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Introduction 
Bubbling Fluidized-Bed Adsorber 

 Essential component: bubbling fluidized-bed (BFB) adsorber 
• Solid-sorbent-based post-combustion carbon capture system 
• One-dimensional, three region BFB model 
• Described by partial differential and algebraic equations (PDAEs) 
• Differential and algebraic equations (DAEs) (over 30,000 equations) 
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 Why dynamic reduced order models (D-ROM)?  

• BFB adsorber: spatially distributed first-principle model 
      + Accurate  
      - Computationally expensive  
o For a control case study, the simulation takes 9 hours for a simulation 

interval of 1.38 hours 
o Too slow for process control and dynamic optimization tasks 
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 Why dynamic reduced order models (D-ROM)?  

• BFB adsorber: spatially distributed first-principle model 
      + Accurate  
      - Computationally expensive  
o For a control case study, the simulation takes 9 hours for a simulation 

interval of 1.38 hours 
o Too slow for process control and dynamic optimization tasks 

• Dynamic reduced order model  
      + Computationally efficient  
      + Capture the dynamics of detailed model  
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Temporally D-ROM for BFB Adsorber 
Eigenvalue Analysis 

 Eigenvalue group separation 

• Separation ratio 
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 Eigenvalue variation of original system 
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• Unit perturbation spectral resolution matrix 
           𝑷𝒊𝒊  = 𝑽𝒊𝒊(𝑽−𝟏)𝒊𝒊           𝑉 is the eigenvector matrix of Jacobian matrix 

• 𝑃𝑖𝑖 measures the strength of the association between state 𝑥𝑖 and eigenvalue 𝜆𝑖 

Temporally D-ROM for BFB Adsorber 
Dynamic Reduced Model 
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Temporally D-ROM for BFB Adsorber 
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 Eigenvalue variation of original and reduced model 

• 9 gas phase states associated with mass balance in all three regions 
• 1 gas phase state associated with heat balance in bubble region  Fast states 
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Temporally D-ROM for BFB Adsorber 
Case Study: Reduced Model Validation 

Simulation time MSE1 MSE2 MRE1 MRE2 

Original model 427s - - - - 

Reduced model 286s 2.98e-6 2.02e-6 7.2%  1.2% 

MSE: mean squared error; MRE: maximum relative error; 1: CO2 removal fraction;  2: sorbent loading 

 Output profiles of the reduced and original BFB model 
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Spatial Model Reduction 
Proper Orthogonal Decomposition (POD) 
 Proper orthogonal decomposition  
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Spatial Model Reduction 
Proper Orthogonal Decomposition (POD) 
 Proper orthogonal decomposition  

• Snapshot matrix    

• Singular value decomposition (SVD) of snapshot matrix 
      

• Projection error: 𝜀𝑛𝑠𝑛𝑛𝑃𝑃𝑃 = 1 −  
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Spatial Model Reduction 
Proper Orthogonal Decomposition (POD) 

Full discretized system  
Dim = 𝑁 

Original model 
Spatial discretization 

Snapshots 𝑌 = 𝑦1,⋯ ,𝑦𝑀  
 

POD basis functions 𝜑𝑖 𝑥   

Reduced discretized system  
Dim = 𝐾 << 𝑁  

Simulation  

Method of snapshots  

Weighted residual method 
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 Overall procedures 
𝜕𝑦
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Spatial Model Reduction 
Preliminary Results 

 Preliminary results of POD basis functions: 
• All states can be represented by 6-7 basis functions (instead of 100) 
• Average projection error is less than 0.1% 
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 Why regression model? 
• POD needs to know the explicit form of model equation 
• Linear/quadratic regression models are incorporated to replace Aspen property 

functions 
 

Spatial Model Reduction 
Regression model 
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Regression model 

Maximum relative 
error = 0.41% 
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Spatial Model Reduction 
Potential Analysis 

 Only 6-7 spatial basis functions are needed for state y 
 The number of model equation is reduced to around 2000 after POD reformulation 
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Spatial Model Reduction 
Potential Analysis 

 Only 6-7 spatial basis functions are needed for state y 
 The number of model equation is reduced to around 2000 after POD reformulation 

  Reduction potential : 5 times faster 
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Conclusions & Future Work 

 Conclusions 
• Developed a fast and accurate temporally dynamic reduced model for BFB 

adsorber  
• Validated the performance of the reduced model in case study (33% reduction 

in simulation time) 
• Generated a small set of basis functions of states with projection errors less 

than 0.1% 
• Showed the potential of simulation cost reduction by POD method 

 Future work 
• Generate a spatially dynamic reduced model and validate its performance 
• Extend model reduction to the integrated carbon capture system 
• Incorporate the dynamic reduced order models (D-ROM) into the dynamic 

real time optimization (D-RTO) framework 
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  Jacobian matrix of differential and algebraic equation (DAE) system 

 

x – differential variable 
y – algebraic variable   

Temporally D-ROM for BFB Adsorber 
Eigenvalue Analysis 
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Finite difference 
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Eigenvalue Analysis 
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Temporally D-ROM for BFB Adsorber 
Time Scale Decomposition Results 

 Eigenvalue analysis during the transient response 

Slow mode 

Fast mode 

Eigenvalue variation of the original system 

• Focus on time scale difference in gas and solid phase 

• Eigenvalue analysis in a single tray model 
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Electricity 
demand 

fluctuations 

Changes of 
power plants 

load 

Flue gas  
flow rate 

fluctuations 

Main 
disturbance 

 CO2 adsorption for fossil fuel power plants  

 Two key outputs of the adsorber 
• CO2 removal fraction 
• Sorbent loading 

 ±25% step changes in flue gas flow rate are introduced at t = 5 and t = 200 

Temporally D-ROM for BFB Adsorber 
Case Study: Reduced Model Validation 

t 

Flow disturbance 

Model 

t 

Output 

Step response test: 

 
Flow  

controller
  

9/16 



Energy Systems Initiative (ESI) Meeting 

Back up: Ramp input (25% at 5-35 -25% at 200-230) 

Simulation time reduction: 18% 
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UPSR  
GSR matrix 
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