
1 
 

An SKU Decomposition Algorithm for the Tactical Planning in the FMCG 
Industry 
M.A.H. van Elzakkera*, E. Zondervana, N.B. Raikarb, H. Hooglandb, I.E. Grossmannc 
a Dept. Chem. Eng. And Chem., Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, the 
Netherlands 
b Unilever R&D Vlaardingen, the Netherlands 
c Dept. Chem. Eng., Carnegie Mellon University, Pittsburgh, USA 
* Corresponding Author: M.A.H.v.elzakker@tue.nl, +31 402475807 
 
Abstract 
In this paper we address the optimization of the tactical planning for the Fast Moving Consumer 
Goods (FMCG) industry, in which numerous trade-offs need to be considered over possibly 
thousands of Stock-Keeping Units (SKUs). An MILP model for the optimization of this tactical 
planning problem is proposed. This model is demonstrated for a case containing 10 SKUs, but is 
intractable for realistically sized problems. Therefore, a decomposition algorithm based on 
decomposing the model into single-SKU submodels is proposed in this paper. To account for the 
interaction between SKUs, slack variables are introduced into the capacity constraints. These 
slack variables initially allow the capacity to be violated. In an iterative procedure the cost of 
violating the capacity is slowly increased, and eventually a feasible solution is obtained. Even for 
the relatively small 10 SKU case, the required CPU time could be reduced from 4427s to 472s 
using the algorithm. Moreover, the algorithm was used to optimize cases of up to 1000 SKUs, 
whereas the full model is intractable for cases of 25 or more SKUs. The solutions obtained with 
the algorithm are typically within a few percent of the global optimum. 
 
Keywords: Tactical Planning, Optimization, MILP, Decomposition Algorithm, Fast Moving 
Consumer Goods 

1. Introduction 
The scale and complexity of enterprise-wide supply chains has increased significantly 

due to globalization. (Varma et al., 2007) Recently, the operation of enterprise-wide supply 
chains has attracted much interest. Grossmann (2005) and Varma et al. (2007) review the current 
research on Enterprise-wide Optimization (EWO), and they identify challenges and research 
opportunities. One of the main challenges is the integration of decision-making across various 
layers. This includes the integration of the various echelons of the supply chain and the 
integration of the various temporal decisions layers. The decisions on the various layers are often 
interconnected leading to trade-offs between these decisions. (Maravelias and Sung, 2009) 
Therefore, better solutions can be obtained if these decisions are optimized simultaneously.  

Usually, three temporal decision layers are distinguished: strategic planning, tactical 
planning and operational planning. Strategic planning covers the long-term decisions regarding 
the design of the supply chain. Tactical planning covers the medium-term decisions regarding the 
allocation of capacity. Operational planning covers the short-term scheduling decisions.  

Maravelias and Sung (2009) review the integration of short-term scheduling and tactical 
production planning. They identify two options for this integration. First, the detailed scheduling 
decisions can directly be included into the tactical planning model. While this would in theory 
yield optimal solutions, the resulting models are usually very large and difficult to solve.  
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Therefore, advanced solution strategies are often applied to solve larger problems. For 
example, Erdirik-Dogan and Grossmann (2007) developed a bi-level decomposition strategy to 
solve larger instances of their integrated scheduling and tactical planning model for a single 
plant. In addition, they modeled the sequence-dependent changeovers more efficiently by using 
constraints based on the traveling salesman problem. Terrazas-Moreno and Grossmann (2011) 
extended this model and bi-level decomposition method to a multi-site setting. In addition, they 
proposed a new hybrid decomposition method that combines bi-level and spatial Langragean 
decomposition. This hybrid method proved to be the most efficient for large-scale problems.  

 The second approach is to approximate the scheduling decisions by removing or relaxing 
part of the constraints or by aggregating some of the decisions.  For example, Sung and 
Maravelias (2007) consider the restrictions found on the short-term scheduling level by 
incorporating linear surrogate constraints into the tactical planning model. These surrogate 
constraints are a convex approximation of the feasible region of the scheduling model projected 
in the space of production amounts of the products. They obtain these surrogate constraints by 
analyzing an MIP scheduling model off-line. 

The tactical planning problem considered in this paper is already extremely large by 
itself. Therefore, we have chosen the second method and approximate the scheduling decisions 
as close as possible. While this will not give us a detailed weekly production schedule, the 
weekly production targets will be realistic.  

In this paper, we consider the tactical planning for a Fast Moving Consumer Goods 
(FMCG) company. FMCG are products that are sold in large quantities, that have a relatively 
low profit margin and that, if not available, are quickly substituted by a competitor’s product. 
Some examples of FMCG are ice cream, yogurt and shampoo. The production process in the 
FMCG industry is typically a make-and-pack production process. (Bilgen and Gunther, 2010) 

Fast Moving Consumer Goods (FMCG) companies produce a wide range of products to 
satisfy an increasing demand for product variety. (Bilgen and Gunther, 2010) Even a single 
product category, such as ice cream, can consist of thousands of Stock-Keeping Units (SKUs). 
These SKUs are products that may vary, for example, in composition or packaging. The large 
number of SKUs adds an additional challenge to the tactical planning for FMCG industries.  

Another challenge is the seasonality of ingredients and products. For example, the 
majority of the demand for ice cream occurs during the summer. To properly capture this 
seasonality, we must consider at least a one year horizon divided into weekly time periods.  

An additional challenge is the generally large supply chain. A typical supply chain in the 
FMCG industry contains suppliers, factories, warehouses, distribution centers and retailers. 
There are many trade-offs between the decisions made in the various echelons, and therefore it is 
important to consider the complete supply chain when optimizing the tactical planning. 

We will give a brief review of literature on tactical planning in the FMCG industry. We 
refer to Akkerman et al. (2010) for a detailed literature review on the optimization of operational, 
tactical and strategic planning in the food industry.  

Duran (1987) considers the production and distribution network for a brewery by 
introducing separate capacities for the processing and packaging processes. The problem 
consisted of 17 breweries, 17 bottling factories, 40 agencies, 13 brands and 12 monthly periods. 
A combination of time decomposition and brand decomposition was used to obtain a solution. 
The proposed method reduced the total costs by 3.7% compared to the program that was being 
used at the production department. 
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Brown et al. (2001) discuss the operational and tactical planning LP models used at the 
FMCG company Kellogg. The supply chain they consider contains plants, co-packers and 
distribution centers. The tactical planning model contained over 600 SKUs, 27 locations and a 1-
2 year horizon divided into 4-week periods. However, they did not consider set-up times, set-up 
costs and raw materials. 

Li et al. (2009) optimize the capacity allocation decisions for a supply chain consisting of 
suppliers, factories and warehouses. They use two heuristic algorithms to be able to solve larger 
cases.  Using the algorithms, they were able to optimize cases of up to 100 products and 4 time 
periods.  

