The Impact of Disruptive Change in Feedstock Price and Availability on Chemical Process Development

Jeffrey J. Siirola Purdue University / Carnegie Mellon University

Outline

- Some chemistry history
 - Early fuels and feedstocks: coal and biomass
 - A disruptive change: petroleum and natural gas
 - Steam cracking: a paradigm-changing process
 - Chemical feedstock supply chains
 - Rhodium: a supply-chain-changing catalyst
- Natural gas
 - Impacts of natural gas supply, demand, and pricing policies
 - Interaction of electricity production and chemicals sectors
 - Shale gas and implications for chemical process
 development

Wood as a Chemical Raw Material

Coal as a Chemical Raw Material

Coal as an Illumination Fuel

Coal as a Synthetic Organic Chemical Raw Material via Acetylene

Acetylene Derivatives Early Reppe Chemistry

German Chemistry during World War II

- Fischer-Tropsch synthesis of diesel fuel from syngas (CO + H₂)
- Reppe carbonylation and oxo chemistry
 - Alcohols + CO => Carboxylic Acids
 - Esters + CO => Anhydrides
 - Olefins + CO + $H_2 =>$ Aldehydes
 - Cobalt catalysis, high temperatures, very high pressures

Cracking Processes (Petroleum)

- Thermal cracking
 - Developed in Russia (1891) and US (1908)
 - 375-400C (to produce light fractions)
 - 450C (to produce petroleum coke for electrodes)
- Catalytic cracking (1942)
 - Fluidized bed with catalyst regeneration
 - 670-760C
 - Originally low-activity alumina catalyst
 - Now high activity zeolite catalyst and short residence times
- Steam cracking (1920)
 - Non-catalytic hydrocarbon pyrolysis in the presence of steam to minimize coke formation
 - 850-1050C

Tend to produce olefin products (and hydrogen)

Paradigm Shift

- In World War II, steam cracking technology is applied to ethane (otherwise useless hydrocarbon) to produce ethylene for polyethylene for wire insulation and radar apps
- Realization that ethylene and oxygen behave like acetylene in many chemical reactions
 - Ethylene from ethane almost totally replaces acetylene from coal as the foundation of the organic chemical industry

Further Major Changes

- Steam methane reforming for H₂ and CO
 - Coal gasification virtually disappears (Except Fischer-Tropsch fuel in South Africa)
- Methanol synthesized from syngas and acetic acid synthesized from acetaldehyde
 - Wood distillation disappears
- Ethylene and propylene cracked from natural gas condensate (or refinery naphtha)
 - Acetylene as a specialty feedstock only
- Naphtha catalytic reforming for higher octane aviation and premium gasoline aromatics
 - Oil replaces coal tar as source for aromatics

Chemical Supply Chains

- C₁ Methane (natural gas)
 - Hydrogen, Ammonia, Methanol, Formaldehyde
- C₂ Ethane (condensate or naphtha)
 - Ethylene, ethylene oxide/glycol, acetaldehyde, acetic acid, vinyl acetate, vinyl chloride, styrene, propionaldehyde, propionic acid
- C₃ Propane (condensate or naphtha)
 - Propylene, cumene, phenol, acetone, acrylates, methacrylates, butyraldehydes, butyric acids
- Aromatics (reformate)
 - Benzene, styrene, phenol, toluene, xylenes,
 - terephthalic acid

Catalysis Innovation Can Change Supply Chains

- In 1968, Monsanto discovered that cobaltcatalyzed Reppe carbonylation chemistry could be rhodium-catalyzed at much milder conditions
- First application was a route to acetic acid from methanol

 $2H_2 + CO \rightarrow MeOH$ MeOH + CO \rightarrow HOAc

 Acetic acid becomes a C₁ chemical from methane via methanol instead of a C₂ chemical from ethane via ethylene and acetaldehyde

Natural Gas as Fuel and Feedstock

- Natural gas is the fuel that powers most (but not quite all) US chemical and refining processes
- Natural gas methane is the feedstock for hydrogen production (for hydrocracking, hydrodesulfurization, and ammonia) and for syngas (for methanol, and its derivatives MTBE, formaldehyde, and acetic acid)
- Natural gas condensate (ethane and propane) becomes the advantaged raw material via ethylene and propylene to much of the organic chemicals industry (compared to crude-oil-derived naphtha)

US Natural Gas Pipeline Network

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

Partial History of Natural Gas Regulation in the US

- 1954 Phillips Supreme Court Case
 - Federal Power Commission (now FERC) has jurisdiction to regulate wellhead price of interstate natural gas
 - Ceiling set at to protect consumers from monopolistic pricing
 - US natural gas consumption and production steadily expand

Until...

- The incremental price of natural gas production eventually exceeded the US controlled price
- The ceiling price provided inadequate incentives to explore for or develop new fields
- Production leveled off
- Resulted in gas shortages (especially in interstate markets)
 - In the cold winter of 1976-77, productive capacity supply could not meet demand
 - Upset freezing consumers and closed facilities
 - Industrial customers curtailed

Eastman Response (as an example)

- Mostly coal-fired, but did use some natural gas to fire hot oil and cracking furnaces
- Substituted fuel oil where possible
- Considered coal gasification to town gas to fire cracking furnaces
- Ultimately used coal gasification for syngas feedstock and entirely new rhodium chemistry to avoid cracking reactions
- Chemicals from Coal complex started up in 1983 and expanded in 1991

Electric generating capacity additions, 1995 - 2010 gigawatts

Sources: U.S. Energy Information Administration Forms EIA-860 and EIA-860M

Note: data for 2010 are preliminary.

