Optimization Modeling of Energy Processes

L. T. Biegler
Department of Chemical Engineering
Carnegie Mellon University
Pittsburgh, PA 15213

http://capd.cheme.cmu.edu
March, 2013
Energy Projects with NETL
(Energy Systems Initiative)

• **ROM-based Flowsheet Optimization for IGCC** (Y-D Lang)
 – ROMs developed from CFD models (gasifier and combustion)
 – Kriging models encapsulated within flowsheet optimization
 – High-fidelity optimization with 7% increase in power output

• **Process Synthesis for Oxycombustion** (A. Dowling, Q. Gao, Z. Gao)
 – MPCC models for phase transitions (flash, MHEX, GIBBS)
 – Accurate shortcut models for complex columns (e.g., ASU)
 – MINLP models for Oxycombustion flowsheet synthesis

• **Optimal Design/Operation of PSA Systems for CO2 Capture**
 (A. Agarwal, S. Vetukuri, A. Dowling, Y. Wang)
 – Superstructure developed for PSA system
 – Pre-combustion models analyzed – within DOE benchmark
 – Applied with Sequential optimization strategies
Motivation for CO$_2$ Capture

Existing pulverized coal plants

![Diagram of existing pulverized coal plants]

Post-combustion capture

Pre-combustion capture

Can we use PSA for carbon capture?

Challenges

- Which Sorbent works best for CO$_2$ capture?
- Which PSA cycle for high purity CO$_2$ capture?
- Computationally efficient flowsheet simulation/optimization with PDAE-based PSA model.
Optimization of PSA units for Carbon Capture
(Alex Dowling)
PSA Bed Model

Component mass balance

\[\varepsilon_b \frac{\partial C_i}{\partial t} + (1 - \varepsilon_b) \rho_s \frac{\partial q_i}{\partial t} + \frac{\partial (vC_i)}{\partial z} = 0 \quad \forall i \]

LDF equation

\[\frac{\partial q_i}{\partial t} = k_i (q_i^* - q_i) \]

Dual-site LANGmuir Isotherm

\[q_i^* = \frac{q_i b_i P y_i}{1 + \sum_{j=1}^{nc} b_{ij} P y_j} + \frac{q_i b_{2i} P y_i}{1 + \sum_{j=1}^{nc} b_{2ij} P y_j} \]

Energy Balance

\[\left(\varepsilon_t \sum_{i=1}^{nc} C_i \left(C_{pg}^i - R \right) + \rho_s C_{ps} + \rho_w C_{pw} \left(\frac{4h_w}{D} \right) \right) \frac{\partial T}{\partial t} - \rho_s \sum_{i=1}^{nc} \Delta H_i \frac{\partial q_i}{\partial t} + \frac{\partial (vh)}{\partial z} + \frac{4h_c (T - T_w)}{D} = 0 \]

\[C_{pg}^i = a_c^i + b_c^i T + c_c^i T^2 + d_c^i T^3 \quad h = \sum_{i=1}^{nc} C_i C_{pg}^i T \]

Ergun equation

\[- \frac{\partial P}{\partial z} = \frac{150 \mu (1 - \varepsilon_b)^2}{d_p^2 \varepsilon_b^3} v + \frac{1.75 (1 - \varepsilon_b)}{d_p^3 \varepsilon_b^3} \left(\frac{\sum M_w^i C_i}{1000} \right) v |v| \]

Ideal gas

\[P = \sum_i C_i R T \]
PSA process for CO₂ separation

- **Applications**
 - Steam/methane reformer off gas
 - Power plant flue gas

What is special about this problem?

- Most commercial cycles designed for light product recovery and purity with heavy product often treated as waste

- Structural changes in cycles to offer CO₂ capture at high purity and recovery

- Need testbed to evaluate new sorbents – dependent on cycle and operating conditions
Two-bed PSA Superstructure

Systematic formulation to develop, evaluate and optimize PSA cycles

Co-current Bed (CoB)

Counter-current Bed (CnB)

Pressure-reducing Valve

Light Product (LP)

Top reflux (TR)

\(C_{a,i}(t), T_a(t), v_a(t), P_{ads}(t) \)

\(b(t) \)

\(P_a(t) \)

Input flux (F)

Feed compressor

Inlet gas

\(P_{inlet} \)

Inlet compressor (optional)

\(P_{feed} \)

\(f(t) \)

Heavy-product compressor

Bottom reflux (BR)

\(C_{d,i}(t), T_a(t), v_d(t), P_{des}(t) \)

Vacuum Generator

\(P_{atm} \)

