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OUTLINE

e Carbon capture processes

* Superstructure optimization

* Surrogate models for optimization
 MINLP formulation

e Case study

* Conclusions
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CO, CAPTURE PROCESSES

Most widely investigated capture technology: MEA solvent based postcombustion

*  Cost & energy-intensivetechnology
* Thermal & oxidative degradation

Innovative carbon capture technologies
* High-efficient solvents/sorbents

— Greater capacity and selectivity
 Cost-effective capture process
— Reduced energy for regeneration

] ] L Process
DOE: Carbon Capture Simulation Initiative (CCSI)

* 5 National Labs and 6 Universities
* Solidsorbent technology:initial demonstration case g
* https://www.acceleratecarboncapture.org/drupal/
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SOLID SORBENT CAPTURE PROCESS

Solid sorbent reactor

* Bubbling fluidized bed -

* Fast fluidized bed
o Moving bed Cooli:g \;Vater_
* Fixed bed

Solid Outlet _..l

Bubbling fluidized bed
e 1D models

* Modeledin Aspen Custom Modeler
* Differential model

* Uses Aspen Properties package
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(A Lee, D Miller. A one-dimensional(1-D) three-region model for a bubbling fluidized-bed adsorber. I&EC Research, 2013 )
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CO, CAPTURE PROCESS FLOWSHEET
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General flow sheet for solid sorbent based carbon capture process
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SUPERSTRUCTURE OPTIMIZATION

Objectives

* Achieve the set carbon capture rate

* Minimize the cost of electricity (COE)

* Identify & develop the optimized bubbling fluidized bed process designs
— Optimal topology
— Optimal design conditions
— Optimal operating conditions

Hurdles
 Computationallyintractable because of the detailed first principle models

Handles
* Generate the set of low complexity algebraic surrogate models

— Automated Learning of Algebraic Models for Optimization (ALAMO)

Model i

(http://archimedes.cheme.cmu.edu/?q=alamo)

“or axTmzae" build mode
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SURROGATE MODEL GENERATION

Process models Aspen software ALAMO Surrogate models
Fresh CE,-,)
Sorbent G Sample points
L[ ) ()
( T \ Adsorber , . 2
€Iro @) ® O Build model >
: ) : K
z € RP : - m m» . : zeR
flTl S T S IL'“ Ty !. - Adaptiv:nsdampling Zk 7 A~ f(a’/')
: .. ~ Model validation
\.I.'[)) ! 00 . PASS g \Z ,/
CO, Rich ( \ K
Sorbent ne
Independent variables x Dependent variables z
* Geometry  Geometryrequired
e Operating conditions * Operating condition required
* Inlet flow conditions e Outlet flow conditions

* Designconstraints

( A. Cozad et al. Automatic learning of algebraic models for optimization. AIChE Journal, 2014)
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BUBBLING FLUIDIZED BED

Bubbling fluidized bed reactor diagram

Outl i
utlet gas"‘ Solid feed CO, lean solid uutle/tL lInlet gas
—-.‘-‘-—--—___
Adsorber E Regenerator
\‘"‘"—-—-__
CO, rich gasr ICOZ rich solid outlet Solid feedI lOutlet gas
Model inputs Model outputs
* Inlet pressure * Outlet pressure
* Inlet temperatures e Outlet temperatures
* Inlet mass flow-rates e Outlet mass flow-rates
* Inlet gas mole fractions * Outlet gas mole fractions
* Inletsolid compositions e Outletsolid compositions

* Heat exchanger conditions
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MINLP FORMULATION-ASSUMPTIONS

Assumptions for mixed integer nonlinear programming formulation

 Each stage is a single stage operation

* No pressure change for liquid and solid flow

* Each stage of adsorber/regenerator operatior
requires attached heat exchanger

e Surrogate models for fluidized bed adsorber

and regenerator

fgin

*  Firstprinciple models for SolidRich/SolidLean

heat exchanger, blower, mixer
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OBIJECTIVE FUNCTION

Objective function

_ (CCF)(TOCs. 4+ TOC¢,) + OCpx + (CF)(OCy 45)
B (CF)(MWh)
Where:  TOC¢, = TOC¢; + TOC,y, + TOCyy + TOC,