Bilgen and Gunther (2010) propose a flexible block planning approach for the short-term 
planning problem of a company producing fruit juices and soft drinks. A block planning 
approach is based on cyclically scheduling blocks that consist each of a pre-defined order of 
variable size production orders. They considered a planning problem containing 19 products, 4 
weeks and a supply chain consisting of 3 factories and 3 warehouses with unlimited capacity. 
They showed that 5-15% cost savings can be obtained when using their flexible block planning 
approach instead of the more commonly used rigid block planning approach. 

Kopanos et al. (2012) consider the optimization of production and logistics operations for 
a Greek dairy company. They use a discrete time representation to model the inventory and 
transportation decisions, and they use a continuous time representation to model the production 
and sequencing decisions.  The sequencing and timing decisions are made for aggregated product 
families, whereas all other decisions are based on individual products. In the larger of the two 
problems they consider 93 products grouped into 23 families, 8 time periods, and a supply chain 
consisting of 2 factories and 5 distribution centers. 

We can conclude from the above review that none of these papers have considered the 
optimization of a tactical planning problem consisting of thousands of SKUs for a 5-echelon 
supply chain over 52 weekly periods. The objective in this work is to develop an approach 
capable of optimizing such a case, which would be realistic for the FMCG industry. One of the 
main challenges is the size of this problem. We propose an algorithm based on SKU 
decomposition to be able to solve these extremely large problems. 

The remainder of this paper is organized as follows. The problem definition is given in 
Section 2. The proposed MILP model is described in Section 3. The results obtained with this 
MILP model are discussed in Section 4. Next, Section 5 introduces the SKU decomposition 
algorithm that is used to optimize larger cases. The results obtained by the algorithm are 
discussed and compared with the results of the full model in Section 6. Finally, conclusions are 
drawn in Section 7, and the nomenclature is given at the end of the paper. 

2. Problem Definition 
Given is a set of SKUs that have to be produced and distributed through a supply chain 

network including suppliers, factories, warehouses, distribution centers and retailers. The 
location and capacity of all facilities is fixed. A schematic overview of the supply chain is given 
in Figure 1 where the arrows represent the possible flow of ingredients or SKUs from one facility 
to another. The procurement, production and distribution decisions have to be taken over a one 
year horizon divided into weekly time periods due to the seasonality of both SKUs and 
ingredients.  
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Suppliers Factories Warehouses Distribution 
Centers Retailers

 
Figure 1. Overview of the supply chain 

The unit transportation cost between any two consecutive facilities in the supply chain is 
known. The transportation times are typically considerably shorter than the period length of one 
week. Therefore, the lead times are assumed to be zero. Ingredients can be stored at the factories, 
and SKUs can be stored at the warehouses and distribution centers. For these facilities the initial 
and maximum inventories are given. In addition, the storage costs for each SKU or ingredient are 
known for each location. The minimum safety stock and the penalty for violating this minimum 
level are also given for all SKUs in all warehouses and distribution centers. 

The maximum available supply and the procurement costs are known for all ingredients 
for every supplier for every week. The given recipes link the production of SKUs to the 
ingredient consumption. Each factory contains two production stages: a mixing stage and a 
packing stage. An SKU must be mixed and packed in the same factory in the same week. 
Factories contain various types of mixing and packing lines. Each type is dedicated to a subset of 
SKUs. The available production time on both stages is given as the aggregated amount per type 
of mixing or packing line. The mixing and packing rates of all SKUs are also known. Average 
SKU and SKU-family set-up times and costs are given for the packing stage.  

The demand of each retailer is given per SKU per week, and a penalty cost for missed 
sales is given as well. Demand can only be met in the week in which it occurs, and the amount 
sent to a retailer may not exceed the demand. The inventory at the retailers is not considered.  

Given this information, the key decisions are the amount of each ingredient to buy from 
the suppliers, the amount of each SKU to produce in each of the factories, the inventory levels in 
the warehouses and distribution centers, the amount of each SKU to transport between the 
facilities and the amount of each SKU to be sent to each of the retailers. All decisions have to be 
taken for each week. The objective is to minimize the total costs. The total costs consist of the 
procurement costs, storage costs, transportation costs, set-up costs, safety stock violation costs 
and missed sales costs. 

3. MILP model formulation 
In this section we propose an MILP model for the tactical planning problem in the FMCG 

industry. We first discuss the concept behind the production capacity approximation used in the 
model. Afterwards the model constraints are discussed. 
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3.1. Production capacity approximation 

The weekly production plans generated by the tactical planning model determine how 
much of each SKU should be produced by each factory in each week. Therefore, it is crucial that 
the capacity limitations in the tactical planning model closely represent the true capacity 
limitations. The capacity could be modeled accurately by incorporating the short-term scheduling 
decisions directly into the tactical planning model. However, optimizing these short-term 
scheduling decisions is already challenging for a single factory for a single week. (Kopanos et 
al., 2011; van Elzakker et al., 2012) Therefore, incorporating these decisions directly in the 
tactical planning model would render it intractable. Nevertheless, a close approximation is 
essential since underestimating the capacity would reduce the efficiency of the production 
facilities, while overestimating it would lead to infeasible weekly production targets. 

We have to consider three important aspects of the production process in the capacity 
estimation. First of all, the production process is a two stage make-and-pack production process. 
The first stage contains the mixing lines and the second stage the packing lines. In general, the 
bottleneck stage is not known in advance because it depends on the selection of SKUs. 
Therefore, it is important that the capacity of the mixing stage and packing stage are both 
considered.  

Second, each factory may contain various types of mixing lines. Each type can only 
produce a subset of the SKUs. The group of SKUs that can be produced on a certain mixing line 
is denoted a mixing family. Therefore, the mixing capacity must be tracked per mixing family. 
Similarly, the packing capacity should be considered per type of packing line. The SKUs that can 
be produced on a certain type of packing line are a packing family. For each type of mixing or 
packing line, we impose aggregated capacity constraints to ensure that the production plan is 
feasible. 

Third, there are sequence-dependent changeovers on both the mixing and the packing 
lines. Including sequence-dependent changeovers would require including line allocation and 
sequencing decisions in the tactical planning model. Because this would lead to an intractable 
model, we instead approximate the sequence-dependent changeovers.  

From previous work on the short-term production scheduling in the FMCG industry (van 
Elzakker et al., 2012) we know that, in general, single continuous packing campaigns are 
enforced on the packing lines. In other words, each SKU that is assigned to a factory in a week 
will be produced in a single continuous packing campaign. Therefore, each assigned SKU will 
only require a single changeover. 

To approximate this sequence-dependent changeover we use the concept of SKU 
families. An SKU family is a group of SKUs that have similar processing characteristics. 
Changeovers between SKUs of the same family are relatively short, whereas changeovers 
between SKUs of different families are considerably longer. Changeovers between SKUs of the 
same family can be represented by a relatively small average set-up time. We then represent the 
longer changeover between SKUs of different families by adding an average set-up time for each 
SKU family.  