US Natural Gas Price (1976-2001)

Impacts of Increasing Natural Gas Prices

- Chemicals from methane
 - Methanol production moves offshore to sources of stranded gas
 - MTBE abandoned as gasoline oxygenate
 - Ammonia moves to Canada
 - Hydrogen becomes expensive (and low-sulfur diesel at the pump becomes more expensive than regular)
- Chemicals from condensate
 - Condensate price rises with natural gas
 - Ethylene price spikes
 - Propylene price finally rises higher than ethylene

Eastman Response (again as an example)

- Shut down older cracker capacity
- Abandon some ethylene derivatives (polyethylene) and seek C₁ routes to others (ethylene glycol, acetaldehyde, vinyl acetate) as was done previously for acetic acid and acetic anhydride)
- Abandon polypropylene

- Seek C₁ routes to propylene (MTP) for existing oxo derivatives and other intermediates currently made from propylene (acrylics, methacrylics, acetone, etc.)
- Developed process for the large-scale gasification of petcoke, lignite, or coal as source of syngas for C₁ chemistries and refinery hydrogen in TX and LA

Other Responses

- Flight to off-shore production (to sources of stranded methane and condensate - Persian Gulf)
- Bio-based feedstocks (ethylene from sugar-based bioethanol dehydration - Brazil)
- Feedstocks from coal gasification and liquefaction (China)
- Greater interest in chemicals and fuels from biomass and especially chemicals derived from carbohydrates and water-tolerant refinery catalysts (energy independence)
- Calls for increased US LNG import infrastructure

 Application of directional and horizontal drilling and hydraulic fracturing technologies to develop hydrocarboncontaining shale formations

US Natural Gas Price (1976-2003)

Ethylene and propylene prices returned to traditional levels

US Crude Oil Price (1978-2012)

US Natural Gas Price (1976-2012)

Shale Gas

- Unconventional natural gas (as is coalbed methane, tight sandstone gas, and methane hydrates)
- Found in relatively thin shale formations of very low permeability
- Economic production enabled by two technological innovations:
 - Directional drilling
 - Hydraulic fracturing
- Technology and field development encouraged by high natural gas prices

Shale Gas Impact

- Shale gas now reclassified as conventional gas
- US conventional gas reserves therefore doubled
- Relative price of natural gas reduced by two-thirds
- Electric power fuel switching from coal to natural gas accelerated
- Killed proposed Eastman petcoke gasification project
- Shuttered US methanol and ammonia production restarted and new plants under construction
- Condensate crackers restarted and new crackers proposed in regions with wet gas
- Restored advantaged US feedstock position for many organic chemicals and intermediates

What is Likely to Happen

- Natural gas replacement for coal as the primary carbon management technique (source reduction)
- Increased deployment of highly efficient natural gas turbines for electricity production (NGCC) and chemical plant cogeneration
- Increased US production and export of chemicals decreasing the trade deficit
- For many intermediates, depending on local availability of wet or dry gas, interesting competition between C₁ (methane) and C₂ (ethylene) chemistries may result from advances in catalysis and process design optimization

What could go Wrong?

- Electricity power plant fuel switching could dominate the rate of shale gas development
- Amount of gas producible from shale formations might be less than predicted
- Additional shale formations might be more expensive to produce than first experiences suggest
- Some shale formations might be geologically inappropriate for development (e.g. shallow formations near sensitive groundwater supplies)
- Production technologies (especially hydraulic fracturing) might have unintended environmental consequences leading to political or regulatory restrictions

Outlook

- Shale-sourced feedstocks may be economically advantaged for some time (or maybe not)
- In locations with wet shale gas but without a previous ethane infrastructure, new C₂-based chemical production is possible
 - \circ C₁ and C₂ routes will compete with each other
 - Benefits of shale gas feedstocks are not contingent on new catalytic or process innovations
 - But innovations will occur and may alter the preferred shale gas component for any particular application
- In locations with shale gas but not crude oil, new chemical production of aromatics possible New processes and catalysis will be essential

Conclusions

- Chemical feedstock price and availability occasionally change in dramatic and disruptive ways
 - Such changes serve as the impetus for new chemistry new process and new catalysis developments
- In the most recent past, the preferred alternative for some commodity chemicals has shifted from gas to oil to coal to biomass and back to gas again
 - Each time these shifts have been accompanied renewed interest in new chemistries and catalysis

- Shale gas has doubled US gas reserves
- Such an increase in potential supply has altered traditional feedstock price ratios
 - Which persist but the shale gas advantage is decreasing given increased production discipline
- Shale gas will likely accelerate shift of electricity generation away from coal
 - Especially given anticipated greenhouse gas emission restrictions
 - This potentially large additional increment of demand could erase current natural gas price advantage

- Many opportunities will be local
 - Depending on local gas composition (wet or dry)
 - Local feedstock alternative availability
 - Local product demand
- There will be some interesting C₁ vs. C₂ chemistry/process competition
 - Not new (we have been here before)
- There may even be some interest in gas to aromatics
 - That would be new

Thank You