COE + COEpsan

TOCcy =TOC o5+ TOCy oy +TOCyy +TOC,, + TOC), + TOC, 14 + TOC ey,

e TOC..: Capture system capital cost * TOC,,: Sc plant capital cost

e OC;,y: Fixed operating & maintenance cost * TOC.. Capital cost of reactors

* OCyug: Total variable cost * TOC,.,: Cost of vessel

 MWh: Annual net megawatt-hours of power * TOC,ow: Cost of blower

* COE;sg\: COE increment * TOC,x: Cost of in-let heat exchanger
* TOC,;,: Cost of Rich solid heat exchanger * TOC,,: Cost of plate

* TOC;,,: Cost of Lean solid heat exchanger * TOC,.+: Cost of platforms and ladders
* TOC;,: Cost of flue gas heat exchanger * TOC, s Cost of elevator motor

* TOC,.: Cost of elevator
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MINLP FORMULATION

Adsorber series Regeneratorseries

out

1-3(d)
1-y(a)

y
steam feedCO,

* Flue gas flow * Clean gas flow
Xa1c = F(surrogates)y(a) + X% . (1- y(a)) Xg 1. = F(surrogates)y(d) + g} . (1—y(d))
F.s = F(surrogates)y(a) + F,} (1~ y(a)) F.'; = F(surrogates)y(d) + F;; ; (1- y(d))
T.s = F(Surrogates)y(a) +T.”; , (1- y(a)) T, = F(Surrogates)y(d) + T, (1 y(d))
* Solidsorbent flow e Solid sorbent flow
Van = F(Surrogates)y(a) + y;4 ,(1- y(a)) Van = F(Surrogates)y(d) + 45 ,(1— y(d))
Xon = F(Surrogates)y(a) +x7}; ,(1- y(a)) X3 = F(Surrogates)y(d) +xg; ,(1—y(d))
T.a = F(Surrogates)y(a) + T, (1 - y(a)) T,s = F(Surrogates)y(d) + T, ,(1— y(d))

* Logical constraints Y()2y(s+1).Vses,, 2=l {ad}es
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CASE STUDY
ﬂiiven conditions \ e S°"“Z:ﬂé;- gow

* Conditions of flue gas ooidut

e  Max number of adsorbers: 4
*  Max number of regenerators: 4

solidRich

e  Max number of trains: 16 Other

trains warmin

utilin
steam

<

feedCO,

\- Minimum capture rate: 90% / T

flueOut warmOut

utilOut

Mixed-integer nonlinear programming model

Objectives * Parameters
* Minimize cost of electricity * Variables
* Minimize total capital cost * Equations

* Economic modules

* Decide the optimal number of trains
* Process modules

in parallel * Material balances

« Decide the optimal number of reactor * Hydrodynamic/Energy balances
. . * Reactor surrogate models
ARCEES * Link between economic modules and

* Seek optimal operation conditions process modules

» Seek an optimal geometry for each unit * Binary variable constraints

* Bounds for variables
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RESULTS

Optimal topology Molar composition of flue gas

solidLean 16%
—@<--—---
 gasOut 14% -
coldin T A4 12% 1
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‘ — ot solidRich TpureCG2 C0; H,0 C0O; H,0 C0O, H,0
uein

steam Outlet from Outlet from Outlet from
power plant adsorber 1  adsorber 2

m Outlet sorbent composition (mol/ke)

fm————————

COE(S/MWh)* 137.3
CapEX($M) 100 230.1 1000
steamFlow(kg/s) ~ 108 ~
Derate(MW) 0 103.7 650
sorbentF(kg/hr) 4E5 8.8E5 9E5
Nu (Number of trains) 12 12 16

* Cost of Electricity (COE) based on calculated capture
system with base plant. + $48/MWh to account for
compression, transport & storage Adsorber 1 Adsorber 2 Regenerator
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CONCLUSIONS

« We developed a surrogate model based framework to seek the
optimal topology and the relevant optimal design/operating
levels for carbon capture processes

 ALAMO provides simple surrogate models of adsorbers and
regenerators and thus leads to a low-complexity optimization
model
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