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Abstract 

In this paper we address the optimization of the tactical planning for the Fast Moving 
Consumer Goods industry using an MILP model. Shelf-life restrictions are introduced into this 
model to prevent unnecessary waste and missed sales. Three methods for implementing shelf-life 
restriction are compared. In the direct method the age of each product is tracked. While this 
method can provide optimal solutions, it is computationally inefficient. In the indirect method, 
products are forced to leave inventory at the end of their shelf-life. For supply chains consisting 
of two or more storage echelons this method cannot guarantee optimality. Nevertheless, the 
solutions obtained with the indirect method were always within a few percent of optimality. 
Moreover, on average, the computational time was reduced by a factor 32 when using the 
indirect method instead of the direct method. Finally, the hybrid method models the product age 
directly in the first storage stage, while considering the shelf-life indirectly in the second stage. 
The hybrid method obtains near-optimal solutions and, on average, the computational time is 
reduced more than 5 times compared to the direct method. Cases of up to 25 SKUs were 
optimized using the direct method, up to 100 SKUs using the hybrid method, and up to 1000 
SKUs using the indirect method. 
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1. Introduction 
 
Due to the increasingly competitive global market, companies with a global supply chain 

have to continuously optimize their supply chain operations. Optimizing the supply chain 
operations could, for example, allow a company to reduce the inventory while maintaining high 
customer satisfaction levels (Papageorgiou,2009). Grossmann (2005) and Varma et al. (2007) 
review the research on Enterprise-Wide Optimization (EWO), which focuses on optimizing the 
procurement, production and distribution operations.  

 In this paper, we consider these procurement, production and distribution operations over 
a one year horizon. In specific, we want to optimize these decisions on the tactical planning level 
for a Fast Moving Consumer Goods Company (FMCG). Examples of FMCG are yoghurt, ice 
cream and shampoo.  

FMCG are products that are replaced/used up within a relatively short period, which 
depending on the product ranges from days to a year. They are usually quickly substituted when 
not available, and they are generally produced in large quantities. Because of these large 
quantities, they are profitable despite typically low profit margins. Therefore, optimizing the 
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tactical planning of a FMCG company is important to ensure that the products remain profitable, 
while ensuring that they are available in the right place at the right time. 

For example, Kellogg greatly reduced its production, distribution, and inventory cost 
through the use of Linear Programming (LP) planning models (Brown et al., 2001). For an 
extensive review on quantitative optimization methods for the food supply chain, we refer to 
Akkerman et al. (2010). They mention that the perishability of the products is an important 
challenge in the optimization of the operations in a food supply chain.  

Considering this perishability is important because product freshness is one of the 
primary concerns for consumers when buying food products. Consumers can judge the freshness 
of a product either by evaluating the sensory qualities of the product or by the Best-Before-Date 
(BBD) listed on the packaging. Since many products are fully packed, the consumer must often 
rely on calculating the remaining shelf-life based on this BBD. (Entrup, 2005)  

Shelf-life is defined by the Institute of Food Science & Technology (1993) as “the time 
during which the food product will remain safe, be certain to retain the sensory, chemical, 
physical and microbiological characteristics, and comply with any label declaration of 
nutritional data.” 

Because the product freshness is important for consumers, the retailers will require the 
products they receive to have a certain minimum remaining shelf-life. Therefore, only part of the 
shelf-life can be used in the supply chain up to the retailers. For the remainder of this paper, 
shelf-life refers to the part of the shelf-life that may be used in the supply chain before the 
retailers. 

If the shelf-life is not considered in the tactical planning problem, part of the inventory 
could exceed its shelf-life. This would not only result in disposal costs, but the reduced inventory 
might not be sufficient to meet the demand, which would lead to missed sales. Therefore, 
considering shelf-life limitations in the tactical planning problem is crucial. Nevertheless, the 
implementation of shelf-life limitations in the tactical planning has only received limited 
attention in literature. 

Much of the research regarding implementing shelf-life limitations focuses on adding 
shelf-life constraints to the Economic Lot Scheduling Problem (ELSP). An overview of the 
major contributions in this area is given in Soman et al. (2004) and Entrup et al. (2005). 
However, these models typically assume a constant demand rate. This is unrealistic for the food 
industry, which has many seasonal products and intense promotional activities. (Entrup et al., 
2005).  

Another part of the research in this area focusses on the quality degradation over time. 
Entrup (2005) integrates shelf-life in the advanced planning for fresh food industries. He relates 
the revenue of a product to its remaining shelf-life. The longer the remaining shelf-life, the more 
valuable the product. The shelf-life is modeled by tracking the production day and selling day of 
each product.  

Farahani et al. (2011) propose an iterative scheme that integrates the production and 
distribution decisions for a perishable food company. They compare their integrated approach to 
a sequential planning approach. A penalty is added to the objective function for the quality decay 
of the products. They assume a linear decay for each day that a product remains in storage. 
Ahumada and Villalobos (2009) consider a similar linear decay penalty for the production and 
distribution of fresh produce. In addition, they limit the maximum shelf-life based on the harvest 
period and the sales period. 
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Rong et al. (2011) optimize a food supply chain, while managing the food quality. The 
quality degradation per period is linearly dependent on the temperature, which can be varied for 
each location. The shelf-life is then considered by imposing a minimum quality requirement. 

Amorim et al. (2012) consider the shelf-life using two methods. In the first method, the 
maximum shelf-life is enforced directly through the production and sales dates of the products. 
In the second method, similar to Rong et al. (2011), they adjust the remaining shelf-life in each 
period according to the storage conditions. They use two objective functions. In the first one, the 
overall costs are minimized. In the second objective, the remaining shelf-life of the products sent 
to the distribution centers is maximized. Using these two objectives, they consider the trade-off 
between costs and the value of freshness. 

 Eksioglu and Jin (2006) optimize the tactical planning for perishable products in a two-
stage supply chain, consisting of production facilities and retailers. They add a constraint to 
ensure that the inventory at a production facility in any period cannot exceed the amount that is 
sent to the retailers in the next X periods, where X is the shelf-life. However, their model 
formulation limits the retailers to receiving product from a single factory.   

Gupta and Karimi (2003) consider the shelf-life of intermediate products in the short-term 
scheduling of a two-stage multiproduct process. They introduce a constraint that forces the 
second stage processing of a batch of product to start before the end of the first stage processing 
of a product lot plus the shelf-life of the product. Using a big-M formulation, they relax this 
constraint for second stage batches that are not produced from this first stage lot.  

