Dynamics and Control R&D for Energy Systems

Stephen E. Zitney, Ph.D.
Office of Research & Development
March 9, 2014
Overview

Mission: Operational Excellence for Energy Systems

• Goals and Objectives
 – Develop and deploy state-of-the-art dynamic modeling, simulation, and control tools
 – Leverage in R&D to maximize efficiency and profitability of energy system operations, while reducing negative environmental impact and improving safety

• Dynamic Simulators Development
 – High-fidelity real-time dynamic simulators
 – Full-scope operator training systems (OTSs)
 – 3D virtual immersive training systems (ITSs)

• Advanced Research
 – Dynamic Modeling
 – Advanced Process Control
 – Sensor Systems
 – Energy System Operations
Dynamic Simulator Development

Energy System Applications

• Integrated Gasification Combined Cycle (IGCC) with CO$_2$ Capture [OTS/ITS]
• Natural Gas Combined Cycle (NGCC) [OTS]
• Supercritical Once-Through (SCOT) Pulverized Coal [OTS]
• Subcritical Pulverized Coal (SubPC) [OTS]
• Oxy-Coal Carbon Capture (OCCC) [OTS]
• Shale Gas Processing (SGP) [OTS]

Key:
- Deployed (Completed Phases 1-5)
- Under Development (Completed Phases 1-2)
- Scoping (Completed Phase 1)
Dynamic Simulator Development

IGCC with CO₂ Capture – OTS/ITS

- **Motivation**
 - Flexible technology for clean power generation
- **Deployed OTS at NETL and WVU (2011)**
 - Software: DYNSIM v 4.5.3 / InTouch v9
- **Deployed ITS at NETL and WVU (2012)**
 - Software: EYESIM v1
- **Collaborated with Development Partners**

- **Collaborated with Industry**

- **Distributed Run-Time OTSs for Internal Use**
 - EPRI, BP, Doosan, Southern Company
- **New Developments in Progress**
 - SW Copyright License Agreement with Invensys
 - ITS upgrade to EYESIM v2.0
Dynamic Simulator Development

Natural Gas Combined Cycle (NGCC) – OTS

- **Motivation**
 - Shale gas plays leading to low gas prices
 - Stricter regulation for coal plants
 - Integration of growing amounts of renewable power

- **Completed Steady-State Design**
 - 2-on-1 design with 574 MW gross power
 - Two GTs (182MW each) x One ST (210MW)
 - Two 3-pressure HRSGs (1890, 385, and 62 psia)

- **Completed Prototype Dynamic Model**
 - Leveraged CC portion of IGCC dynamic simulator
 - Modified HRSG heat exchangers and drums
 - Modified steam turbine to match new conditions
 - Achieved stable full-load and tested ramping

- **New Developments in Progress**
 - Update process controls and HMIs
 - Collaborate with Invensys under CRADA to complete development, testing, and deployment
 - Collaborate on cycling studies with NRECA under CRADA (Associated Electric Coop, NGCC Power Plant, Dell, AR)

- **Potential Future Work**
 - Add hooks for post-combustion CO₂ capture (NG-CCS)
 - Integrate with variable renewable generators

Dynamic Simulator Development

Supercritical Once-Through (SCOT) Pulverized Coal - OTS

• **Motivation**
 – Post-combustion CO₂ capture and cycling

• **Accomplishments/Results**
 – Generated functional design specification
 - Once-through water/steam circulation system
 - Enables quicker startup, variable pressure load-following, and on-off cycling
 – Developed DYNSIM dynamic model
 – Prototyped process controls and InTouch HMIs

• **New Developments in Progress**
 – Collaborate with Invensys (CRADA) to complete:
 - Development of HMIs, and operating procedures
 - Testing and deployment

• **Potential Future Work**
 – Add air quality control systems (AQCS)
 - Baghouse (PM), SCR (NOx), FGD (SO₂)
 – Implement process/heat hooks for CO₂ capture
 – Integrate with CO₂ capture dynamic models
 – Conduct transient studies, including startup, shutdown, cycling, load-following, and variable CO₂ capture rates

Dynamic Simulator Development

Subcritical Pulverized Coal (SubPC) - OTS

- **Motivation**
 - Post-combustion CO₂ capture and cycling
- **“Generic” but detailed design**
 - Sidewall-fired drum boiler
 - Westinghouse steam turbine (690 MW)
 - 2413 psig throttle pressure
 - 1005°F main and reheat steam temperature
 - Lube oil, steam seal, etc.
 - Full control system, permissives, alarms
 - Cold-metal start
- **DYNSIM Power for dynamic model and HMI**
- **Training literature developed by FCS**
- **Accomplishments/Results**
 - Reviewed features, capabilities, and documentation for generic SubPC dynamic simulator/OTS (Invensys)
- **Potential future work**
 - SubPC cycling project(s)
Dynamic Simulator Development

