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Presenter
Presentation Notes
Greetings everyone, I am delighted and honored to give the 2020 Computing in Chemical Engineering Award Presentation on a topic that is very close to my heart which is sustainable design through multi-scale process integration


he Grand Challenge: Sustainability

http://www.azavea.com/wp-content/uploads/2017/09/fig1_tesoro_flaring.jpg

Systems-Based Paradigm Shifts & Enabling Design Concepts, Frameworks &Tools
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At present, humanity faces the grand challenge of sustainability and sustainable development. The symptoms of lack of sustainability are abundant including fresh-water shortage and dwindling natural resources, global climatic changes, environmental pollution, and an increasing rate and ferocity of natural disasters.  An important question to the chemical engineering community is whether we are part of the problem or part of the solution? Another important question that pertains to the Computing and Systems Technology Community is what is our role in addressing the problem through systems based concepts, platforms, and tools

https://www.dailymaverick.co.za/wp-content/uploads/Yogi-sisuluDrought-option-1.jpg6

KEY QUESTIONS

» How to create decarbonization strategies
using multi-scale process integration?

» Can we identify performance benchmarks
(targets) ahead of detailed design?

» How to use these targets in decision
making?

» How to handles appropriate level of details
at all scales?
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Presentation Notes
In the presentation, I will to shed some light on the following questions


OUTLINE

= Overview of Sustainable Design Through
Multiscale Process Integration

o Application Examples:
o Incorporation of renewables in energy integration
and energy-water nexus
o CO, monetization and reduction of carbon footprint
for energy carriers and chemicals

0 Use of Targets to Incorporate Sustainability in
Decision Making

o Multi-scale Integration and Industrial Symbiosis

o Contemporary Challenges and Future
Directions
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To streamline the presentation, I will first give you an overview of sustainable design through process integration, then we’ll talk about the concept of benchmarking or targeting and how to use it to include sustainability in early design, then we’ll talk about industrial symbiosis and finally we’ll discuss key challenges and future direction. Let’s first start with this short video that gives an overview of sustainable design through process integration
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Incorporation of Renewables in Energy Integration/Cogeneration
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Water-Energy Nexus
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Another area that is gaining a lot of interest if water-energy nexus. There are numerous examples. Here I choose the combination of heat integration and water integration. The first figure shows a standalone scenario where we have two separate entities: a processing facility and a water treatment plant that uses thermal membrane distillation. In the second figure, we have a symbiotic relationship where excess low-grade heat is taken from the processing facility and used to drive the thermal membrane distillation to save energy for both entities, treat wastewater, produce fresh water, and reduce the carbon footprint through the significant reduction of external energy use due to heat integration and water integration.


Incorporation of Solar Energy in Water-Energy Nexus
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Water-Energy Nexus (with Solar and Symbiosis)

T -

! | l I | Direct Hat Stream Hot Stream
: g =+ == Product [Fuel)
|
| '|' 'r ) Cold 5
[ . T | indiectHorsream | Steam ST
i . 2 B N Energy Generator External  External Product
I T r [ T g (Heat Recovery Unif)]  Required Process Heat Cooling  Heating {Markets)
| 4 24 1 1 vm—m HE === - Urilivies  Urilities ————
9999 | SeamBewn | L [
E T, T T T S = - = -EEH-SEH-IH— . = Excess Process Heat | | + + I
I | i
! Solar Field (PTC) Gernerated Stearn [ Stream Return | =
L eEEEEEEEE ARy e e e e " . I =T
E k——i‘) i l [ e —
E { e Industrial processing
: 7 . facilities
| Power
: neration
| Copenrsion ™" SN
: Process : x Y
| : p=== .
| _— 1 . 1 Baw .
| Externgl Grid . —ur - _—
| Cogenaratad Staam Primary and Seconc Monthly distribution of thermal power mix in MED
: 1 | Condensed Water . Water Treatmen plant
- [ Multiple-effect Distillation Plant [<-+--+- gresnsssnsssanssensnnn “ 130“‘:
; l ' l I ] T - E mmm‘t External Fresh Fl: 5 0%
= = = : Wiater Source 28 nx |
- o Power 32 e |
F = " . '_: = - . "E 'g %
e | | i > 2 i
| —t P oo e $5 o |
SEsssEEEEEEE s R RS R R R R R R LLLLLLLLLL L L LT = Brine 2%
0% |
i
Bﬂafgp@f\@\&“ W ﬁ‘?f ‘f"f"g@é
& W & & & o
Maorth

meolar energy  EThermal energy dorage B Foswsl fusl

Al-Aboosi, F.Y. and M. M. El-Halwagi, “A Stochastic Optimization Approach to the Design of Shale Gas/Oil Wastewater Treatment Systems
with Multiple Enerev Sources under Uncertainty”’. Sustainabilitv 2019. 11(18). 4865-4906. doi:10.3390/su11184865


Presenter
Presentation Notes
The slide from the work of my former student Dr. Fadhil Al-Aboosi shows even higher levels of integration including the use of solar energy (directly and through storage), the use of multiple water treatment technologies that use thermal and electric energy, and the incorporation of cogeneration system to address water-energy nexus through process integration