In summary, on the packing line we include a short SKU set-up time for each assigned 
SKU, and for each SKU family for which at least one SKU is assigned an additional SKU-family 
set-up time is included. This approximation is shown in Figure 2. The accuracy of this 
approximation relies on the assumption that SKUs of the same family are packed consecutively. 
This is a reasonable assumption because it minimizes the changeover time. 
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Figure 2. The sequence-dependent changeover times (a) are approximated by SKU and SKU family set-up times (b). 

 
This SKU family approach is similar to the block planning approach by Gunther et al. 

(2006). A block is a predefined sequence of products which all have the same recipe. They 
typically account for a large set-up time for each block and a small set-up time for products 
within a block. They then allocate a single block to each period, and they only allow products 
that are part of this block to be produced in this period. The SKU families are also similar to the 
product families used for example by Shah et al. (1993). They introduced a required cleaning 
time when changing from products belonging to a “dark” family to products belonging to a 
“light” family.  

However, this representation is not suitable for the mixing lines since the number of 
mixing line changeovers is much larger than the number of allocated SKUs. This is mainly 
because the throughput of mixing lines is higher than that of packing lines, as each factory 
contains more packing lines than mixing lines and because of the limited intermediate inventory. 
As a result, the mixing lines must switch frequently between SKUs to allow for the single 
continuous campaigns on the packing lines. This is explained in more detail in van Elzakker et 
al. (2012). Figure 3 shows a one week production schedule of a small FMCG factory generated 
by van Elzakker et al. (2012). It clearly demonstrates that the number of changeovers on the 
mixing lines is far greater than the number of allocated products. 

 
 

 
Figure 3. Example of a one week production schedule for a small FMCG factory. (van Elzakker et al., 2012) 

 
The number of changeovers mainly depends on factory characteristics, such as the 

number of mixing and packing lines, the processing rates and the available intermediate storage. 
For example, a larger intermediate storage would allow for longer mixing runs and thus fewer 
changeovers. We propose to estimate the average total changeover time on the mixing lines 
based on historical factory data. While it should be noted that this is an approximation, it is far 
more accurate than linking it to the number of SKUs that are allocated. 

 
3.2. Procurement 
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The total amount of ingredient h procured from supplier s in week t to all factories is 
limited by the available supply.  

 
 , , , , ,      h f s t h s t

f
TransIng MaxSupply h,s,t≤ ∀∑  (1) 

The total amount of ingredients in storage at factory f in week t cannot exceed the storage 
capacity.  

 
 , ,   h f t f

h
INVIng INVIngCap f,t≤ ∀∑  (2) 

The inventory of ingredient h in factory f in week t is equal to the inventory in the 
previous week, plus the amount procured from all suppliers minus the amount consumed in the 
production of all SKUs. 

 
 ( ), , , , 1 , , , , , ,    , ,h f t h f t h f s t h i i f t

s i
INVIng INVIng TransIng Recipe Prod h f t−= + − ⋅ ∀∑ ∑  (3) 

3.3. Production 
The production time allocated to mixing all SKUs that are part of the same mixing family 

in factory f in week t cannot be larger than the available mixing time of this mixing family. The 
available mixing time has already been corrected for the estimated total weekly set-up time. 
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≤ ∀∑  (4) 

The packing time allocated to the SKUs of the current packing family, plus the set up 
time of each SKU of this packing family that is produced, plus the set up time of the SKU 
families that are part of the packing family and of which at least one SKU is produced, must be 
less than the available packing time.  
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∑  (5) 

If SKU i is produced in factory f in week t, then there must be a set-up for this SKU in 
this factory in this week. The total available packing time for the packing family to which SKU i 
belongs is used as the upper bound for the packing time of SKU i. 
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Prod
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If there is a set up for SKU i, there must also be a set up for the family to which this SKU 
belongs.  

 
 , , , ,   fam f t i f t famYFamSU WSU i IF , fam, f,t≥ ∀ ∈  (7) 

The total production of SKU i in factory f in week t must be transported to the 
warehouses because there is no product storage at the factories. 

 
 , , , , ,    , ,i f w t i f t

w
TransFW Prod i f t= ∀∑  (8) 

3.4. Storage and Transport 
The warehouse and distribution constraints are discussed together because they are very 

similar. The total inventory of all SKUs in a location may not exceed the storage capacity. 
 

 , ,   i w t w
i

INVWH WHCap w,t≤ ∀∑  (9) 

 , ,   i dc t dc
i

INVDC DCCap dc,t≤ ∀∑  (10) 

The inventory of SKU i in warehouse w in week t is equal to the inventory in the previous 
week, plus the amount received from all factories, minus the amount sent to all distribution 
centers. For the first week, the inventory in the previous week is the initial inventory. 

 
 , , , , 1 , , , , , ,   , ,i w t i w t i f w t i w dc t

f dc
INVWH INVWH TransFW TransWDC i w t−= + − ∀∑ ∑  (11) 

Similarly, the inventory of SKU i in distribution center dc in week t is equal to the 
inventory in the previous week, plus the amount received from all warehouses, minus the amount 
sent to all retailers. For the first week, the inventory in the previous week is the initial inventory. 

  
 , , , , 1 , , , , , ,   , ,i dc t i dc t i w dc t i dc r t

w r
INVDC INVDC TransWDC TransDCR i dc t−= + − ∀∑ ∑  (12) 

If the inventory is less than the safety stock, the safety stock violation is the difference 
between the safety stock and the inventory. Otherwise the safety stock violation is zero. The 
safety stock violation is defined as a nonnegative continuous variable.  Because the safety stock 
violation costs are added to the objective function, these costs will always take on the lowest 
possible value. These safety stock constraints are similar to those of McDonald and Karimi 
(1997).   

 
 , , , , , ,   , ,i w t i w t i w tSSVioWH SSWH INVWH i w t≥ − ∀  (13) 

 , , , , , ,   , ,i dc t i dc t i dc tSSVioDC SSDC INVDC i dc t≥ − ∀  (14) 

The total amount of the SKU i transported to retailer r in week t cannot exceed the 
demand. 
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 , , , , ,     i dc r t i r t

dc
TransDCR D i,r,t≤ ∀∑  (15) 

3.5. Costs 
The objective is to minimize the total costs. These costs consist of the purchasing plus 

transportation costs of the ingredients, the inventory costs of the ingredients at the factories, the 
inventory costs of the SKUs at the warehouses and distribution centers, the SKU transportation 
costs between the factory and warehouses, between the warehouses and distribution centers and 
between the distribution centers and retailers, the safety stock violation penalty costs in the 
warehouses and distribution centers, the set-up costs of the SKUs, the SKU family set-up costs, 
and the missed sales penalty costs.  
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+ ⋅ + ⋅

 + ⋅ −
 

∑

∑

∑ ∑

∑ ∑

∑
, ,i r t

∑

 (16) 

4. Full Model Results 
This MILP model has been applied to several case studies. The supply chain in these 

cases studies consists of 10 suppliers, 4 factories, 5 warehouses, 10 distribution centers, and 20 
retailers. The case studies contain 10 ingredients and between 10 and 1000 SKUs. Each SKU 
belongs to one of 2 different mixing families, 4 packing families and 12 SKU families. For all 
case studies the one year time horizon is divided into 52 weekly periods. 