Finally, Susarla and Karimi (2012) optimize the tactical planning for pharmaceutical 
companies while considering the shelf-life. They directly model the age of each product, and set 
the maximum age equal to the shelf-life.  

In summary, when shelf-life is considered in literature, it is typically considered directly: 
Either by tracking the age of products, by tracking the production and sales dates, or through the 
product quality. While directly tracking the shelf-life is accurate, it is relatively inefficient, as we 
will show in this paper. Therefore, it might not be a tractable method for larger, more 
realistically sized problems. In this paper, we propose two other, computationally more efficient, 
methods that also accurately track the shelf-life.  

The remainder of this paper is organized as follows. The problem is defined in Section 2. 
In Section 3, the base tactical planning MILP model without shelf-life constraints is given. 
Section 4 introduces the three methods to include shelf-life restrictions into this tactical planning 
model. The results are discussed in Section 5, and the conclusions are drawn in Section 6. 

2. Problem Definition 
Given is a set of Stock-Keeping Units (SKUs). These SKUs are products that may differ 

in composition and/or packaging. Given is also a supply chain consisting of suppliers, factories, 
warehouses, distribution centers and retailers. The operation of the supply chain is considered 
over a one year horizon that is divided into 52 weekly time periods to account for the seasonality 
of the demand. 

The objective is to minimize the total costs of operating the supply chain. The costs 
include the procurement costs, set-up costs, transportation costs, inventory costs, safety stock 
violation costs, SKU waste disposal costs, and missed sales costs. For each week, the availability 
and cost of procuring the ingredients is known for each supplier. The initial ingredient inventory 
and the ingredient inventory capacity of all factories are given. Using known recipes, SKUs are 
produced from these ingredients at the factories. The production process is a two-stage make and 
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pack production process where either stage could be the bottleneck depending on the selected 
SKUs. The mixing and packing rates are known for all SKUs in all factories, and the available 
mixing and packing time is given for each factory as well. Each SKU that is produced in a 
factory in a week requires a given set-up time. In addition, all SKU families from which at least 
one SKU is produced require a given family set-up time. 

There is no storage of SKUs at the factories and SKUs must, therefore, be transported to 
one of the warehouses in the same week they are produced. The initial inventory and inventory 
capacities of the warehouses and distribution centers are known. A desired safety stock level is 
given for each SKU in each location. The storage costs and the safety stock violation costs are 
also given.  

The transportation costs between all facilities in the supply chain are known. An SKU can 
only be transported from one echelon of the supply chain to the next; it cannot skip an echelon. 
All SKUs must leave the supply chain before the end of their shelf-life. The shelf-life is known 
for each SKU. Any SKU that remains in the supply chain for longer than its shelf-life will 
become waste. The disposal cost of this SKU waste is given. Finally, a forecast for the weekly 
demand is given as well as costs for missed sales. It is not allowed to have a backlog of demand. 
Either the demand is met in the week that it occurs in, or missed sales costs are incurred.  

3. Tactical Planning Model 
This problem can be represented by an MILP model. For this model we start with the 

MILP model by van Elzakker et al. (2013), which describes this problem without considering the 
shelf life restrictions. An overview of this model will be given below and afterwards the possible 
methods for introducing shelf-life constraints into this model will be discussed. 
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Constraint (1) limits the procurement by the availability of supply. Constraint (2) limits 
the storage of ingredient by the storage capacity and constraint (3) is the inventory balance. 
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Constraints (4) and (5) ensure that the available mixing and packing time is not exceeded.  
Constraint (6) dictates that an SKU can only be produced if there is a set-up for this SKU, while 
constraint (7) enforces an SKU family set-up if there is a set-up to at least one of the SKUs of 
this family.  The total weekly transport to the warehouses from a factory is set equal to the 
production in that factory through constraint (8). The storage in warehouses and distribution 
centers is limited by the storage capacity in constraints (9) and (10).  The inventory balances of 
the warehouses and distribution centers are given in constraints (11) and (12), and the safety 
stock violations are calculated through constraints (13) and (14). Finally, the total amount of 
each SKU sent to each retailer is limited by the demand in constraint (15), and the missed sales is 
defined as the retailer demand minus the amount sent to the retailer by constraint (16). The 
objective of the model is to minimize the total cost which, as shown in constraint (17), is the sum 
of the procurement, inventory, transport, safety stock violation, set-up, and missed sales costs. 
For a more detailed description of this model we refer to van Elzakker et al. (2013).  

4. Shelf-Life  
We consider three methods of implementing the shelf-life restrictions into the tactical 

planning model.  
 

4.1. Direct Shelf-Life Implementation 
In the direct shelf-life implementation, the shelf-life is considered directly. An additional 

index a, the age of an SKU, is introduced for all inventory and transportation variables. This 
index represents the number of weeks since an SKU has been produced. As shown in Figure 1, 
this method keeps track of the age of each SKU. When the shelf-life is considered in literature, it 
is typically considered using this direct shelf-life implementation. For example, Susarla and 
Karimi (2012) directly model the age of the products in their supply chain to enforce shelf-life 
restrictions.  

Warehouse
(weeks in Storage)

Distribution Center
(weeks in Storage)

in from 
Factories

to Retailers
to Retailers
to Retailers1 week

2 weeks
3 weeks

1 week
2 weeks
3 weeks

 

Figure 1. Overview of the direct shelf-life method for an SKU with a shelf-life of 3 weeks 

 For the direct shelf-life implementation, the following constraints are introduced. The 
total inventory of all SKUs i of any age a cannot be greater than the inventory capacity in any 
location at any time. 
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The inventory of an SKU i with an age of one week in a warehouse w is equal to the 
incoming amount from the factories minus the amount of SKU i that is one week old that is sent 
on to the distribution centers. 
 , , , , , , , , , ,   , , , 1i w t a i f w t i w dc t a

f dc
INVWH TransFW TransWDC i w t a= − ∀ =∑ ∑  (20) 
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sent to the distribution centers, minus the amount that becomes waste. This waste variable is only 
defined for SKUs with an age a equal to their shelf life since it is assumed that no SKUs will be 
disposed unless they have reached the limit of their shelf-life. 
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The inventory of an SKU i with an age of a weeks in a distribution center dc is equal to 
inventory that was a-1 weeks old in the previous week, plus the incoming amount from the 
warehouses that is a weeks old, minus the amount that that is sent to the retailers that is a weeks 
old, minus the amount that becomes waste. Similarly to the warehouses, the waste variable is 
only defined for SKUs that have reached the end of their shelf life.  
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The safety stock violation in a location is larger than or equal to the safety stock minus 
the total inventory level of an SKU in that location. 
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The total amount of SKU i of all ages sent to a retailer is limited by the demand at the 

retailer.  
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Finally, the missed sales are equal to the retailer demand of SKU i minus the total amount 
of all ages of this SKU sent to this retailer. 
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These constraints replace constraints (9)-(16) of the base tactical planning model. In 
addition, a cost term for disposing waste is added to the objective function. While the direct 
shelf-life implementation allows the tactical planning to be optimized considering the exact 
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shelf-life limitations, it also greatly increases the model size. Therefore, we also consider two 
other options for modeling the shelf-life. 

