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Project Objective

Develop an equation oriented framework to 
optimize a coal oxycombustion flowsheet.
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Oxycombustion Flowsheet
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1. Air Separation Unit
2. Boiler
3. Steam Turbine

4. Pollution Controls
5. CO2 Compression Train
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Boiler Design
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• Economics of the power 
generation process depend 
strongly on optimized boiler 
performance

• Tight heat integration has been 
developed for traditional, air fired 
units

• Radiative heat transfer dominates
• O2 and CO2 different properties 

than air
• Need detailed first principles 

model



Boiler Model

• Hybrid 1D reaction/3D radiation approach

• Reaction kinetics – considering particle 
size and composition
• Boiler treated as vertical zones, each of which 

is a well mixed reactor

• Radiation – solved iteratively over a 3D 
mesh
• 90% of heat transfer, convection is ignored in 

the radiative region

• Inlet stream properties  total heat 
transfer, outlet properties
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Model Validation

• Geometries and operating conditions of two 
existing utility boilers
• PacificCorp’s Hunter Unit 3

• Trends in oxy vs. air-fired models match that of CFD 
simulations, e.g. higher burnout for oxy-fired boiler
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Unit Boiler Model CFD Model % error

Enclosure Wall W 3.93 × 108 4.03 × 108 2.4%

Platen 

Superheater

W 9.89 × 107 1.09 × 108 9.2%



Hybrid Model vs Full CFD 
Simulation
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Reduced Order Models –
Motivation 
• Boiler model takes ~60 seconds to converge

• Iterative nature makes accurate derivatives difficult 
to obtain

• Construct simple algebraic representation (e.g. 
kriging), incorporate in equation oriented flowsheet

• Problem: How accurate should a ROM be to be 
useful for optimization? Can we ever find the 
optimum of the original detailed model?
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Trust Region Framework -
Introduction

• Allows us to carefully construct and update ROMs 
in a way that can guarantee convergence to a 
stationary point

• Consider the NLP:

• Using penalty functions to handle the constraints, 
restate the problem as an unconstrained objective:
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Trust Region Framework –
Algorithm Outline
1) Given starting point x0, construct ROM         around  

x0

2) Solve trust region subproblem:

3) Evaluate original detailed model at new step xk + s

4) Adjust trust region radius 

5) Go to 2)
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Stopping Conditions

• Option 1: When gradient less than tolg, enter 
criticality step
• Systematically reduce TR around critical point until 

convergence or new improvement direction is found

• Option 2: ε-exact termination – given an estimate ε
of the error of the ROM over the trust region
• Stop if optimization terminates within trust region and 

ε < tolε
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Conditions on Reduced Order 
Models
• The key to convergence is the fully linear property:

• As trust region vanishes, function values and 
gradients approach original model

• Any type of ROM may be used satisfying this 
property
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Stage I 
Model

Input 
1

Output 
1

Stage 
II 

Model

Output 
2

Input 
2

Stiff DAEs 
205 DE, 114 AE
( ~ 55,000 vars.)

160 DE, 103 AE
( ~ 18,000 vars.)

• Stage II has few degrees of freedom for 
optimization

• Easy to construct and validate an e-exact 
Kriging approximation for Stage II model

Optimization with Kriging Reduced 
Model
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Integrated Optimal Solution Comparison 
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Integrated Optimal Soln.

Stg. I Optimal Soln. 

Current Plant Operation

Better solution is obtained with the integrated  model 

Improved computational efficiency over full 2-stage model
20% shorter batch time for integrated optimum
Rigorous Optimum Verified 



Conclusions

• Accurate representation of the boiler is essential 
for optimization of the oxy-combustion process

• Reduced order models allow optimization of 
flowsheets with complex black-box units 

• Provably convergent trust region algorithms
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Kriging interpolation
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An example of Kriging

Correlation function 

Predictor:
• Given samples from Experimental design

• Choose linear basis of functions to fit with 

linear regression

• Exploit properties of Probability density 

function (assume white noise): Radial 

Basis Function (RBF), R(q, x). (Note 

Gaussian has p = 2)

• Optimize regression with respect to q

• Develop predictive model that combines 

linear regression model and RBF

• DACE MATLAB Toolbox (Lophaven et al., 

2002)

 )()( xrxFY 



RM-based Trust Region Strategy without Gradients

Conn, A. R., Gould, N. I. M., and Toint, P. L., Trust Region Methods; SIAM (2000)

Conn, A. R., Scheinberg, K., and Vicente, L., Introduction to Derivative Free Optimization; SIAM (2010)



Case Study: Semi-Interpenetrating 
Polymer Network (SIPN) 
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Weijie Lin, PhD Thesis, Chemical Engineering, Carnegie Mellon Univ. , 2011



Integrated Optimization
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Minimize overall reaction time

Subject to Rigorous Stage I model 
& Kriging Stage II model

Consider final property constraints

• Include both models into optimization

New  optimization problem formulation

Control bounds