Heavy Product (HP)

Allows all steps to be considered (P-FD-DP-EV-EQ-HP-LP)

Includes 2-bed interacting steps

Stack optimal profiles to obtain multi-bed systems with continuous feed and output
Jacobian of DAEs in Superstructure Model
Binary Separation

Finite Volume Discretization – smoothed flux limiters
Modeling/Designing Complex PSA Cycles

- 5 gases (N₂, CH₄, CO₂, CO, H₂)
- 5 beds, 11 steps
- 5 stages, 3 periods/stage
- Dual-adsorbent layers (APHP, UOP 5A)

Uni-bed Simulation

Note: 2-bed interactions

<table>
<thead>
<tr>
<th>Feed</th>
<th>EQ1</th>
<th>EQ2</th>
<th>Pr purge</th>
<th>EQ3</th>
<th>Blow down</th>
<th>Purge</th>
<th>EQ3</th>
<th>EQ4</th>
<th>Idle</th>
<th>EQ1</th>
<th>Repr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ1</td>
<td>Repr.</td>
<td>Feed</td>
<td></td>
<td>EQ1</td>
<td>EQ2</td>
<td>Pr purge</td>
<td>EQ3</td>
<td>Blow down</td>
<td>Purge</td>
<td>EQ3</td>
<td>EQ2</td>
</tr>
<tr>
<td>EQ3</td>
<td>EQ2</td>
<td>Idle</td>
<td></td>
<td>EQ1</td>
<td>Repr.</td>
<td>Feed</td>
<td>EQ1</td>
<td>EQ2</td>
<td>Pr purge</td>
<td>EQ3</td>
<td>Blow down</td>
</tr>
<tr>
<td>EQ3</td>
<td>Blow down</td>
<td>Purge</td>
<td>EQ3</td>
<td>EQ2</td>
<td>Idle</td>
<td>EQ1</td>
<td>Repr.</td>
<td>Feed</td>
<td>EQ1</td>
<td>EQ2</td>
<td>Pr Purge</td>
</tr>
<tr>
<td>EQ1</td>
<td>EQ2</td>
<td>Pr purge</td>
<td>EQ3</td>
<td>Blow down</td>
<td>Purge</td>
<td>EQ3</td>
<td>EQ2</td>
<td>Idle</td>
<td>EQ1</td>
<td>Repr.</td>
<td>Feed</td>
</tr>
</tbody>
</table>

Multi-bed Simulation
Minimize specific energy \((\text{kWh}/\text{tonne CO}_2 \text{ captured})\)

- **Objective Function, Constraint Evaluations, & Derivative Info**
- **PSA Superstructure**
 - PSA Bed Model
 - Connectivity Equations
 - Compressor and Turbine Model
 - Valve Equations
 - **Cyclic Steady-State Constraint**
- **Optimization Algorithm**
- **Decision Variable Values**

3 approaches for cyclic-steady state (CSS)
- Embedded fixed point (NDO)
- Fixed Horizon (Small NLP)
- Periodic BCs (Larger NLP)
Implementation Details
(Existing Tools)

Formulation of Bed Equations

- Finite Volume Discretization of Bed Model (11 elements)
- Smoothed van Leer Flux Limiter
- States include gas concentration, solid loading, T, P, T_w

Integration of Bed Equations

- State equations solved with CVODES 2.6.0 (BDF, Sundials)
- Direct and adjoint sensitivity (no checkpointing in CVODES)
- Exact BDF Jacobian using ADOL-C

BOBYQA for Internal Fixed Point Form

- DFO code based on quadratic approximation to objective function
- Accommodates independent variable bounds
- Purity and Recovery constraints handled by l_2 penalty functions

IPOPT 3.10 for gradient formulations (equality constrained, finite horizon)

- First derivatives from sensitivity equations
- Second derivatives approximated with LBFGS
Minimize Power for Pre-combustion Capture
(Dowling, Vetukuri, B., 2012)

Min Total Power \((\text{kWh/tonne CO}_2)\)
\[
\text{CO}_2 \text{ purity } \geq 0.92 \\
\text{CO}_2 \text{ recovery } \geq 0.90 \\
a(t), b(t), f(t) \in [0, 1] \\
\text{P}_{\text{ads}} \geq 5 \text{ bar} \\
\text{P}_{\text{des}} \geq 10^{-4} \text{ bar} \\
\text{P}_{\text{ads}} \geq \text{P}_{\text{d}} \\
\text{P}_{\text{a}} \geq \text{P}_{\text{des}} \\
\text{P}_{\text{feed}} \geq \text{P}_{\text{des}} \\
\text{(CSS constraints)}
\]