 
4.2. Indirect Shelf-Life Implementation 

Instead of tracking the age of all SKUs directly, we can also introduce constraints that 
force an SKU to leave the supply chain at the end of its shelf life. For a supply chain with a 
single storage echelon such constraints are relatively straight forward as shown in Figure 2. For 
simplicity the initial inventory and the waste streams are assumed to be zero in this example.  

 
 

1
2
3
4
5

Week 1
Week 2
Week 3
Week 4

Week 5

in from 
Factories Storage

A
B
C
D
E

Out to 
Retailers

No constraint

No constraint
1           ≤ A + B + C
1+ 2      ≤ A + B + C + D   
1+ 2 +3 ≤ A + B + C + D + E

 

Figure 2. Example of the indirect shelf-life constraints for a supply chain with a single storage echelon and an SKU 
with a 3-week shelf life 

The incoming SKUs from the factories in week 1 have an age of 1 week at the end of 
week 1. At the end of week 3, these SKUs have reached their maximum shelf life of 3 weeks. 
Therefore, the sum of the amount sent to the retailers in weeks 1-3 (A+B+C) must be at least as 
large as the amount that was received in week 1. It could be larger, since part of the SKU that 
was received in weeks 2 and 3 could already be sent on to the retailers. At the end of week 4, the 
SKUs that arrived in week 2 have reached the end of their shelf-life and we, therefore, know that 
the total amount sent to the retailers in weeks 1-4 must be at least sufficient to cover the 
incoming SKUs in weeks 1-2. Similarly, the outgoing flow in weeks 1-5 can be coupled with the 
incoming flow in weeks 1-3. This concept is similar to the concept behind the shelf-life 
constraint introduced by Eksioglu and Jin (2006). They limit the inventory to the amount of 
product that leaves the storage in the next X weeks, with X being the shelf-life of the product. 

 However, in a supply chain with two storage echelons, we would not know the age of the 
SKUs arriving in the second storage stage and we could, therefore, not apply these constraints. 
Nevertheless an indirect shelf-life implementation seems attractive since the model would be 
considerably smaller than a direct shelf-life model. Therefore, we propose to manually divide the 
shelf-life over the storage echelons. 

 For example, if the total shelf-life of an SKU is 4 weeks, we could dedicate 2 weeks to 
the warehouses and 2 weeks to the distribution centers. If an SKU arrives in a warehouse in week 
1, it can thus remain in this warehouse for at most two weeks. Therefore, the SKU that is 
produced in week 1, must be sent to a distribution center by the end of week 2. The SKU that 
arrives in the distribution center in week 2 is at most 2 weeks old by the end of week 2. 
Therefore, it must be sent to the retailers before the end of week 4, when the SKU is at most 4 
weeks old. An overview of this example is given in Figure 3.  
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Shelf Life ConstraintsWarehouse Distribution 
Center

A I
Week 1

B II
Week 2

C III
Week 3

D IV
Week 4

1

2

3

4

1+2     ≤ A+B+C

1+2+3 ≤ A+B+C+D
A      ≤ I+II+III

A+B ≤ I+II+III+IV

Warehouse
Distribution Center

1         ≤ A+B

 

Figure 3. Example of the indirect shelf-life constraints for a supply chain with two storage echelons and an SKU 
with a 4-week shelf-life which is divided into a 2 week warehouse and a 2 week distribution center shelf-life 

The following two constraints ensure that the SKUs will not exceed their shelf-life. The 
part of the initial inventory that reaches the end of its warehouse shelf life before or at the end of 
the current period, plus the amount received from the factories that reaches the end of its 
warehouse shelf life before or at the end of the current period is less than or equal to the amount 
that is transported to the distribution centers until the end of the current period, plus the amount 
that is disposed of before the end of the current period. This constraint ensures that an SKU will 
be disposed of if it is not transported to the distribution centers before the end of its warehouse 
shelf-life. 
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Similarly, a constraint is introduced that ensures that an SKU will be disposed of if it is 
not transported to the retailers before the end of its distribution center shelf-life. 
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In addition, a waste term is added to the inventory balances:  
 , , , , 1 , , , , , , , ,    , ,i w t i w t i f w t i w dc t i w t

f dc
INVWH INVWH TransFW TransWDC WasteWH i w t−= + − − ∀∑ ∑ (29) 
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w r
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The indirect shelf-life model consists of constraints (1)-(10), (14)-(17), and (27)-(30). A 
term for the cost of disposing waste is added to the objective function. The advantage of this 
indirect method is that the resulting models are considerably smaller than those of the direct 
method. In addition, it still ensures that each SKU leaves the supply chain before the end of its 
shelf-life. While we can obtain optimal solutions using the indirect method for a supply chain 
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with a single storage echelon, we cannot guarantee that we will obtain the optimal solution for a 
supply chain with two storage echelons. It might be beneficial for some SKUs to stay in one of 
the storage echelons longer than the maximum we have allocated.  

 
4.3. Hybrid Shelf-Life Implementation 

Therefore, we consider a third method of implementing the shelf-life restrictions. This 
method combines the direct and indirect methods. The age of all SKUs is tracked directly in the 
first stage, but in the second storage stage the shelf-life restrictions are enforced indirectly. The 
number of weeks an SKU may remain in the second storage stage can be calculated from the 
shelf-life minus the age of the SKU when it was sent to the second storage stage. An overview of 
the hybrid shelf-life method is given in Figure 4. 

