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Introduction gﬂ?\g:{n«sn
Bubbling Fluidized-Bed Adsorber

= Essential component: bubbling fluidized-bed (BFB) adsorber
Fresh Sorbent In Clean Gas Out
* Solid-sorbent-based post-combustion carbon capture system

* One-dimensional, three region BFB model Jl _____ ll ______________
e Described by partial differential and algebraic equations (PDAEs)
e Differential and algebraic equations (DAEs) (over 30,000 equations)

Flue Gas In CO, Rich
Sorbent Out
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Flue Gas In CO, Rich
Sorbent Out

e Dynamic reduced order model
+ Computationally efficient
+ Capture the dynamics of detailed model
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Time Scale Decomposition Procedures

= Qverall procedures

System _
& Eigenvalue 4
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Eigenvalue Analysis
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Dynamic Reduced Model

= Eigenvalue-to-state association
e Unit perturbation spectral resolution matrix

Pij =V (V_l)ji V is the eigenvector matrix of Jacobian matrix
* P;; measures the strength of the association between state x; and eigenvalue A;
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Case Study: Reduced Model Validation

= Qutput profiles of the reduced and original BFB model
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Spatial Model Reduction
Proper Orthogonal Decomposition (POD)

=  Proper orthogonal decomposition

— e e e e e e e e e s )

a;(t) time dependent coefficient
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Proper Orthogonal Decomposition (POD)

=  Proper orthogonal decomposition
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a;(t) time dependent coefficient

=  Method of snapshots
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Proper Orthogonal Decomposition (POD) e

=  Qverall procedures

Original model Erie f(y,t)
J Spatial discretization

¥ Simulation

¥ Method of snapshots

¥ Weighted residual method
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Proper Orthogonal Decomposition (POD) cente
=  Qverall procedures
d
Original model a—i] = f(y, )
J Spatial discretization
dy; .
E—f(y,t),l—l N
¥ Simulation
¥ Method of snapshots K
y(,t) = ) a()p;(x)
i=1

¥ Weighted residual method

Energy Systems Initiative (ESI) Meeting 7/11



Spatial Model Reduction gﬂ?\t’)_ NSTL

Proper Orthogonal Decomposition (POD) cente
=  Qverall procedures
d
Original model a—i] = f(y, )
J Spatial discretization
dy; .
E—f(y,t),l—l N
¥ Simulation
¥ Method of snapshots K
y(,t) = ) a()p;(x)
i=1
¥ Weighted residual method
dai .
E = f(y,t),l =1---K

Energy Systems Initiative (ESI) Meeting 7/11



Spatial Model Reduction g%\[z;{h.g: TL
Preliminary Results

= Preliminary results of POD basis functions:
e All states can be represented by 6-7 basis functions (instead of 100)

e Average projection error is less than 0.1% Zf_laiz
0 = 1- S
Zi=1 O
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Preliminary Results

= Preliminary results of POD basis functions:
» All states can be represented by 6-7 basis functions (instead of 100)
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Regression model

=  Why regression model?
* POD needs to know the explicit form of model equation
* Linear/quadratic regression models are incorporated to replace Aspen property
functions

Energy Systems Initiative (ESI) Meeting 9/11



Spatial Model Reduction

Regression model

=  Why regression model?
* POD needs to know the explicit form of model equation
* Linear/quadratic regression models are incorporated to replace Aspen property

functions
= Model validation

CAPD IN=TL

CENTER

50 T

49

A
-
]

.
<3
VL

A
h
]

CO2 Removal Fraction
5 3
) ]

.
[}
1

a
ok
T

40

~

SN

e

Regression BFB model
— Original BFB model

50

Energy Systems Initiative (ESI) Meeting

100

150

200

250
Time(s)

300 350 400 450

500

9/11



Spatial Model Reduction CAPD 3IN=TL
Regression model

=  Why regression model?
* POD needs to know the explicit form of model equation
* Linear/quadratic regression models are incorporated to replace Aspen property
functions
= Model validation
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Potential Analysis

=  Only 6-7 spatial basis functions are needed for state y
= The number of model equation is reduced to around 2000 after POD reformulation
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Potential Analysis