Adsorbent: Activated Carbon
Feed: \(\text{H}_2 \ (58\%) \) and \(\text{CO}_2 \ (42\%) \)
Feed: \(\text{H}_2 \ (56.5\%), \text{CO}_2 \ (42\%), \) \(\text{CO}(0.8\%), \text{CH}_4(0.6\%), \text{N}_2\) (trace)
\[
\text{P}_{\text{feed}}: \ 51 \text{ bar}, \ \text{T}_{\text{feed}}: \ 308 \text{ K} \\
\text{P}_{\text{out}} \text{ for } \text{H}_2 \text{ Product}: \ 31 \text{ bar} \\
\text{P}_{\text{out}} \text{ for CO}_2 \text{ Product}: \ 150 \text{ bar}
\]
Designed Pre-Combustion Cycle

Step 1
Step 2
Step 3
Step 4
Step 5

Switch Beds and Repeat

Legend: CO₂
Sorbent Loading
High
Low

Best 5 Component Solution

Adsorbing Bed (produces H₂)

Desorbing Bed (produces CO₂)
86.8 kWh/tonne CO$_2$ captured

3.2 MPa

Light Product Compressor

13.0 kWh/tonne

Top Reflux Fraction $b(t)$

< 2.8 MPa

Co-current Bed

12.6 kWh/tonne

Heavy Reflux Compressor

-35.4 kWh/tonne

Bottom Reflux Fraction $a(t)$

-3.3 kWh/tonne

Heavy Product Compressor

15 MPa

> 0.02 MPa

Counter-current Bed

0.02 MPa

Vacuum Generator

99.9 kWh/tonne

Carbon Dioxide Rich Stream to Pipeline

5.1 MPa

Feed from WSR, $f(t)$

3.2 MPa

Hydrogen Rich Stream to Turbine

> 0.02 MPa

Feed Turbine

5.1 MPa

Feed from WSR, $f(t)$

> 0.02 MPa

Feed Turbine

3.2 MPa

Light Product Compressor

13.0 kWh/tonne

Top Reflux Fraction $b(t)$

< 2.8 MPa

Co-current Bed

12.6 kWh/tonne

Heavy Reflux Compressor

-35.4 kWh/tonne

Bottom Reflux Fraction $a(t)$

-3.3 kWh/tonne

Heavy Product Compressor

15 MPa

> 0.02 MPa

Vacuum Generator

99.9 kWh/tonne

Carbon Dioxide Rich Stream to Pipeline

5.1 MPa

Feed from WSR, $f(t)$

> 0.02 MPa

Feed Turbine
Computational Performance

Part A: Binary System (CO$_2$, H$_2$)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Obj. Func kWh/tonne CO$_2$</th>
<th>CPU Time/Iter h:mm:ss</th>
<th>Iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic Bnd. Cnd. (1)</td>
<td>83.51</td>
<td>0:10:37</td>
<td>82</td>
</tr>
<tr>
<td>Fixed Horizon (3)</td>
<td>86.46</td>
<td>0:21:09</td>
<td>56</td>
</tr>
</tbody>
</table>

Part B: Five Components (CO$_2$, H$_2$, CH$_4$, N$_2$, CO)

<table>
<thead>
<tr>
<th>Approach</th>
<th>Obj. Func kWh/tonne CO$_2$</th>
<th>CPU Time/Iter h:mm:ss</th>
<th>Iter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periodic Bnd. Cnd. (1)</td>
<td>89.37</td>
<td>1:00:15</td>
<td>470</td>
</tr>
<tr>
<td>Derivative Free (2)</td>
<td>109.04</td>
<td>0:11:29</td>
<td>2500+</td>
</tr>
<tr>
<td>Fixed Horizon (3)</td>
<td>86.81</td>
<td>1:27:52</td>
<td>260</td>
</tr>
</tbody>
</table>

Multiple common starting points

Internal Fixed Point approach terminates at infeasible solution
 • Local minima, effect of noise, poor scaling

Derivative based approaches: KKT conditions not always satisfied
 • Terminate due to resource limits, accumulation points
 • Noisy first derivatives, approximate (L-BFGS) second derivatives
PSA Optimization Conclusions

• Compared three PSA optimization formulation

• Developed novel application of adjoint sensitivity equations to PSA optimization

• Demonstrated potential cost competitiveness of PSA for H_2-CO_2 separation in IGCC power plant with an activated carbon sorbent

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.