 

2 weeks
1 week

3 weeks

3
2
1

A

2 weeks
1 week

3 weeks

6
5
4

B

2 weeks
1 week

3 weeks

9
8
7

C

Shelf Life Constraints

1                      ≤ A

1+2+4              ≤ A+B

1+2+4+3+5+7 ≤ A+B+C

Warehouse Distribution 
Center

To Retailer/
Waste

To Retailer/
Waste

To Retailer/
Waste

Week 1

Week 2

Week 3

 

Figure 4. Example of the hybrid shelf-life method for an SKU with a 3-week shelf life 

Similar to the indirect and direct methods, a cost term for disposing of SKUs is added to 
the objective function. The constraints for the hybrid shelf-life model are constraints (1)-(8), (10)
, and (14)-(17) of the base tactical planning model, constraints (18), (20), (21), and (23) of the 
direct shelf-life model, and the following constraints.  

The distribution center inventory of SKU i in the current period is equal to the 
distribution center inventory in the previous period, plus the total amount of this SKU of any age 
received from the warehouses, minus the total amount sent to the retailers, minus the amount that 
is disposed of.  

 
, , , , 1 , , , , , , , , ,

,

                                                                                                                       

i dc t i dc t i w dc t a i dc r t i dc t
w a r

INVDC INVDC TransWDC TransDCR WasteDC−= + − −∑ ∑
 , ,i dc t∀

 (31) 

The part of the initial inventory that reaches the end of its shelf life before or at the end of 
the current period, plus the amount received from the warehouses that reaches the end of its shelf 
life before or at the end of the current period is less than or equal to the total amount that is 
transported to the retailers until the end of the current period, plus the amount that is disposed of 
before the end of the current period. This constraint ensures that an SKU that reaches the end of 
its shelf-life is sent to a retailer or is disposed of. 
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                , ,
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a Shelflife t w t t a Shelflife t t

i dc r t i dc t
r t t t t

INVDCini TransWDC

TransDCR WasteDC i dc t
≥ + − ≤ ≥ − −

≤ ≤

+

≤ + ∀

∑ ∑

∑ ∑
 (32) 

In some cases this constraint might not be sufficient. This constraint enforces that the 
total amount of SKU leaving a distribution center is at least equal to the total amount of SKU 
that was sent to this distribution center that would reach its maximum shelf-life at the end of the 
current period. However, it relies on the assumption that we can always send the SKU with the 
shortest remaining shelf-life to the retailers. However, as will be demonstrated in the following 
example, the SKU with the shortest remaining shelf-life might still be in one of the warehouses. 

In week t, a batch of SKU i with 6 weeks remaining shelf-life is sent to a distribution 
center with no inventory leading up to week t. This batch of SKU is used to meet the retailer 
demand in weeks 1-3. In week 4, a second batch of SKU i is sent to this distribution center. This 
second batch is smaller and already at its maximum shelf-life in week 4. This batch should, 
therefore, immediately leave the distribution center in week 4.  

However, constraint (32) is already met because the first batch is larger, is already sent 
on, and would still have some remaining shelf-life. Therefore, based on constraint (32), the 
inventory at the end of week 4 could be used to meet demand in weeks 5 and 6 as well. However, 
when applying that solution we would discover that we have to dispose of the second batch at the 
end of week 4, and we would thus incur missed sales in weeks 5 and 6. 

The solution obtained with the hybrid method can be corrected to account for this 
problem using the following correction procedure. First, the SKU waste that is not accounted for 
by the hybrid model is identified using a small LP model. This LP model considers only the 
distribution centers and the retailers, and is comprised of the following constraints. 

 The amount of SKU i in distribution center dc in week t with an age of a weeks is equal 
to the amount of this SKU that was in the distribution center last week with an age of a-1, plus 
the amount received from the warehouses, minus the amount sent to the retailers, minus the 
amount that becomes waste. TransWDC is input for this LP model and is thus a parameter set at 
the value obtained from the hybrid model.  

 

 
, , , , , 1, 1 , , , ,

, , , , , , ,        , , ,

i dc t a i dc t a i w dc t a
w

i dc r t a i dc t a i
r

INVDC INVDC TransWDC

TransDCRC WasteDCC i dc t a SL

− −= +

− − ∀ <

∑

∑
  (33) 

The total amount of each SKU sent from each distribution center to each retailer in each 
week must be equal to the amount sent in the hybrid model solution. For the correction model, 
TransDCR is an input parameter obtained from the solution of the hybrid model.  
 , , , , , , ,    , , ,i dc r t a i dc r t

a
TransDCRC TransDCR i dc r t= ∀∑   (34) 

The total amount of each SKU disposed from each distribution center in each week must 
be equal to the amount disposed of in the hybrid model solution. For the correction model, 
WasteDC is an input parameter obtained from the solution of the hybrid model.  
 , , , , ,    , ,i dc t a i dc t

a
WasteDCC WasteDC i dc t= ∀∑   (35) 
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If an SKU remains in inventory at the end of its shelf-life it indicates an infeasibility. 
 , , , , 1,    i dc t i dc t a SLInfeasibility INVDC i,dc,t− == ∀   (36) 

The objective of the LP model is to minimize these infeasibilities. This identifies which 
SKUs exceed their shelf-life in each distribution center in each week. If a batch exceeds its shelf-
life, it should have been sent from the warehouse to the distribution center earlier so that it can 
be used to meet earlier demand.  

 Therefore, in step 2 of the correction procedure, the batches that exceed the shelf-life are 
transported one week earlier from warehouses to distribution centers. Afterwards, the LP model 
is optimized again to identify any remaining infeasibilities. If no infeasibilities remain, the 
decisions of the hybrid model are updated. Otherwise, the batches that exceed their shelf-life are 
transported another week earlier. This procedure is repeated until no infeasibilities remain. 

It should be noted that the age of SKUs sent to retailers is not limited by their shelf-life in 
this correction model. However, if an SKU that is sent to the retailers has exceeded its shelf-life, 
the inventory of that SKU must have reached the end of its shelf-life at some point. The total 
amount of SKUs that reach the end of their shelf-life while still in inventory is minimized in this 
correction procedure. Therefore, an SKU past its expiration date will only be used to meet the 
demand if there is no other option. At the end of the correction procedure, no SKUs will exceed 
their expiration date in inventory, and thus no SKUs past their shelf-life are used to meet 
demand. 