Due to the extremely large amount of data required, hypothetical data is used in this 
paper. For example, the transportation cost between factories and warehouses is generated from 
the uniform distribution U(0.01,0.5). Most data is generated from uniform distributions. 
However, there are a few notable exceptions. 

 Since the retailers do not sell all SKUs, each SKU is only given a 33% chance to be 
allocated to a retailer. The average demand for an SKU that is allocated to a retailer is then 
generated from a uniform distribution. The weekly demand is then generated between 50% and 
150% of the average demand. In addition, to account for seasonality, the demand during a 4 
week period is increased. The total demand during these 4 weeks accounts for approximately 
80% of the total demand.  
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Similarly, since not every supplier will sell all ingredients, each ingredient is only given a 
25% chance to be sold at a supplier. The weekly supply is then generated in the same way as the 
weekly demand of SKUs. Each ingredient has a 33% chance that it is required in the production 
of an SKU, which gives an average of 3.3 ingredients per product. The amount required in the 
recipe is then generated from a uniform distribution. The available production time for both 
mixing and packing families is generated from a discrete uniform distribution, since each 
additional line would add 120 hours of production per week. The upper and lower bounds of 
distributions of the ingredient supply and production capacity are determined based on the 
demand of the products. All other data is generated from uniform distributions.  

 
4.1. 10 SKU case study results 

We first optimize the case study containing 10 SKUs. This case study will be used to 
discuss characteristics of the model and problem. All optimizations in this paper are performed 
using CPLEX 12.4 in AIMMS 3.12 on a computer with an Intel(R) Core(TM)2 Duo CPU P8700 
2.53 GHz and with 4 GB of memory. All optimizations are performed with a one percent MIP 
optimality tolerance. 

The model for the 10-SKU case study contains 41,809 constraints and 185,589 variables 
of which 2,080 are binary. The MILP model is already large for this small example case because 
of the size of the supply chain and the 52 weekly time periods. The required CPU time was 
4427s. We will discuss the obtained solution by highlighting some of the key characteristics of 
the results. 

The total inventory profile of SKU 10 is given in Figure 4. In the first part of the horizon 
there are a few small peaks followed by a slowly decreasing inventory. This indicates that 
producing a large batch and paying higher inventory costs is less expensive than producing small 
batches every week and incurring weekly set up costs. After 26 weeks the inventory starts to 
build up. This is necessary to cover the peak demand during weeks 45 to 48. This increase in 
production around week 26 is also clearly visible in Figure 5. It can also be seen from Figure 5 
that typically only one product per packing family is produced in each week. This reduces the 
required set-up time and thus maximizes the available production time. 

 
Figure 4. Profile of the total inventory of SKU 10 in all storage facilities over the time horizon 
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Figure 5. Gantt Chart indicating which product is produced in each week in factory 1 in the MILP solution 

The modeling of the SKU and SKU family set-ups is an important part of the MILP 
model. While using these set-ups to approximate the changeovers is more efficient than directly 
including sequence-dependent changeovers, the binary set-up variables still make the model 
significantly harder to solve. To demonstrate the need of including the binary set-up variables, 
we have also optimized the same 10-SKU case study with the binary set up variables relaxed as 
0-1 continuous variables. 

The resulting LP problem was optimized in 124s. However, as can be seen in Figure 6, 
the number of products that are produced in each week increases drastically. In fact, the average 
number of products allocated to a factory in a week increases from 1.78 to 4.85. This results in a 
cost increase of 8.3% when accounting for set-up costs. Moreover, the solution obtained by the 
LP would be infeasible since it does not consider the set-up times. While this would only lead to 
a relatively small capacity violation for the 10-SKU case, the impact would be much greater in a 
more realistic case containing 1000 SKUs. In such a case, the LP might allocate hundreds of 
SKUs to the same factory in the same week. Therefore, the binary set-up variables are clearly 
necessary to obtain realistic solutions. 

 
Figure 6. Gantt Chart indicating which product is produced in each week in factory 1 in the LP solution 
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5. SKU Decomposition Algorithm 
As mentioned in the previous section, the MILP model for the 10 SKU case is already 

relatively large. For larger cases, the MILP becomes prohibitively large. For the 50 SKU case, 
the model contains 170,769 constraints and 826,229 variables of which 10,400 are binary. No 
feasible solution could be obtained for this case within 12 hours. A realistic case would contain 
at least a thousand SKUs. For such a case, the model would contain more than 2 million 
constraints and more than 10 million variables of which 208,000 would be binary. Because even 
the far smaller 50 SKU case could not be optimized, the model is intractable for realistic cases.  

Therefore, we must reduce the model size to be able to optimize realistic cases. One 
approach would be to aggregate SKUs into families. For example, Omar and Teo(2007) reduce 
the size of their tactical planning model for chemical multiproduct batch plants by aggregating 
the products into product families. However, in the FMCG industry, the SKUs within a family 
may require different ingredients. Therefore, if we aggregate SKUs into SKU families, we would 
not be able to accurately determine the demand of ingredients based on the production. As a 
result, we would not be able to optimize the entire supply chain simultaneously because we 
cannot include the procurement decisions. 

 
5.1. Overview of decomposition methods 

An alternative approach to reduce the size of the model is to decompose the model into 
several smaller submodels. Sousa et al. (2011) and Terrazas-Moreno et al. (2011) give an 
overview of decomposition methods. The most common decompositions are spatial or temporal 
decompositions. In a spatial decomposition, the subproblems can describe either different 
echelons of the supply chain or different physical locations. However, for our problem a spatial 
decomposition would not give a sufficient reduction in model size because each submodel would 
still contain thousands of SKUs over 52 time periods. 

In a temporal decomposition, the problem is decomposed into submodels covering a 
single time period each. Temporal decomposition does not seem promising for our problem 
because of the high seasonality of products and ingredients. In addition, the resulting 
subproblems would still be very large since they would contain thousands of SKUs and a 
relatively large supply chain. 

Castro et al. (2009) proposed an order decomposition algorithm for the scheduling of 
multiproduct plants. The main idea behind their algorithm is to start with a couple orders and 
allocate them to a unit. Then the next few orders are allocated while the allocation decisions for 
the first few orders are fixed. However, the timing decisions of the first orders are still variable. 
A few more orders are then added while the allocation decisions of all previous orders are fixed. 
This continues until all orders have been allocated. Finally, the schedule is improved in a 
rescheduling step. In this step, a few orders may be rescheduled while the allocation decisions 
for all other orders are still fixed. This step can be repeated several times. 