=  Only 6-7 spatial basis functions are needed for state y
= The number of model equation is reduced to around 2000 after POD reformulation

= Reduction potential : 5 times faster

400 T T T le-3 _—
=
'p-
o
- E
3, e
E 1e-4 S
; o
=
£ 200 ;
: 5

= ile-5
E &
w2 . ] b=
| i
: )
[ [ 1 e_ﬁ E

?00 S0 60 40 2(}

Number of Discretization Points

Energy Systems Initiative (ESI) Meeting 10/11



Conclusions & Future Work dﬁ? NETL

=  Conclusions

Developed a fast and accurate temporally dynamic reduced model for BFB
adsorber

Validated the performance of the reduced model in case study (33% reduction
in simulation time)

Generated a small set of basis functions of states with projection errors less
than 0.1%

Showed the potential of simulation cost reduction by POD method

= Future work

Generate a spatially dynamic reduced model and validate its performance
Extend model reduction to the integrated carbon capture system
Incorporate the dynamic reduced order models (D-ROM) into the dynamic

real time optimization (D-RTO) framework
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Eigenvalue Analysis

* Jacobian matrix of differential and algebraic equation (DAE) system
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x — differential variable
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= Jacobian Calculation
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Eigenvalue Analysis
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Time Scale Decomposition Results

CAPD
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= Eigenvalue analysis during the transient response
* Focus on time scale difference in gas and solid phase
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Case Study: Reduced Model Validation

= (O, adsorption for fossil fuel power plants

Electricity Changes of Flue gas :
Main
demand ~> | power plants —> flow rate = .
: } disturbance
fluctuations load fluctuations

= +259% step changes in flue gas flow rate are introduced at t =5 and t = 200

= Two key outputs of the adsorber
e CO, removal fraction
* Sorbent loading

Step response test:

Flow disturbance Output

I_l—l_ = {coilt?’\(ljvller] = => T—J
I > i >

t t

Energy Systems Initiative (ESI) Meeting 9/16



CAHPD 3IN=TL

CENTER

Back up: Ramp input (25% at 5-35 -25% at 200-230)
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GSR matrix

The basis for spectral association is the role played by eigenvalues in describing the dynamics
of a linear system. Consider the initial value problem given by:

el
(t) = Ax(t), x(0) = x" 1
—x(t) = Ax(t), x( (1)
If the cigenvectors of the matrix A are linearly independent, the solution has the form:
x(t) = exp{At)x" = Vexp[At)V X" (2)

where A and 'V are, respectively, the eigenvalues and eigenvectors of A

A=V 1AV = diagiA, Az, ... Al

(3)
exp(At) = diag (e™*, e, ... &™)
The structure within the solution described by Eq. {2) and Eq. (3) can be expressed as:
w5 (t) = L Z St 8 exp( it (4)
=1 k=1
in which the hyper-matrix 5, the general spectral resolution (GSR), is given by:
5:; — Vil V7 Dy (3)

This structure of the GSR is illustrated in Fig. 2. The dynamic response of a svstem is
described in terms of a source perturbation 3‘ ., & dynamic pathway Ay, and a response x, (1)

I _"J"q-..tj
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UPSR matrix

3.1. The unit perturbation spectral resolution (TPSR)

Because spectral association seeks 1o characterise the fundamental dynamics of a state through
assoclation with eigenvalues, the response of a state to a perturbation in itself can be used as a
measure of eigenvalue-to-state association. For example, an initial unit perturbation in the state

z; 1s used to calculate the response of that same state z;:
. P )
x—-[l 00 ] s 21(t)

The response of each state 1o such a unit perturbation in itself is described by a diagonal slice

through the general spectral resolution marrix S:
S'lj:l o A +1
5 - % — Tul¥)

which is illustrated in Fig. 3.
The responses can be assembled into the UPSR matrix P in which the value Fj; is a measure
of the strength of association between state x; and eigenvalue A;, so that:

zi(t) =Y _ Py ' = Py, exp(At) (9)
=1
Calculation of the UPSR. matrix P follows readily from the general spectral resolution S:
Py =80 = VgV ) (10)
Or In matrix notation,
P=Ve (v’ an

Where the operator & represents an element by element, or Hadamard, produet.
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