Reduced Order Models for Oxycombustion Boiler Optimization

John Eason
Lorenz T. Biegler
9 March 2014
Project Objective

Develop an **equation oriented** framework to optimize a coal oxycombustion flowsheet.
Oxycombustion Flowsheet

1. Air Separation Unit
2. Boiler
3. Steam Turbine
4. Pollution Controls
5. CO₂ Compression Train
Boiler Design

• Economics of the power generation process depend strongly on optimized boiler performance
• Tight heat integration has been developed for traditional, air fired units
• Radiative heat transfer dominates
 • O₂ and CO₂ different properties than air
• Need detailed first principles model
Boiler Model

• Hybrid 1D reaction/3D radiation approach
• Reaction kinetics – considering particle size and composition
 • Boiler treated as vertical zones, each of which is a well mixed reactor
• Radiation – solved iteratively over a 3D mesh
 • 90% of heat transfer, convection is ignored in the radiative region
• Inlet stream properties → total heat transfer, outlet properties
Model Validation

• Geometries and operating conditions of two existing utility boilers
 • PacificCorp’s Hunter Unit 3

<table>
<thead>
<tr>
<th>Unit</th>
<th>Boiler Model</th>
<th>CFD Model</th>
<th>% error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure Wall</td>
<td>3.93×10^8</td>
<td>4.03×10^8</td>
<td>2.4%</td>
</tr>
<tr>
<td>Platen</td>
<td>9.89×10^7</td>
<td>1.09×10^8</td>
<td>9.2%</td>
</tr>
</tbody>
</table>

• Trends in oxy vs. air-fired models match that of CFD simulations, e.g. higher burnout for oxy-fired boiler
Hybrid Model vs Full CFD Simulation
Reduced Order Models – Motivation

• Boiler model takes ~60 seconds to converge
• Iterative nature makes accurate derivatives difficult to obtain
• Construct simple algebraic representation (e.g. kriging), incorporate in equation oriented flowsheet
• Problem: How accurate should a ROM be to be useful for optimization? Can we ever find the optimum of the original detailed model?
Trust Region Framework - Introduction

- Allows us to carefully construct and update ROMs in a way that can guarantee convergence to a stationary point

\[\min f(x, y) \quad \text{s.t.} \quad g(x, y) \leq 0, y = d(x) \]

- Consider the NLP:

\[\psi(x) = f(x) + \nu \varphi(g(x)) \]

- Using penalty functions to handle the constraints, restate the problem as an unconstrained objective:
Trust Region Framework – Algorithm Outline

1) Given starting point \(x_0 \), construct ROM \(\psi^R \) around \(x_0 \)

2) Solve trust region subproblem:

\[
\min_s \psi^R(x_k + s), \quad \|x_k - s\| \leq \Delta_k
\]

3) Evaluate original detailed model at new step \(x_k + s \)

4) Adjust trust region radius \(\Delta_k \)

5) Go to 2)
Stopping Conditions

• Option 1: When gradient less than tol_g, enter criticality step
 • Systematically reduce TR around critical point until convergence or new improvement direction is found

• Option 2: ϵ-exact termination – given an estimate ϵ of the error of the ROM over the trust region
 • Stop if optimization terminates within trust region and $\epsilon < \text{tol}_\epsilon$

$$\|x^* - \bar{x}\| \leq (2\bar{\sigma})^{3/2}(\epsilon)^{1/2}/(\sigma)^2$$
Conditions on Reduced Order Models

• The key to convergence is the fully linear property:

\[|f(x) - f^r(x)| \leq \kappa_f \Delta^2, \quad \|\nabla f(x) - \nabla f^r(x)\| \leq \kappa_g \Delta \]
\[\|g(x) - g^r(x)\| \leq \kappa_c \Delta^2, \quad \|\nabla g(x) - \nabla g^r(x)\| \leq \kappa_{gc} \Delta \]

• As trust region vanishes, function values and gradients approach original model

• Any type of ROM may be used satisfying this property
Optimization with Kriging Reduced Model

- Stage II has few degrees of freedom for optimization
- Easy to construct and validate an ε–exact Kriging approximation for Stage II model
Integrated Optimal Solution Comparison

Better solution is obtained with the integrated model

Improved computational efficiency over full 2-stage model

- 20% shorter batch time for integrated optimum
- Rigorous Optimum Verified
Conclusions

• Accurate representation of the boiler is essential for optimization of the oxy-combustion process
• Reduced order models allow optimization of flowsheets with complex black-box units
• Provably convergent trust region algorithms

Acknowledgements: David Miller, Jinliang Ma – National Energy Technology Laboratory
Alex Dowling, CMU

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Kriging interpolation

- Given samples from Experimental design
- Choose linear basis of functions to fit with linear regression
- Exploit properties of Probability density function (assume white noise): Radial Basis Function (RBF), \(R(\theta, x) \). (Note Gaussian has \(p = 2 \))
- Optimize regression with respect to \(\theta \)
- Develop predictive model that combines linear regression model and RBF
- DACE MATLAB Toolbox (Lophaven et al., 2002)

Predictor:

\[
Y = F(x)\beta + r(x)\gamma
\]

\[
\beta^* = (F^T R^{-1} F)^{-1} F^T R^{-1} Y
\]

\[
\sigma^2 = \frac{1}{m} (Y - F\beta^*)^T R^{-1} (Y - F\beta^*)
\]

Correlation function

\[
R(\theta, x_i, x_j) = \prod_{k=1}^{nd} R_k(\theta, x_i^k - x_j^k)
\]

\[
R_k = \exp(-\theta_k |x_i^k - x_j^k|^p)
\]

\(\theta_k \): an indication of input correlation

1. \(\theta \neq \theta^L, \neq \theta^U \)
2. Small ratio of \(\max(\theta)/\min(\theta) \)
RM-based Trust Region Strategy without Gradients

Choose Δ_0, x_0. Compute $\psi(x_0)$. Set $k=0$

Update ROM at x_k. Construct TR subproblem

Compute step s_k that satisfies sufficient decrease condition for $\psi^R(x_k+s)$

$|D_x\psi^R| \leq \varepsilon$?

Yes

ROM fully linear?

Yes

STOP

No

Calculate $\psi(x_k+s_k)$ & $\rho_k = \text{ared/pred}$

No

Is $\rho_k \geq \eta_k$?

Yes

$x_{k+1} = x_k + s_k$

Update Δ_k

No

$\Delta \leq \varepsilon$?

Yes

STOP

No

Shrink Δ_k

ROM fully linear?

Yes

STOP

No

Case Study: Semi-Interpenetrating Polymer Network (SIPN)

0. Swelling

I. Polymerization.

II. Crosslinking

Particle Growth Model (make)

Semi-IPN Kinetic Model (bake)

Integrated Optimization

- Include both models into optimization

New optimization problem formulation

\[
\begin{align*}
\min_{v^l, v^u} & \quad t_I + t_{II} \\
\text{s.t.} & \quad \text{stage I model} \\
& \quad \text{Stage II surrogate model:} \\
& \quad \{ Gel_{end} = S_1(v^{II}_c); \} \\
& \quad \{ \bar{M}w_{end} = S_2(v^{II}_c) \} \\
& \quad Gel_{end} \geq Gel_{tar} \\
& \quad \bar{M}w_{end} \geq \bar{M}w_{tar} \\
& \quad v^l_I \leq v^u_c \leq v^u_I \\
& \quad v^l_{II} \leq v^u_c \leq v^u_{II}
\end{align*}
\]

- Minimize overall reaction time
- Subject to Rigorous Stage I model & Kriging Stage II model
- Consider final property constraints
- Control bounds