 
5.2. SKU Decomposition Algorithm 

The concept of decomposition based on SKUs is promising for our problem. However, 
the problem size will not be reduced significantly if we use the method of Castro et al. (2009) 
and fix only the allocation decisions. Therefore, we propose the following SKU decomposition 
algorithm. 
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In the algorithm, the tactical planning MILP model is decomposed into single SKU MILP 
submodels. In each submodel, the domain of the constraints and variables is limited to a single 
SKU. The updated constraints for the submodels are given in Appendix A. 

A solution to the full problem could be obtained by optimizing these submodels 
incrementally. In other words, the decisions for the various SKUs are optimized sequentially, and 
the decisions of the previous SKUs are fixed. As a result, the available capacity will decrease 
after each SKU is optimized. Because this procedure does not include any interaction between 
the SKUs, the capacity would most likely be used inefficiently, and the initial solution would 
most likely be poor.  

We have modified the capacity constraints to improve the capacity utilization. We have 
added a slack variable to each capacity constraint to allow the maximum capacity to be violated. 
The capacity constraints are constraints (2), (4), (5), (9) and (10). The slack variables are added 
to the objective function with a penalty costs. Therefore, a penalty cost is incurred when the 
capacity is violated. This approach is similar to the classical penalty function method introduced 
by Courant (1943) that replaces constraints with penalty terms in the objective function. 

The SKU decomposition algorithm consists of two steps. In the first step an initial 
solution is obtained. This initial solution is most likely infeasible. In the second step this initial 
solution is used as a starting point, and in several iterations it is driven towards a feasible 
solution.  

In the first step, all submodels are optimized incrementally with the penalty costs set to 
zero and with relaxed set-up variables. The zero penalty costs in essence represent an 
optimization for unlimited capacity. Because of this unlimited capacity, the solution will most 
likely be infeasible for the problem with limited capacity. Therefore, the binary variables are 
relaxed to obtain this initial solution faster.  

In the second step, the initial solution obtained in step one is used as a starting point. All 
decisions except for those relating to SKU 1 are fixed, and then SKU 1 is re-optimized. In this 
second step the optimal decisions will change because integrality is enforced for the binary 
variables and because the penalty for capacity violation is set to a non-zero value. Then these 
updated decisions are fixed, and the decisions for SKU 2 are re-optimized. This entire procedure 
is repeated for each SKU. In each optimization in step 2, the decisions for all SKUs but the 
current SKU are frozen, and the decisions for the current SKU are re-optimized using the MILP 
submodel. Afterwards, these decisions are frozen, and the next SKU is updated.  In each iteration 
in step 2, all SKUs are re-optimized once.  

Because the penalty is initially set to a low value, violating the capacity will be relatively 
inexpensive. As a result, for most SKUs it will be less expensive to pay the capacity violation 
penalty costs than it would be to reallocate them to a different facility. The algorithm continuous 
to iterate until all slack variables are zero, and a feasible solution is thus obtained.  

To ensure that the slack variables will eventually become zero, the penalty costs are 
increased slightly after each optimization. Therefore, it will continuously become more 
expensive to exceed the capacity. For some SKUs it will become less expensive to be reallocated 
to a different facility than it would be to pay the penalty costs. Eventually, the penalty costs will 
become sufficiently high, and enough products will be reallocated to obtain a feasible solution. 
The algorithm is terminated once a feasible solution is obtained.  

For the classical penalty function method, the solution of the unconstrained problem 
converges to the solution of the constrained problem if the penalty is selected to be sufficiently 
large. (Luenberger, 1971) For our problem a feasible solution can be guaranteed within a finite 
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number of iterations because of the missed sales costs. Eventually, the penalty costs per unit of 
capacity violation will be higher than the missed sales costs. At that point, a feasible solution will 
be obtained because any remaining capacity violations will become missed sales. An overview of 
the algorithm is given in Figure 7. 

 
Figure 7: SKU Decomposition algorithm 
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5.3. Illustrative Example 
The SKU decomposition algorithm will be demonstrated using a small illustrative 

problem. This illustrative example contains 4 time periods, 4 ingredients, 4 SKUs and a supply 
chain consisting of 2 suppliers, 2 factories, 2 warehouses and 2 retailers. Dimensionless data is 
used in this illustrative example. The ingredient availability at the suppliers is given in Table 1, 
and the procurement costs for all ingredients is 1/unit. The transportation costs are given in Table 
2, and the demand is given in Table 3. The weekly storage costs are 0.5/unit. For all SKUs, the 
production rate on mixing and packing lines is 1 unit/hr, the set-up time is 0.5 hr, the set-up costs 
is 15, and the missed sales costs are 25/unit. All products belong to the same mixing, packing 
and SKU family, and therefore, family set-up times or costs are not considered. 

 
 

Table 1: Weekly available supply 

 Ingredient 1 Ingredient 2 Ingredient 3 Ingredient 4 
Supplier 1 20 - - 12 
Supplier 2 - 5 12 - 
 
 
Table 2: Transportation costs per unit between suppliers(S), factories(F), warehouses(W) and retailers(R) 

 F1 F2   W1 W2   R1 R2 
S1 0.2 0.6 F1 0.3 0.5 W1 0.3 0.5 
S2 0.6 0.2 F2 0.5 0.3 W2 0.5 0.3 
 
 
Table 3: Demand in the retailers. The demand is the same in both retailers. 

 Period 1 Period 2 Period 3 Period 4 
SKU 1 1 1 5 1 
SKU 2 0.5 0.5 2.5 0.5 
SKU 3 1.5 1.5 6.5 1.5 
SKU 4 3 3 3 3 
 

The production of one unit of SKU 1 requires one unit of ingredient 1. Similarly, the 
production of SKUs 2-4 require one unit of ingredients 2-4. Since the illustrative example is used 
to demonstrate the algorithm based on the production decisions, it does not include the storage 
capacity constraints or safety stock constraints. The initial penalty costs are set at 0.1, and a 
penalty increase of 100% per iteration is used. Because the illustrative example contains 4 SKUs, 
each iteration contains 4 parts, and the penalty increase is thus approximately 18.9% after each 
SKU. 