 The corrections might lead to an inventory capacity violation at one of the distribution 
centers. However, this can easily be corrected by sending SKU with a relatively long remaining 
shelf-life to a warehouse with available capacity. Therefore, we allow SKUs to be transported 
back from distribution centers to warehouses in this step. It should be noted that this is rarely 
necessary. Even in those cases where it is required, the amounts sent back from distribution 
center to warehouse are typically very small. An overview of the correction procedure is given in 
Figure 5. 
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Figure 5. Overview of the correction procedure for the hybrid shelf life model 

It should be noted that the hybrid shelf life model may not obtain the global optimal 
solution if the correction procedure is required. Nevertheless, the corrections are typically minor 
and have a very limited impact on the total cost.  

5. Results 
First, these three shelf-life implementation methods have been applied to several 

relatively small case studies. The time horizon in these case studies consists of 52 weekly 
periods, and the supply chain consists of 5 suppliers, 2 factories, 2 warehouses, 4 distribution 
centers and 8 retailers. Each of these case studies contained 10 ingredients and 5 SKUs. The 
SKUs belonged to 2 different mixing families, 4 packing families, and 5 SKU families. 
Afterwards, case studies with a larger supply chain and up to 1000 SKUs are considered. 

Both due to confidentiality, and due to the extremely large amount of data that is 
required, hypothetical data is used in this paper. For example, the location of each facility is 
randomly generated on a grid, and the transportation costs are then calculated based on the 
distance between the locations. Most data is generated from uniform distributions. However, 
some additional limitations are applied. For example, each supplier only has a 33% chance of 
supplying a certain ingredient. But each ingredient must be supplied by at least one supplier. The 
production and storage capacities are chosen such that in the base case they are just sufficiently 
large to meet the demand. The demand is highly seasonal as 80% of the demand occurs in weeks 
40 to 49.  
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5.1. 5 SKU case study results 
All optimizations in this paper have been performed using CPLEX 12.4 in AIMMS 3.12 

on a computer with an Intel(R) Core(TM) i7-3770 CPU @ 3.40 Ghz and with 16 GB. All 
optimizations have been performed with a one percent MIP optimality tolerance unless specified 
otherwise.  

In this section, four models are compared with each other: The tactical planning model 
without shelf-life considerations (No SL), with indirect shelf-life constraints (ISL), with hybrid 
shelf-life constraints (HSL), and with direct shelf-life (DSL) constraints. For the model without 
shelf-life considerations, the total costs are adjusted based on SKUs reaching the end of their 
shelf-life. These SKUs incur disposal cost. Moreover, this typically leads to missed sales as the 
remaining inventory is reduced. For the indirect shelf-life constraints, three shelf-life ratios are 
used. One where 25% of the shelf-life is allocated to the warehouses and 75% to the distribution 
centers, one where 50% of the shelf-life is allocated to both warehouses and distribution centers, 
and one where 75% is allocated to the warehouses and 25% to the distribution centers. 

For the base case, the shelf-life of all SKUs was set to 13 weeks. For the indirect 
methods, the allocation of the shelf life was 3 weeks to the warehouse and 10 to the distribution 
centers, 7 to the warehouses and 6 to the distribution centers, or 10 to the warehouses and 3 to 
the distribution centers. The total storage capacity of the warehouses is equal to the total storage 
capacity of the distribution centers. The results for the base case are given in Table 1. The cost 
increase is the increase in cost of a certain method compared to the best solution obtained with 
any of the methods. 

 
Table 1. Results of the various shelf-life methods for the base 5-SKU case 

Shelf-life method Constraints Variables 
(Binary) 

Required CPU 
time[s] 

Cost increase 
 [%] 

No shelf-life 11,493 23,141 (520) 4 32.12% 
Indirect 3-10  

13,001 
 

24,649 (520) 
20 13.50% 

Indirect 7-6 16 0.25% 
Indirect 10-3 13 2.84% 

Hybrid 19,241 55,849 (520) 75+18 0.02% 
Direct 48,881 180,649 (520) 524 0.00% 

 
First of all, it is clear that the direct shelf-life implementation indeed leads to a 

significantly larger model. The number of constraints is more than 3.5 times larger than in the 
indirect method and more than 2.5 times larger than in the hybrid method. Moreover, the number 
of variables is increased by a factor 7 compared to the indirect method and by a factor 3 
compared to the hybrid method. As a result, the direct method requires considerably more CPU 
time than the other two methods. While all models could be optimized within a reasonable time 
for this base case, it should be noted that the required times will increase drastically for more 
realistically sized cases. 

Secondly, the costs when the shelf-life is not considered are 32.13% higher than the cost 
when the shelf-life is considered directly. Therefore, we conclude that it is extremely important 
that the shelf-life is considered in the tactical planning model. We also see that the corrections 
required by the hybrid method only lead to a cost increase of 0.02%. For the indirect method the 
results vary. If most of the shelf-life is allocated to the distribution centers, a poor solution with a 
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cost increase of 13.50% is obtained. However, if the shelf-life is distributed evenly between the 
warehouses and distribution centers, the costs only increase by 0.25%.  

The main differences between the solutions of the various methods are in the inventory 
profiles. Figure 6 and 7 show that the inventory profiles obtained with the direct and hybrid 
shelf-life models are very similar. The only difference is that in the solution obtained with the 
hybrid shelf-life model, the inventory buildup in the distribution centers starts a few weeks 
earlier. This is caused by the correction procedure, which forces SKUs to be sent earlier from 
warehouses to distribution centers.  

 All models that consider shelf-life start increasing the inventory around week 25. Since 
the peak demand starts in week 40 and the shelf-life is 13 weeks, the first couple of weeks of 
inventory buildup are used to meet the demand until the peak, and the majority is used to meet 
the peak demand. On the other hand, the model that does not consider shelf-life starts building up 
inventory from the first week. Therefore, part of the production in the first 25 weeks exceeds the 
shelf-life and must thus be disposed of. As a result, the total inventory buildup is less than with 
the other models, and a considerably part of the peak demand cannot be met. In fact, 9.6% of the 
total demand cannot be met. 

 

  
Figure 6. The total inventory of all SKUs in the warehouse when using the various models 
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Figure 7. The total inventory of all SKUs in the distribution centers when using the various models 

No SKUs have to be disposed of in the solutions obtained with the indirect, hybrid and 
direct shelf-life models. The hybrid and direct shelf-life models do not incur any missed sales 
costs. However, the indirect shelf-life model incurs 4.6% and 0.3% missed sales when the shelf-
life is allocated in a 3-10 and 10-3 ratio respectively. The reason is that these ratios severely limit 
the flexibility in inventory storage.   

