0.01 0.13 12464 >0.2% 

5 

1 0.1 290 >8.2% 

0.1 0.5 1836 >1.0% 

0.1 0.1 6700 >0.7% 

0.1 0.05 11570 >0% 

0.01 0.1 12621 >0.3% 

 

The first thing that should be noted is that the 

optimization of the full space models for example cases 4 

and 5 did not yield a feasible solution within 6 hours. The 

optimization of example case 5 was even terminated early 

due to a memory error. This confirms the need for a 

decomposition approach since a real case would be even 

larger than case 5. In fact, even in the optimization of the 

full space model for case 3, containing only 50 SKUs, the 

optimality gap was over 80% after 6 hours.  

The SKU decomposition algorithm was able to find 

solutions for all five cases within reasonable computational 

time. As can be seen in Figure 3, the required 

computational time increases roughly linearly with the 

number of SKUs. This is promising since a real case 

would contain thousands of SKUs. This linear relationship 

between the number of SKUs and the required CPU time 

is also consistent with the model sizes. For all five cases, 

each SKU model contains approximately 7k constraints, 

24k continuous variables and 208 binary variables. Per 

iteration, one model for each SKU has to be solved. 

Therefore, the number of models that have to be solved per 

iteration increases linearly with the number of SKUs. 

Assuming that the required number of iterations remains 

constant, the required CPU time will increase linearly with 

the number of SKUs.  

The data points in Figure 3 deviate slightly from the 

linear trend lines because of differences in data set. The 

minimum penalty cost required to obtain a feasible 

solution is dependent on the data. For example, a higher 

capacity utilization would most likely lead to a higher final 

penalty cost. Therefore, depending on the data, the number 

of iterations required to reach this penalty cost may vary, 

even if the initial penalty cost and the penalty increase are 

kept constant. In addition, the time required to solve the 

individual SKU models can deviate depending on the data. 

Nevertheless, the linear trend is clearly visible in Figure 3. 

 

Figure 3. Required CPU time versus the number 
of SKUs for three different initial penalty values. 
In all optimizations, the α was equivalent to an α 
of 1% for 10 SKUs. Linear trend lines are added.   

On the other hand, for the full space model the size 

increases from 42k constraints, 185k continuous variables 

and 2080 binary for case 1 to 235k constraints, 1.5M 

continuous variables and 21k binary variables for case 5. 

This explains why it is difficult to obtain solutions for the 

full space model for larger cases.   

 

Figure 4. Deviation from optimality and required 
CPU time of case 1 optimized using the algorithm 
for different initial penalty values. In all 
optimizations α was 1%. 

The optimization of the full space models for cases 1 

and 2 yielded solutions with lower costs than those that 

could be obtained with the decomposition algorithm. 

Nevertheless, in both cases the algorithm was able to 



  
 

obtain solutions within a few percent of the optimal 

solution. As expected, a lower initial penalty cost or 

penalty increase leads to better solutions. Although, as can 

be seen in Figure 4 and 5, decreasing the initial penalty 

cost or penalty increase beyond a certain threshold has 

little impact on the solution quality. Decreasing these 

values increases the required computational time as the 

number of required iterations before the penalty cost is 

high enough to prevent all infeasibilities increases. 

  

Figure 5. Deviation from optimality and required 
CPU time of case 1 optimized using the algorithm 
for different penalty increase values. In all 
optimizations the initial penalty value was 0.1.   

 

Figure 6. LP relaxation: Deviation from 
Optimality when using the algorithm for different 
initial penalty values. In all optimizations, the α 
was equivalent to an α of 1% for 10 SKUs. 

It is difficult to compare the degree of optimality of 

the algorithm for various numbers of SKUs since the full 

space models for 50,75 and 100 SKUs could not be solved 

to optimality. Therefore, an LP relaxation of all five cases 

was optimized using both the full space model and the 

algorithm. The deviation from optimality for various initial 

penalty values is shown in Figure 6. Clearly, different data 

sets lead to different deviations from optimality. However, 

increasing the number of SKUs does not seem to 

significantly increase or decrease the deviation from 

optimality. Most importantly, all five cases could be 

optimized within a 1.5% deviation from optimality. While 

the binary variables may influence the optimality gap of 

the algorithm, it seems unlikely that they would introduce 

a strong correlation between the number of SKUs and the 

optimality gap of the algorithm. 

Conclusions 

We have developed an SKU decomposition algorithm for 

a tactical planning model in the FMCG industry. For two 

small scale cases, containing 10 and 25 SKUs, this 

algorithm was able to obtain solutions within a few 

percent of the optimal solution. Even for these small cases, 

the algorithm required considerably less CPU time than 

the full space models to obtain these solutions. The 

algorithm was also able to optimize a larger 100 SKU case 

for which the full space model could not be optimized.   

The main advantage of the SKU decomposition algorithm 

is that it scales approximately linearly with the number of 

SKUs. This should allow the algorithm to be used in real 

cases containing thousands of SKUs.  

It is difficult to confirm whether there is a correlation 

between the number of SKUs and the degree of optimality 

of the algorithm because the full space model for even 

relatively small cases could not be solved to optimality. 

However, no direct correlation between the number of 

SKUs and the degree of optimality of the algorithm for the 

LP relaxation of the model was observed. Therefore, we 

conclude that the SKU decomposition algorithm seems a 

suitable approach for solving cases of a realistic size.  
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