In the first step of the algorithm, the set-up variables are relaxed, and the penalty costs are 
set to 0. This leads to the production plan shown on the left side of Figure 8. Because of the 
relaxed set-up costs and the zero capacity violation costs, the optimal production plan exactly 
meets the demand in each week. In addition, to minimize the transportation costs, SKU 1 and 4 
are produced in factory 1, and SKU 2 and 3 are produced in factory 2. The solution obtained in 
the first step of the algorithm is infeasible since the production capacity of factory 2 is violated in 
the third week.  
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Figure 8 shows the production plans obtained in the first iteration of the second step of 
the algorithm. In this figure, iteration i.k refers to SKU k at iteration i. In iteration 1.1, the 
decisions for SKU 1 are re-optimized. In the new production plan, the complete 4-week demand 
of SKU 1 is produced in the first week. This minimizes the set-up costs, which are no longer 
relaxed in step 2 of the algorithm. Similarly, the production of SKU 2 is moved to the first week 
in iteration 1.2. After iterations 1.3 and 1.4, SKU 3 and 4 are produced in weeks 1 and 3. 
Producing all of SKU 3 and 4 in the first week would reduce the set-up costs even further. 
However, the increased ingredient and production capacity penalty costs combined with the 
increased inventory costs would outweigh the reduction in set-up costs. The solution obtained 
after the first iteration of the second step is still infeasible as the production capacity is violated 
in week 1 for factory 1 and in weeks 1 and 3 for factory 2. 
     

 
Figure 8: Production plans for the illustrative example obtained in step 1 and the first iteration of step 2 of the 
algorithm 
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Figure 9: Production plans for the illustrative example obtained in the various iterations of step 2 of the algorithm. 
Only those iterations where the production plan changed are included. 

In each iteration of step 2, each SKU is re-optimized once, and the penalty costs increases 
after each optimization. Only those optimizations that resulted in changes in the production plan 
will be discussed, and these production plans are given in Figure 9. The first change occurs in the 
iteration 3.1. In this optimization, the penalty costs are sufficiently high to force part of the 
production of SKU 1 to be reallocated to the third week. The additional set-up costs are less than 
the penalty and inventory costs would have been otherwise. The amount produced in the first 
week is exactly enough to meet the demand in the first two weeks. It should be noted that this 
leads to a small capacity violation in week 3, where the total required time is now 24 hours of 
production and 1 hour of set-ups. However, for the current penalty costs, this small capacity 
violation is less expensive than the alternatives. 

In iteration 3.2, the penalty costs are sufficiently high to force SKU 2 to be reallocated. 
Interestingly, it is reallocated to the first factory. While this increases the transportation costs, it 
prevents an additional set-up. It should again be noted that this leads to a small 1.5 hour capacity 
violation at the first factory. In iteration 4.3, half a unit of SKU 3 is moved from week 3 to week 
1. This removes the capacity violation in factory 2 in week 3. The increase in inventory costs is 
less than the penalty costs would have been. 

The next change occurs in iteration 5.2. In this optimization the capacity violation in 
factory 1 week 1 is removed by moving most of the production of SKU 2 to week 2 factory 2. 
Not all of the production of SKU 2 is moved since that would lead to missed sales in the first 
week. While some production capacity is available in factory 2 week 1, the available capacity is 
not sufficient to meet all week 1 SKU 2 demand. Therefore, a small amount of SKU 2 is still 
produced in factory 1 in week 1. Finally, in iteration 6.1 the small capacity violation in factory 1 
week 3 is resolved by moving 1 unit of SKU 1 to factory 1 week 1. At this point a feasible 
solution is obtained, and the algorithm terminates 

The solution obtained with the algorithm for the illustrative example is identical to the 
solution that would be obtained with the full model. Therefore, for this problem the algorithm 
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obtains the optimal solution. However, it should be noted that the algorithm offers no guarantee 
of global optimality.  

6. SKU Decomposition Algorithm Results 
6.1. Penalty Settings 

The quality of the solution obtained by the algorithm depends on the selection of the 
penalty settings. These initial penalty settings also influence the required CPU time. A feasible 
solution can be obtained more quickly by using high initial penalty costs. Using high initial 
penalty costs, most infeasibilities will already be resolved in the first iteration since the costs of 
capacity violations will be high. However, this may cause the “wrong” SKUs to be reallocated 
since the penalty costs could be sufficiently high such that any SKU would be reallocated to 
prevent incurring capacity violation penalty costs. In this case the algorithm will reallocate the 
first few SKUs that are considered, whereas it might be less expensive to reallocate some of the 
other SKUs.  Alternatively, a low initial penalty cost will yield better solutions but at a higher 
computational costs.  

Similarly, better solutions can also be obtained by using a low penalty increase, although 
again at a computational costs. A feasible solution can be obtained faster by using a high penalty 
increase because fewer iterations are required to reach a sufficiently high penalty cost to remove 
the infeasibilities. Nevertheless, this higher penalty increase may lead to worse solutions.   

As an example for seeing the effect of the penalty increase, consider the situation where 
SKU 1 and 2 would ideally both be allocated to the same factory. However, allocating both 
would exceed the production capacity, and the optimal decision would be to allocate SKU 1 to 
this factory and SKU 2 to another.  

The basis of the algorithm is that initially both are allocated to the factory. Then by 
slowly increasing the penalty costs, they eventually become sufficiently high to reallocate one of 
the two. If a small penalty increase is used, then at a certain iteration the penalty costs is 
sufficiently high to force SKU 2 to be reallocated but not high enough to force SKU 1 to be 
reallocated. However, if a large penalty increase is used, it is possible that at one iteration neither 
of the two would be forced to be reallocated, while in the next iteration both would be forced to 
be reallocated. In that scenario SKU 1 would be reallocated because it is considered first. 

Therefore, it is important to carefully select the penalty settings to obtain a good balance 
between the total required CPU time and the solution quality. The 10 SKU case has been 
optimized using various penalty settings. The initial penalty was varied between 0.05 and 5, and 
the penalty increase was varied between 5% and 500% per iteration. The results are summarized 
in Figure 10. Cost increase denotes the increase in costs for the solution obtained with the 
algorithm compared to the solution obtained with the full model. The CPU time is the total 
required CPU time until a feasible solution was obtained.  
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Figure 10: Total CPU time ( ) and increase in costs ( ) of the algorithm compared to the full model for various 
penalty settings 

It can be seen that all solutions obtained with the algorithm have a higher costs than the 
solution obtained with the full model. However, with the right penalty settings good solutions 
can be obtained with the algorithm. In fact, the best solution obtained with the algorithm had a 
cost increase of only 1.59%. On the other hand, for almost all penalty settings the CPU time 
required by the algorithm is far less than the 74 minutes required by the full model.   

A very high initial penalty of 5 leads to poor solutions for any penalty increase. This is 
because the high initial penalty costs force all infeasibilities to be removed in the first iteration. 
Even though these solutions can be obtained within a minute, such a high initial penalty is a poor 
choice because the total costs increase by approximately 12%.   

On the other hand, good solutions can still be obtained with a very high penalty increase, 
as long as the initial penalty is small. For example, the solution obtained with an initial penalty 
of 0.05 and a penalty increase of 500% has a cost increase of 2.5%. Nevertheless, with smaller 
penalty increases even better solutions can be obtained at only slightly increased computational 
costs.   