As can be seen in Figure 6, the total inventory that is stored in the warehouses is 
considerably lower when the warehouse shelf-life is set to 3 weeks. This is because three weeks 
of production is considerably less than the total warehouse storage capacity. Therefore, the 
available storage capacity in the warehouses is reduced significantly. While the distribution 
center inventory can be increased slightly, the distribution center capacity is not sufficient to 
account for the difference. As a result, the inventory buildup is insufficient to meet the demand, 
and missed sales are incurred. Similarly, missed sales are incurred with the 10-3 ratio because 
the distribution center capacity is restricted too much.  

 
5.1.1.  Storage capacity ratios 

Therefore, the right shelf-life ratio for the indirect method seems to be the storage 
capacity ratio. In other words, the fraction of the shelf-life allocated to the warehouses should be 
equal to the total warehouse capacity divided by the total storage capacity. To investigate this 
further, we have also optimized the base case with a warehouse:distribution center capacity ratio 
(WH:DC ratio) of 1:3 and a WH:DC ratio of 3:1. A 1:3 ratio indicates that 25% of the total 
storage capacity is in the warehouses and 75% in the distribution centers. The computational 
results are given in Table 2. 

 
Table 2. Computational results for varying WH:DC capacity ratios. 

 Required CPU time[s] Cost increase [%] 
WH:DC storage 

capacity ratio 
 

3:1 
 

1:3 
 

3:1 
 

1:3 

No shelf-life 4s 6s 32.16% 28.30% 
Indirect 3-10 18s 18s 44.05% 1.75% 
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Indirect 7-6 16s 15s 5.37% 4.72% 
Indirect 10-3 13s 9s 0.62% 32.39% 

Hybrid 44s+19s 75s+18s 0.07% 0.04% 
Direct 258s 351s 0.00% 0.00% 
 
From Table 2 it is clear that the best shelf-life allocation ratio is indeed equal to the 

WH:DC storage capacity ratio. When using this ratio, solutions within 2% of the minimum cost 
are obtained with the indirect shelf-life model. On the other hand, the cost increase can be as 
much as 44% when using alternative ratios. These solutions are even worse than for the base 
case because choosing the shelf-life ratio opposite to the WH:DC ratio leads to an extremely 
limited available storage capacity. Similarly to the base case, the costs for not considering the 
shelf-life are approximately 30%. With respect to the required CPU time, the indirect shelf-life 
model is again more efficient than the hybrid shelf-life model which in turn is more efficient than 
the direct shelf-life model. 

 
5.1.2. Varying Demand 

Another aspect that might influence the quality of the solution obtained with the different 
methods is the demand. In the base case, all capacities are sufficient to meet the demand, but the 
overcapacity is limited. We will also compare the methods for case with 30% higher and 30% 
lower demand. For the high demand case, the capacity is insufficient to meet all demand, while 
for the low demand case the overcapacity is substantial. In addition, we compare the methods for 
a case with non-seasonal demand. The computational results for these cases are given in Table 3. 

 
Table 3. Computational results for cases with different demand  

 Required CPU time[s] Cost increase [%] 
 

Demand: 
 

Low 
 

High Non- 
seasonal 

 

Low 
 

High Non- 
seasonal 

No shelf-life 6s 4s 3s 20.57% 18.38% 8.27% 
Indirect 3-10 19s 18s 22s 0.99% 21.35% 0.37% 
Indirect 7-6 19s 14s 16s 0.15% 0.26% 0.30% 
Indirect 10-3 12s 11s 15s 0.58% 13.40% 0.87% 

Hybrid 38s+18s 70s+19s 61s+15s 0.00% 0.05% 0.10% 
Direct 514s 336s 422s 0.06% 0.00% 0.00% 
 
 
First of all, the best solution for the low demand case was obtained with the hybrid 

model. This was because the remaining MIP optimality gap was 0.43% for the hybrid model and 
0.51% for the direct model. Both the hybrid and the direct model again obtained a close to 
optimal solution. Due to the significant overcapacity in the low demand case, the reduction in 
effective storage capacity by choosing a shelf-life ratio that is not equal to the WH:DC ratio does 
not lead to missed sales. Nevertheless, the indirect model still obtains the best results when the 
shelf-life ratio is set equal to the WH:DC ratio. 

The costs of the solutions obtained with the various models for the non-seasonal demand 
case are very similar. Even when the shelf-life is not considered at all, the costs only increase by 
8.27%. This is mainly because no large buildup of inventory is required when the demand is non-
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seasonal. Therefore, even when the shelf-life is not considered, SKUs are rarely stored longer 
than their shelf-life.  

 
5.1.3. Varying Shelf-life 

Finally, the length of the shelf-life might also influence the quality of the solution 
obtained. Therefore, we have compared the models for cases with a longer, a shorter or a mixed 
shelf-life. The longer shelf-life is 26 weeks, the shorter shelf-life is 6 weeks, and the mixed shelf-
life is 26,13,13,6, and 6 weeks for SKUs 1-5 respectively. The results are given in Table 4. 

 
Table 4. Computational results for cases with varying shelf-life  

 Required CPU time[s] Cost increase [%] 
Shelf-life: Short Long Mixed Short Long Mixed 

No shelf-life 3s 4s 4s 38.23% 2.06% 35.63% 
Indirect 3-10 17s 14s 16s 2.63% 0.82% 3.04% 
Indirect 7-6 22s 12s 15s 0.70% 0.07% 0.99% 
Indirect 10-3 16s 13s 15s 1.11% 0.16% 1.00% 

Hybrid 34s+3s 48s+58s 52s+24s 0.00% 0.00% 0.07% 
Direct 60s 1504s 311s 0.30% 0.00% 0.00% 
 
Even when the shelf-life is not considered, the 26 week shelf-life is sufficiently large that 

it is almost never violated. As a result, the costs obtained with the various models are very 
similar for the 26 week shelf-life case. On the other hand, not considering the shelf-life leads to a 
very large increase in cost when the shelf-life is short. Similar to the previous cases, the best 
solution for the indirect method is obtained when the shelf-life ratio is equal to the WH:DC ratio. 

It is clear from Table 4 that the hybrid and, especially, the direct shelf-life models are less 
efficient when considering SKUs with a longer shelf-life. This is mainly because the model sizes 
increase with the length of the shelf-life. On the other hand, the required CPU time of the 
indirect shelf-life model is independent of the shelf-life length.  