Oxy-Combustion Clean Coal (OCCC) – OTS/ITS

- **Motivation**
 - Nitrogen removed from process
 - Flue gas contains mainly CO₂ and H₂O
 - Compression and CO₂ purification unit (CPU)

- **FutureGen 2.0**
 - Meredosia Power Station, IL
 - 200 MWe, Unit 4, 160Bar/540C/540C
 - Babcock & Wilcox (B&W)
 - Purpose-built oxy-PC boiler
 - Air Liquide (AL)
 - Air separation unit (ASU) and CPU

- **Accomplishments/Results**
 - OTS/ITS(Ph1): Generated proposal for FG 2.0 Phase II – FEED

- **New Developments in Progress**
 - Participate in NETL collaboration with B&W and AL on FEED

- **Potential Future Work**
 - Develop and deploy OCCC OTS/ITS
 - Use FG 2.0 as template for NETL Large-Scale Clean Coal and Power System Demonstrations
Dynamic Simulator Development

Shale Gas Processing (SGP) – OTS/ITS

• Motivation
 – Regional Marcellus/Utica shale gas plays
 – Large, highly-integrated, multi-purpose facilities with high-value assets
 – Efficient operation and control of treatment and separation processes to generate pipeline-quality natural gas and natural gas liquids (NGLs)

• Potential Partners
 – ShaleNET
 o Industry Workforce Training; Drilling/fracking to SGP
 o 20 Approved Training Providers
 ✓ Westmoreland County Community College, PA
 ✓ Pierpont Community & Technical College, WV

• Accomplishments/Results
 – Completed scoping study for SGP OTS/ITS
 – Discussed collaboration opportunities with ShaleNET industry partners

• Potential Future Work
 – Collaborate with ShaleNET and industry partners on SGP OTS proposal to US. Dept. of Labor
Goals and Objectives
- Develop and deploy state-of-the-art dynamic modeling, simulation, and control tools
- Leverage in R&D to maximize efficiency and profitability of energy system operations, while reducing negative environmental impact and improving safety

Dynamic Simulator Development
- High-fidelity real-time dynamic simulators
- Full-scope operator training systems (OTSSs)
- 3D virtual immersive training systems (ITSs)

Advanced Research
- Dynamic Modeling
- Advanced Process Control
- Sensor Systems
- Energy System Operations
Advanced Research Program

Dynamics and Control

- **Dynamic Modeling**
 - Plantwide/Process/Equipment
 - Physical and Chemical Submodels
 - Dynamic reduced models (D-RMs)

- **Process Control**
 - Plantwide Control System Design
 - Advanced Process Control

- **Sensor Systems**
 - State estimation, Disturbance rejection
 - Process monitoring, Fault diagnosis

- **Energy System Operations**
 - Startup, shutdown
 - Ramping, cycling, load following
 - Safety and environmental analysis

NETL/ORD Computational Basic Sciences & Engineering

NETL Industry

DOE/NETL Programs (Gasification, IEP, CCSI, Major Demos)

Technology Transfer Accelerated Deployment
Dynamic Modeling

Plantwide/Process/Equipment

- **Plantwide**
 - IGCC [APD, DYNSIM]
 - NGCC [DYNSIM]
 - SCOT [DYNSIM]

- **Process/Equipment**
 - Entrained-Flow Gasifier [ACM]
 - Approach: 1-D PDE [ACM]
 - Sub-models
 - Reaction Kinetics
 - Recirculation
 - Slag Flow/Penetration
 - Approach: Multizonal [DYNSIM]
 - Air Separation Unit (ASU)
 - Low/Elevated-Pressure Cryogenic ASUs [APD, DYNSIM]
 - Sulfur Capture
 - Claus unit and reactor [APD]
 - Sub-models
 - Reaction Kinetics

- **CO₂ Capture/Compression**
 - Post: Solid Sorbent Capture, Regeneration, and Transport [ACM]
 - Post: Liquid Solvents Capture/Regen [ACM, gPROMS]
 - Pre: Selexol [APD, DYNSIM]
 - Pre/Post: Multi-stage CO₂ Compression [DYNSIM, APD/ACM]
- Steam Turbines [ACM, DYNSIM]