Especially for small initial penalty values, a penalty increase of 50% offers a good trade-
off between solution quality and required computational time. With a penalty increase of 50%, 
the required computational time is relatively constant for initial penalty values between 0.05 and 
0.2. Therefore, the combination of an initial penalty value of 0.05 and a penalty increase of 50% 
is a suitable penalty setting. For the 10-SKU case, the algorithm obtained a solution with a cost 
increase of 1.99% in 472 seconds with these penalty settings. 

It should be noted that the best initial penalty depends on the data. However, we found 
that as long as the data is in the same range, the best penalty settings remain reasonably constant. 
Because the data in all of our cases is generated between the same upper and lower bounds, we 
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have used an initial penalty of 0.05 and a penalty increase of 50% for all cases. When using those 
penalty settings in the optimization of the 10-SKU case, the algorithm spent 10s in the first step. 
The second step required 8 iterations for a total of 462s. Because the penalty is set to zero in the 
first step, the time spent in the first step is independent of the penalty settings. Therefore, the 
differences in required CPU time between the various penalty settings originate from the second 
step of the algorithm. 

Each submodel in the algorithm contains approximately 6917 constraints, 20593 
continuous variables and 208 binary variables. The exact number of continuous variables and 
constraints varies slightly between the submodels. For example, the number of constraints 
describing the availability of ingredients varies because only those ingredients that are used in 
the production of the current SKU are included in the submodel. 

 
6.2. Solution Quality 

As discussed in the previous section, the solutions obtained with the algorithm have 
slightly higher total costs than the solution obtained with the full model. In this section, we will 
compare the characteristics of both solutions in more detail. The solution quality of larger cases 
will be discussed at the end of this section. 

Figure 11 shows which SKUs are produced in factory 1 in each week in the solution 
obtained by the algorithm. When this figure is compared with Figure 5, it can be seen that the 
same SKUs are allocated to factory 1 in the full model. However, it can also be seen that the 
exact timing of the allocation decisions varies. Nevertheless, most differences in these timing 
decisions have a limited impact on the costs. For example, only the storage costs differ between 
producing SKU 2 in week 33 and SKU 3 in week 37 and producing them the other way around. 
Because the differences in unit storage costs between the various SKUs are very small, the 
impact on the total costs is very small as well. 
 

 
Figure 11: Gantt Chart indicating which product is produced in each week in factory 1 in the algorithm solution 

 
Even though the timing of the individual SKUs varies, it can be seen in Figure 12 that the 

total inventory buildup is very similar. As a result, the total inventory costs are only slightly 
higher in the solution obtained with the algorithm; they account for only 8% of the increase in 
total costs. The majority of the total cost increase is caused by the set-up costs (47%) and the 
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transportation costs (39%). The safety stock penalty contributes 3% and the procurement and 
missed sales 1% each. 

 

 
Figure 12: Profile of the total inventory of all SKUs in all storage facilities over the time horizon 

It is more difficult to determine the quality of the solutions obtained by the algorithm for 
cases containing 25 or more SKUs since the full model is intractable for these cases. However, 
when the set-up variables are relaxed, the full model is able to optimize cases containing up to 
100 SKUs. Therefore, despite some limitations in this comparison, LP relaxations of both the full 
model and the algorithm were used to optimize cases containing between 10 and 100 SKUs. An 
overview of the increase in costs when using the algorithm instead of the full model is given in 
Table 4. It should be noted that the submodel constraints and variables given in Table 4 are the 
typical number of constraints and variables in a submodel for an SKU produced from 3 
ingredients. The exact number may vary depending on data such as the number of ingredients 
used in the production of the current SKU. 

 
Table 4. Computational results for cases containing between 10 and 100 SKUs. In all cases the set-up variables 
were relaxed in both the full model and the algorithm. The cost increase is for the solution obtained with the 
algorithm compared to the solution obtained with the full model.  

Number 
of 

SKUs 

Full Model  Algorithm 
Constraints Variables CPU 

Time 
 Submodel 

Constraints 
Submodel 
Variables 

Total 
CPU time 

Cost 
Increase 

10 41,809 185,589 28s  6,917 20,593 70s 0.95% 
25 90,169 425,829 153s  6,917 20,593 366s 1.56% 
40 138,529 666,069 384s  6,917 20,593 452s 1.32% 
50 170,769 826,229 611s  6,917 20,593 648s 1.40% 
60 203,009 986,389 1507s  6,917 20,593 946s 0.93% 
75 251,369 1,226,629 9278s  6,917 20,593 1618s 3.09% 
90 299,729 1,466,869 4959s  6,917 20,593 2030s 0.71% 

100 331,969 1,627,029 3782s  6,917 20,593 1188s 0.78% 
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Clearly, the data set influences the optimality gap of the solution obtained by the 
algorithm. This optimality gap is the difference in costs between the solution obtained by the 
algorithm and the full model. However, for all cases, the optimality gap is within a few percent. 
Moreover, there does not seem to be a relation between the number of SKUs and the optimality 
gap. This is particularly important because a realistic case could contain thousands of SKUs. 
While it should be noted that the relaxation of binary variables may influence the optimality gap, 
it seems unlikely that including binary variables would introduce a strong correlation between 
the number of SKUs and the optimality gap of the algorithm. Therefore, we conclude that while 
the algorithm cannot guarantee global optimality, the solutions it obtains are within a few percent 
of optimality.  

 
6.3. Required CPU time 

The advantage of the algorithm is that it is computationally much more efficient than the 
full model. It was shown in Section 6.1 that the algorithm is already more efficient than the full 
model for a small case containing only 10 SKUs. However, the main advantage of the algorithm 
is that it can solve cases that are far larger than those that can be solved with the full model. 
While the full model is intractable for cases containing 25 or more SKUs, we have used the 
algorithm to solve cases of up to 1000 SKUs.  

Not only is the algorithm capable of solving these large cases, but the required 
computational time scales well with the number of SKUs because the size of the submodels is 
independent of the number of SKUs. Whether the problem contains 10 or 100 SKUs, each 
submodel contains approximately 6917 constraints, 20,593 continuous variables and 208 binary 
variables. As a result, the only difference between cases with 10 and 100 SKUs is that the 
number of submodels increases by a factor 10. Consequently, the duration of each iteration is 
approximately 10 times longer, and thus the total required computational time also increases by a 
factor 10. However, for extremely large cases containing 500 or 1000 SKUs, the required 
computational time increases more than linearly. While the time spent optimizing each submodel 
remains constant, there is a significant time loss in between the optimizations of submodels. 
Nevertheless, cases containing 500 and 1000 SKUs could still be solved with the algorithm. 

 
Table 5. Required CPU time of the algorithm for cases containing between 10 and 1000 SKUs. 