 
5.2. 10-1000 SKUs 

For the various 5 SKU cases, all models could be optimized within a reasonable time. 
However, a more realistic case would contain a larger supply chain and up to 1000 SKUs. For 
these larger cases, these models quickly become intractable. In fact, even without considering the 
shelf-life, van Elzakker et al. (2013) showed that the tactical planning model becomes intractable 
for cases of 25 SKUs or more and a supply chain consisting of 10 suppliers, 4 factories, 5 
warehouses, 10 distribution centers, and 20 retailers.  

They proposed an SKU decomposition algorithm to solve cases of up to 1000 SKUs. This 
decomposition is based on limiting the domain of all variables and constraints to a single SKU. 
An initial solution for the complete problem is obtained by optimizing these single SKU models 
for all SKUs individually. In these submodels, the capacity used by the other SKUs is included 
as parameters, and a slack variable is added to all the capacity constraints. The capacity 
constraints are constraints (1), (2), (4), (5), (9), and (10). The slack variables are also added to 
the objective function with a penalty cost. Therefore, these slack variables allow the capacities to 
be violated at a certain cost. 

Initially, this cost is set to zero, and therefore, the initial solution will most likely be 
infeasible as the capacities will be exceeded. In the second part of the algorithm, the penalty 
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costs are set to a small initial penalty, all SKUs are re-optimized consecutively, and the penalty 
cost are increased at the end of each iteration. The algorithm will continue to iterate until the 
penalty cost are sufficiently high such that a feasible solution is obtained. A more detailed 
description of the algorithm is given in van Elzakker et al. (2013). While there is no guarantee 
that the global optimal solution will be obtained with the SKU decomposition algorithm, they 
showed that the obtained solutions are typically within a few percent of the optimal solution. 
Moreover, while the full model became intractable for more than 25 SKUs, they optimized cases 
of up to 1000 SKUs using the SKU decomposition algorithm.  

Therefore, we have selected this SKU decomposition algorithm to optimize cases 
containing between 10 and 1000 SKUs. In these cases we also consider a larger supply chain 
consisting of 10 suppliers, 4 factories, 5 warehouses, 10 distribution centers, and 20 retailers.  

However, we have first tested the algorithm on the 5-SKU cases discussed in section 5.1. 
For the indirect shelf-life, we set the shelf-life ratio equal to the storage capacity ratio. An 
overview of the results is given in Figure 8.  For all cases, the algorithm obtained a solution 
within 1.5% of the solution obtained with the corresponding full model. Therefore, we conclude 
that the algorithm can still obtain solutions within a few percent of optimality after introducing 
the shelf-life constraints. Because these cases are still relatively small, the required 
computational time of the algorithm was similar to that of the full model. 

 

 

Figure 8. Overview of the cost increase compared to the best obtained solution for the 5-SKU cases when using the 
indirect, hybrid, or direct shelf-life method with or without the SKU decomposition algorithm. 

However, without the algorithm, all three shelf-life models require more than 8 hours to 
obtain a solution within 10% of optimality for the case containing 10 SKUs and the larger supply 
chain. With the algorithm, and a MIP optimality tolerance of 2%, this 10-SKU case could be 
optimized by all three shelf-life models.  The 2% MIP optimality tolerance was chosen to ensure 
that each submodel could still be solved relatively quickly. Smaller optimality tolerances greatly 
increased the required CPU time to solve some of the submodels, which greatly increases the 
total required CPU time. 

0% 

1% 

2% 

3% 

C
os

t I
nc

re
as

e 
[%

] ISL - Full 
ISL - Alg 
HSL - Full 
HSL - Alg 
DSL - Full 
DSL - Alg 



20 
 

As can be seen in Table 5, the computational differences between the models are more 
significant for the larger cases. For example, for the 10-SKU case,  a solution can be obtained in 
23 minutes when using the indirect shelf-life model, while the direct shelf-life model requires 
more than 8 hours. For this particular case, the best solution was obtained with the hybrid shelf-
life model. This is again caused by smaller MIP optimality gaps for the hybrid model.  

 
Table 5. Computational results for the larger cases 

Case Shelf-life Method Required CPU time Cost increase [%] 
10-SKU Indirect 0:23 hr 2.06% 

 Hybrid 1:32 hr 0.00% 
 Direct 8:36 hr 0.93% 

25-SKU Indirect 0:33 hr 2.51% 
 Hybrid 3:36 hr 1.52% 
 Direct 18:08 hr 0.00% 

100-SKU Indirect 3:14 hr 1.50% 
 Hybrid 8:53 hr 0.00% 
 Direct > 72 hr - 

1000-SKU Indirect 50:29 hr - 
 Hybrid > 72 hr - 
 Direct > 72 hr - 

 

For the 10- and 25-SKU cases, all models obtained solutions for which the costs are again 
within a few percent of each other. For the 100-SKU case, the direct shelf-life model is 
intractable as it requires more than 72 hours. For the 1000-SKU case, both the direct and the 
hybrid shelf-life models are intractable. Nevertheless, a feasible solution for this extremely large 
case can still be obtained with the indirect method.  

6. Conclusions 
Three different methods for introducing shelf-life restrictions into a tactical planning 

MILP for a FMCG company were compared. The direct method, which keeps track of the age of 
all SKUs, provides optimal solutions but is computationally inefficient. Therefore, it is the most 
suited method for small problems. For larger problems, the hybrid method is more suitable. It 
tracks the age of SKUs in the first storage stage directly, while indirectly enforcing the maximum 
shelf-life in the second storage stage. The hybrid method can be used to obtain near-optimal 
solutions in, on average, less than 20% of the required computational time of the direct method. 
For extremely large problems, even the hybrid method becomes intractable. For these cases, the 
indirect method can be used. This method models the shelf-life indirectly on both storage stages 
by manually dividing the shelf-life over the two stages. Using the indirect method instead of the 
hybrid method reduces the computational time by, on average, another factor 5. The solutions 
obtained with the indirect method are within a few percent of optimality. By combining this 
indirect method with a previously developed SKU-decomposition algorithm, cases of up to 1000 
SKUs could be optimized.  
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Indices 
a  Age of an SKU in weeks. 
dc  Distribution centers 
f  Factories 
fam  SKU families 
h  Ingredients 
i  SKUs 
mfam  Mixing families 
pfam  Packing Families 
r  Retailers 
SKU  Current SKU 
t, t’  Weeks 
w  Warehouses 
 
