PSE Challenges in Solar Research

CAPD Review Sunday March 10, 2013

B. Erik Ydstie

Solar grade silicon Float Process for Silicon Wafers Dye Sensitized Solar cells Solar and wind on the Grid (J. Du) (G. Oliveros) (R. Panella) (J. Liu)

Supply Chain for Silicon Solar Cells 50% of system cost PV System Balance of system (BOS) Solar cell module += 30% of module cost Crystalline Wafer Cell **REC Silicon, Moses Lake, WA** silicon production fabrication Fluidized Bed Si Production: 2002–2005 Pilot plant 2005-2007 **Demonstration scale** Solar-grade silicon 2009 Commercial scale \$40-60/kg Aim: \$20/kg IC supply Metallurgical SiCl₃H Integrated Decomposition Wafer grade silicon distillation Crystallization circuit chain \$3-5/kg \$40-60/kg 2

Supply Chain for Silicon Solar Cells

Design and Control of Solar Silicon FBR process*From Silane to Solar Silicon*

Ron Reis REC Silicon, Paul Ege Reactech 2 PhD students

Siemens Reactor Batch Process 1100°C (TCS) 650 °C (Silane)

increase throughput Reduce energy cost

Fluid Bed Reactor Continuous Process Large surface area 650 C

Goal: develop scale-up and control models to optimize granular yield and control particle size.

Bed fluidization

Model Verification using Pilot Plant Data

Time constant for particle size distribution about 50 hours.

Weak control of distribution function

Difficult to control yield loss (sensitive system)

Scale-up models: from pilot to demonstration plant

Granular Product and Seed Mean Diameter Correlation

- Multi-scale modeling
 - Captures physics of system (CFD, Chemistry, Population balance)
 - Useful for scale-up and design
 - Predicts process dynamics
- "Natural Discretization" of population balance
- New closure relation
- Stability and control (Juan Du)
- REC Silicon's \$970 million expansion project in Moses Lake houses 24 fluid bed reactors to produce 6,500 metric tons of polysilicon per year
- Christy's Thesis has been "sold" from the library
 - NSF Graduate Research Fellowship Program
 - REC Silicon
 - Reactech Process Development Inc.

Ground Breaking August 2006

Mar. 2008

Sept. 2008

Float Process for Silicon Wafers

Installation of HRG Pilot Plant at CMU

- 1. ~ \$1M investment capital
- 2. ~\$1.5M R&D (modeling small scale,..)
- 3. 60kW induction furnace
- 4. 5in wide
- 5. 10 ft long
- 6. Ar controlled atmosphere
- 7. Allen Bradely control system

Dye Sensitized Solar Cell – Simple Construction

Panella – Dec 2011

Application of Deposited Particles to Operating Cells

10 Ω/□ FTO under 150k magnification SEM Crystalline nature encourages light scattering

10 Ω/\square FTO which has been exposed to TiO_2 nanoparticles under adsorbing conditions

Small, 10 nm particles are able to strongly adsorb to the FTO surface

Panella – Dec 2011

Solar Results

	I (short circuit) mA/cm2	V (open circuit)	Fill Factor	IPCE
"Pre" Coated Cell	2.55	0.46	0.441	0.52%
Standard Cell	1.41	0.33	0.417	0.19%

The pre-coated anode has been treated with an impinging jet with 10 nm TiO_2 nanoparticles.

On top of this, a ~30 μ m layer of 25 TiO₂ particles has been applied by doctor-blading and drying a concentrated slurry. The normal anode only has the doctor-bladed layer, not the 10 nm layer.

Aqueous Deposition