- **Commercial Software**
 - Aspen Plus Dynamics [APD], Aspen Custom Modeler [ACM] (AspenTech)
 - DYNSIM (Invensys)
 - gPROMS (PSE)
 - MATLAB/Simulink (MathWorks)
Dynamic Modeling

Dynamic Reduced Models (D-RMs)

- **CCSI D-RM Builder**
 - **Data-driven Black-Box Methods**
 - Nonlinear Auto-Regressive Moving Average (NARMA) based on Neural Networks
 - Decoupled A-B Net (DABNet)
 - Sentoni, Biegler, Guiver, Zhao, *AIChEJ* (1998)
 - **Automatic D-RM Generation**
 - Run high-fidelity “ACM” models in Simulink
 - Create data-driven D-RMs as MATLAB models
 - **GUI Driven Workflow**
 - Configuration → Space-filling (LHS) → Training (Ramp Changes) → Post-processing → Export
 - **Test Cases**
 - VandeVusse Reactor (input-multiplicity)
 - CSTR (multiple SS, unsteady operation)
 - 4 Tank (multiple transmission zeroes)
 - 1D PDE Dynamic BFB CO₂ Capture Adsorber
 - **Product Release**
 - D-RM Builder R1 – Oct. 2013
 - D-RM Builder R2 – Oct. 2014
 - Enhanced D-RM Error Estimation
 - Training algorithm to prevent D-RM Overfitting
 - UQ-enabled D-RM with uncertainty (covariance) matrices and likelihood to assess goodness of fit

- **Order Reduction Methods**
 - **Spatial Reduction**
 - Proper Orthogonal Decomposition (POD)
 - **Temporal Reduction**
 - Eigenvalue Analysis and Quasi-steady State Approximation for Fast States
 - **Test Case**
 - 1D PDE Dynamic BFB CO₂ Capture Adsorber

D-RM (DABNet) vs. ACM Output Data for BFB
Process Control

• **Plant-wide Control System Design for Advanced Energy Systems**
 – WVU, Prof. Bhattacharyya, Jones

• **Advanced Process Control for IGCC Power Plants with CO₂ Capture**
 – WVU, Prof. Bhattacharyya; NETL, Dr. Mahapatra

• **Advanced Process Control Framework for Carbon Capture System Operations**
 – MPC, State Estimation, and UQ
 – CCSI: NETL, Drs. Mahapatra, Zitney; WVU, Prof. Bhattacharyya; LLNL, Dr. Ng

• **Integrated Biomimetic Control Framework for Advanced Energy Plants**
 – Self-Organization, Distributed Intelligence, Adaptability, Intelligent Monitoring, Cognition, and Decision Capabilities
 – WVU, Profs. Bhattacharyya, Lima, Turton, Perhinschi; VRI, Dr. Diwekar

IGCC with CO₂ Capture response to ramp increase in coal feed flowrate (Bhattacharyya et al., 2011)

Schematic of Proposed Biomimetic Control Framework (Bhattacharyya et al., 2014)
Sensor Systems

• Development of Optimal Sensor Placement Algorithms for Energy Systems
 – Application: IGCC Power Plant with CO₂ Capture
 – Objective: Maximize Plant Efficiency
 – WVU, Prof. Bhattacharyya, Prof. Turton, Paul

• Multi-Objective Optimal Sensor Deployment Under Uncertainty for Advanced Power Systems
 – VRI, Dr. Diwekar; WVU, Prof. Bhattacharyya

• Smart Refractory Sensor Systems for Wireless Monitoring of Temperature, Health, and Degradation of Slagging Gasifiers
 – WVU, Profs. Sabolsky, Bhattacharyya, Graham, Kutathumani; ANH Refractories, Palmisiani
Energy System Operations

• **IGCC Power Plant Load Following**
 – Improved GT-Lead/Gasifier-Follow and Gasifier-Lead/GT-Follow modes
 – Improved ramp rates
 – WVU, Prof. Bhattacharyya
 – NETL, Mahapatra

• **NGCC Shutdown, Startup, and Cycling**
 – Operational strategies to reduce plant derates, emissions, profit loss, and equipment damage
 – CRADA with the National Rural Electric Cooperative Association (NRECA)
 – NETL, Liese, Zitney

Transient Response of IGCC Plant Pressure in Face of Load Turndown (Bhattacharyya et al., 2012)

NGCC Shutdown of one GT from full-load conditions (Liese and Zitney, 2013)
Thank you! Questions?

For more information, please contact: Stephen.Zitney@netl.doe.gov
304-285-1379

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.