Subsets 
FAMpfam SKU families belonging to packing family pfam 
IMmfam  SKUs belonging to mixing family mfam 
IPpfam  SKUs belonging to packing family pfam 
 
 
Variables 
Infeasibilityi,dc,t Amount of SKU i in distribution center dc in week t that exceeds its shelf-

life 
INVDCi,dc,t Amount of SKU i stored in distribution center dc in week t  
INVDCi,dc,t,a<SL Amount of SKU i stored in distribution center dc in week t with an age of   
  t’ weeks. Since the inventory is the inventory at the end of the week, the   
  age of all SKUs must be less than their shelf-life. Otherwise they would   
  need to be disposed of.  
INVIngh,f,t Inventory of ingredient h at factory f in week t 
INVWHi,w,t Amount of SKU i stored in warehouse w in week t 
INVWHi,w,t,a<SL Amount of SKU i stored in warehouse w in week t with an age of    
  t’ weeks. Since the inventory is the inventory at the end of the week, the   
  age of all SKUs must be less than their shelf-life. Otherwise they would   
  need to be disposed of.  
INVWHinii,w,a The initial inventory of SKU i in warehouse w that has been in storage for a  
  weeks. 
MissedSalesi,r,t Shortage of SKU i at retailer r in week t  
Prodi,f,t  Amount of SKU i produced in factory f in week t  
SSVioDCi,dc,t Amount of SKU i short of the safety stock in distribution center dc in week t 
SSVioWHi,w,t Amount of SKU i short of the safety stock in warehouse w in week t 
TransDCRi,dc,r,t Amount of SKU i transported from distribution center dc to retailer r in  
   week t 
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TransDCRi,dc,r,t,a Amount of SKU i with age a transported from distribution center dc to  
   retailer r in week t 
TransDCRCi,dc,r,t,a Amount of SKU i with age a transported from distribution center dc to 

retailer r in week t (This variable is only used in the correction model of   
the hybrid model) 

TransFWi,f,w,t Amount of SKU i transported from factory f to warehouse w in week t 
TransFWi,f,w,t,a Amount of SKU i with age a transported from factory f to warehouse w in week t 
TransIngh,f,s,t Amount of ingredient h procured from supplier s to factory f in week t 
TransWDCi,w,dc,t Amount of SKU i transported from warehouse w to distribution center dc  
   in week t  
TransWDCi,w,dc,t,a Amount of SKU i with age a transported from warehouse w to distribution 
   center dc in week t  
WasteDCi,dc,t Amount of SKU i that is disposed of at the end of week t in distribution center dc  

, , , ii dc t a SLWasteDC =  Amount of SKU i that is disposed of at the end of week t in distribution  
   center dc. This variable is only defined for SKUs that have reached the  
   end of their shelf life. 

, , , ii dc t a SLWasteDCC =  Amount of SKU i that is disposed of at the end of week t in distribution 
center dc. This variable is only defined for SKUs that have reached the 
end of their shelf life and is only used in the correction model of   the 
hybrid model 

, , , ii w t a SLWasteWH =  Amount of SKU i that is disposed of at the end of week t in warehouse w.  
   This variable is only defined for SKUs that have reached the end of  
   their shelf life. 
WSUi,f,t  Binary variable, indicates a set-up of SKU i in factory f in week t 
YFAMSUfam,f,t 0-1 continuous variable, indicates if there is a set-up of SKU family fam in factory 
f in week t 
 
 
Parameters 
CostIngh,s,t Unit cost of ingredient h at supplier s in week t 
Di,r,t  Demand of SKU i at retailer r in week t 
DCCapdc Available storage capacity in distribution center dc 
DCSLi Part of the shelf-life of SKU i that is dedicated to the distribution centers. 
FAMSUCostfam Average set up cost for SKU family fam 
FAMSUTfam Average set up time for SKU family fam 
INVDCPi,dc,t Amount of SKU i stored in distribution center dc in week t. This parameter is used 

when the decisions for SKU i are frozen in the current optimization.  
INVIngCAPf Available storage capacity for ingredients at factory f  
INVIngPh,f,t Inventory of ingredient h at factory f in week t. This parameter is used when the 

decisions for ingredient h are frozen in the current optimization.  
INVWHPi,w,t Amount of SKU i stored in warehouse w in week t. This parameter is used when 

the decisions for SKU i are frozen in the current optimization.  
MaxSupplyh,s,t Available supply of ingredient h at supplier s in week t 
MixTimemfam,f Available mixing time at factory f for SKUs that are part of mixing family mfam  
MixRatei,f Mixing rate of SKU i in factory f 
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MSpeni,r,t Penalty costs per unit of missed sales of SKU i at retailer r in week t 
PackRatei,f Packing rate of SKU i in factory f  
PackTimepfam,f Available packing time at factory f for SKUs that are part of packing family pfam 
ProdPi,f,t Amount of SKU i produced in factory f in week t. This parameter is used when the 

decisions for SKU i are frozen in the current optimization.  
Recipeh,i Amount of ingredient h consumed per unit produced of SKU i  
SCIngh,f Storage costs of ingredient h at factory f  
SCDCi,dc Storage costs of SKU i at distribution center dc 
SCWHi,w Storage costs of SKU i at warehouse w 
SLi  Maximum shelf-life of SKU i 
SSDCi,dc,t Minimum safety stock of SKU i in distribution center dc in week t 
SSWHi,w,t Minimum safety stock of SKU i in warehouse w in week t 
SSpenCost Safety stock violation penalty cost 
SUCosti Average set-up cost for SKU i 
SUTi  Average set-up time for SKU i 
TCDCRdc,r Transportation cost between distribution center dc and retailer r 
TCFWf,w Transportation cost between factory f and warehouse w 
TCSFf,s  Transportation cost between supplier s and factory f 
TCWDCw,dc Transportation cost between warehouse w and distribution center dc 
WHCapw Available storage capacity in warehouse w 
WHSLi Part of the shelf-life of SKU i that is dedicated to the warehouses 
WSUPi,f,t Binary parameter, indicates a set-up of SKU i in factory f in week t. This 

parameter is used when the decisions for SKU i are frozen in the current 
optimization.  

YFAMSUPfam,f,t Binary parameter, indicates if there is a set-up of SKU family fam in 
factory f in week t. This parameter is used to indicate a required set up for one of 
the SKUs of SKU family fam that are frozen in the current optimization.  
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