Problem Size Required CPU time 
10 SKU 8 minutes 
25 SKU 22 minutes 
50 SKU 28 minutes 
75 SKU 60 minutes 
100 SKU 102 minutes 
150 SKU 162 minutes 
500 SKU 916 minutes 
1000 SKU 3426 minutes 

7. Conclusions 
An MILP model was developed for the tactical planning in the FMCG industry. This 

MILP model was used to optimize a case containing 10 SKUs. However, a realistic case could 
contain thousands of SKUs, and for such a case the MILP model is prohibitively large. 
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Therefore, an SKU-decomposition algorithm was proposed. In this algorithm, submodels 
containing a single SKU are optimized sequentially while a penalty cost is introduced for 
violating the capacity. This penalty cost is increased after each optimization, and eventually it 
becomes sufficiently high to obtain a feasible solution. While there is no guarantee of global 
optimality, this feasible solution is typically within a few percent of the global optimum. 
Moreover, the algorithm is computationally efficient. Even for the small 10 SKU case the 
required CPU time could be reduced by a factor 9 by using the algorithm instead of the full 
model. Furthermore, the algorithm was able to optimize cases of a realistic size containing up to 
1000 SKUs.  
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Nomenclature 
 
Indices 
dc  Distribution centers 
f  Factories 
fam  SKU families 
h  Ingredients 
i  SKUs 
mfam  Mixing families 
pfam  Packing Families 
r  Retailers 
SKU  Current SKU 
t  Weeks 
w  Warehouses 
 
Subsets 
FAMpfam SKU families belonging to packing family pfam 
FAMIi  SKU family to which SKU i belongs. 
HIi  Ingredients that are required for the production of SKU i. 
IFfam  SKUs belonging to SKU family fam 
IMmfam  SKUs belonging to mixing family mfam 
IPpfam  SKUs belonging to packing family pfam 
MIi  Mixing family to which SKU i belongs 
 
 
Variables 
INVDCi,dc,t Amount of SKU i stored in distribution center dc in week t  
INVIngh,f,t Inventory of ingredient h at factory f in week t 
INVWHi,w,t Amount of SKU i stored in warehouse w in week t 
Prodi,f,t  Amount of SKU i produced in factory f in week t  
SSVioDCi,dc,t Amount of SKU i short of the safety stock in distribution center dc in week t 
SSVioWHi,w,t Amount of SKU i short of the safety stock in warehouse w in week t 
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TransDCRi,dc,r,t Amount of SKU i transported from distribution center dc to retailer r in 
week t 
TransFWi,f,w,t Amount of SKU i transported from factory f to warehouse w in week t 
TransIngh,f,s,t Amount of ingredient h procured from supplier s to factory f in week t 
TransWDCi,w,dc,t Amount of SKU i transported from warehouse w to distribution center dc 
in week t  
WSUi,f,t  Binary variable, indicates a set-up of SKU i in factory f in week t 
YFAMSUfam,f,t 0-1 continuous variable, indicates if there is a set-up of SKU family fam in factory 
f in week t 
γh,s,t  Slack variable, represents the procurement amount that exceeds the available 

capacity of ingredient h at supply s in time period t. 
γ2mfam,f,t  Slack variable, represents the production amount that exceeds the available 

capacity of mixing family mfam at factory f in time period t. 
γ3pfam,f,t  Slack variable, represents the production amount that exceeds the available 

capacity of packing family pfam at factory f in time period t. 
γ4w,t  Slack variable, represents the inventory amount that exceeds the available 

capacity of warehouse w in time period t. 
γ5dc,t  Slack variable, represents the inventory amount that exceeds the available 

capacity of warehouse dc in time period t. 
 
 
 
Parameters 
CostIngh,s,t Unit cost of ingredient h at supplier s in week t 
Di,r,t  Demand of SKU i at retailer r in week t 
DCCapdc Available storage capacity in distribution center dc 
FAMSUCostfam Average set up cost for SKU family fam 
FAMSUTfam Average set up time for SKU family fam 
INVDCPi,dc,t Amount of SKU i stored in distribution center dc in week t. This parameter is used 

when the decisions for SKU i are frozen in the current optimization.  
INVIngCAPf Available storage capacity for ingredients at factory f  
INVIngPh,f,t Inventory of ingredient h at factory f in week t. This parameter is used when the 

decisions for ingredient h are frozen in the current optimization.  
INVWHPi,w,t Amount of SKU i stored in warehouse w in week t. This parameter is used when 

the decisions for SKU i are frozen in the current optimization.  
MaxSupplyh,s,t Available supply of ingredient h at supplier s in week t 
MixTimemfam,f Available mixing time at factory f for SKUs that are part of mixing family mfam  
MixRatei,f Mixing rate of SKU i in factory f 
MSpeni,r,t Penalty costs per unit of missed sales of SKU i at retailer r in week t 
PackRatei,f Packing rate of SKU i in factory f  
PackTimepfam,f Available packing time at factory f for SKUs that are part of packing family pfam 
ProdPi,f,t Amount of SKU i produced in factory f in week t. This parameter is used when the 

decisions for SKU i are frozen in the current optimization.  
Recipeh,i Amount of ingredient h consumed per unit produced of SKU i  
SCIngh,f Storage costs of ingredient h at factory f  
SCDCi,dc Storage costs of SKU i at distribution center dc 
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SCWHi,w Storage costs of SKU i at warehouse w 
SSDCi,dc,t Minimum safety stock of SKU i in distribution center dc in week t 
SSWHi,w,t Minimum safety stock of SKU i in warehouse w in week t 
SSpenCost Safety stock violation penalty cost 
SUCosti Average set-up cost for SKU i 
SUTi  Average set-up time for SKU i 
TCDCRdc,r Transportation cost between distribution center dc and retailer r 
TCFWf,w Transportation cost between factory f and warehouse w 
TCSFf,s  Transportation cost between supplier s and factory f 
TCWDCw,dc Transportation cost between warehouse w and distribution center dc 
WHCapw Available storage capacity in warehouse w 
WSUPi,f,t Binary parameter, indicates a set-up of SKU i in factory f in week t. This 

parameter is used when the decisions for SKU i are frozen in the current 
optimization.  

YFAMSUPfam,f,t Binary parameter, indicates if there is a set-up of SKU family fam in 
factory f in week t. This parameter is used to indicate a required set up for one of 
the SKUs of SKU family fam that are frozen in the current optimization.  

 
 

Appendix A 
In this Appendix the constraints of the submodels of the SKU decomposition algorithm 

are given. Note that the domain of the constraints is limited to the current SKU (constraints (24), 
(27)-(33)), to the product/mixing/packing family to which the current SKU belongs (constraints 
(20)-(23)), or to the ingredients which are consumed in the production of the current SKU ((17) 
and (19)). In the same way, the domain of all variables is limited. Note also that , ,h s tγ , , ,mfam f t2γ , 

, ,pfam f t3γ , ,w t4γ  and ,dc t5γ  are the slack variables. In constraints (20) and (21) the slack variables 
are divided by the average mixing/packing rate. Because of this the unit of each slack variable is 
equal and we can apply the same penalty cost to all slack variables.  
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