Optimal Design and Scheduling of a Solar-Assisted Domestic Desalination System
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To streamline the presentation, I will first give you an overview of sustainable design through process integration, then we’ll talk about the concept of benchmarking or targeting and how to use it to include sustainability in early design, then we’ll talk about industrial symbiosis and finally we’ll discuss key challenges and future direction. Let’s first start with this short video that gives an overview of sustainable design through process integration
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Renewable energy is gaining increasing applicability but so far it did not have a huge share of energy usage in the process industry. This is changing quickly because of the realization that there are very unique opportunities for integrating renewable energy with the processing industries to create energy and mass carriers that can be distributed globally. For instance, in this patent, solar energy, water, CO2, and natural gas are used through elaborate mass and energy integration schemes to produce value-added chemicals that can serve as carriers for mass and energy and dispatched through chemical supply chains


Benchmarking Production of Green Hydrogen
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Atilhan, S., S. Park, M. M. El-Halwagi, M. Atilhan, M. Moore, and R. B.
Nielsen, “Green Hydrogen as an Alternative Fuel for the Shipping Industry”,
Current Opinion in Chemical Engineering, Vol. 31, 100668 (2021)

LH, HFOMGO

Criterion 1: Flammability limts- vapor-air mixtures will ignite and bum over a well-specified range fo compositions.
Awider range increases the limits in which a fire or explosion could commence.

Biodiesel LPG LNG MeOH

EtOH

Ammonia

Lower heating value [MJ/kg] 21 374 46 50 26.7
Flammable limit range 9.7 - 9.7 293 15.7 13.0
Criterion 2: the potential of self-ignition
In presence of oxygen all materials heated above their ignition temperature will burn
Auto ignition point [C°] 520 470 540 464 363
Boiling point [C°] -42 -161.5 64.7 780
Flash point [C'] 61 -104 -175 12 17 -64.2
Criterion 3: Cloud formation and Flame propagation
- 'vapor density' or 'diffusion coefficient' would be related to buoyancy
(e.g., LH2 evaporates for a short period due to its high buoyancy)
Vapor Density air=1 0.88 0.56 0.55 1.10 1.60 0.80




Integration of with Experimental Work
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Methanol Synthesis Stage on the Overall Profitability of the Entire Plant: A Techno-Economic Study”, Catalysis Today, 343, pp.191-198. 2020,
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Another important topic for our computing community is that we really need to reach out to our academic and industrial colleagues carrying out experimental work. Process integration can be very nicely integrated with the experimental work by providing benchmarks and guiding insights to the experimental work while benefiting for tailored experimental data to drive the design. Here I am showing work in collaboration with my colleague Prof. Nimir Elbashir and former and current students Abdulrahman Alsuhaibani, Shaik Afzal, and Sufiyan Challiwala to coordinate the development of catalysts and reactors with process synthesis, simulation, and integration to create new process configurations and catalysts
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Chaliwalla, M. S., N. O. Elbashir, D. Sengupta, and M. M. El-Halwagi, “System and Method for Carbon and Syngas Production”, Patent Pub. No.:
US 2020/0109050 A1, Apr. 9, 2020

Challiwala, M. S., H. Choudhury, D. Wang, M. El-Halwagi, E. Weitz, and N. Elbashir, “A novel CO2 utilization technology for the synergistic co-
production of multi-walled carbon nanotubes and syngas”, Scientific Reports 11(1), 1-8 (2021)
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This integration of process systems engineering with experimental work facilitates the pathway to innovation. For example, this slide which is based on the work led by my colleague Prof. Nimir Elbashir with PhD candidate Sufiyan Chaliwalla and our colleague Dr. Debalina Sengupta, this patent shows how we can monetize CO2 into value-added syngas and hydrocarbons and also solid carbon that turned out to be in the form of high-value carbon nano-tubes. So, not only do we get rid of CO2 but we actually create value.
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INCORPORATING SUSTAINABILITY AND TARGETING
IN PROFITABILITY CALCULATIONS

* Process improvement projects are typically driven/assessed by
profitability criteria (e.g., return on investment, payback period, net
present value)

» Sustainability goals are well aligned with process integration activities

(natural-resource conservation, process-efficiency enhancement,

pollution prevention, etc.)

Targeting approaches can set goals for sustainability

Sustainability considerations are best included in the early stages of

decision making

How to use a consistent platform for including sustainability in development and
assessment of process integration and improvement projects?
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The common practices is that process improvement projects are largely driven by economic profitability which is fine, nothing wrong with high levels of profitabilibility. I often remind people that money and profit are part of sustainability. But if we want to include other 
Sustainability criteria, how do we do that early enough in conceptual design when we still have most of the degrees of freedom for making the main decisions. We should do that but preferably in a manner that is consistent with how the deicion makers make their decisions during conceptual design which is mostly based on profitability critera such as return on investment. 


SUSTAINABILITY WEIGHTED RETURN ON INVESTMENT
METRIC “SWROIM”

 consider a set of process integration project alternatives: p = 1,2,..., Np

rojects*
 For the p'h project, a new term called the Annual Sustainability Profit “ASP” is
defined as follows
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El-Halwagi, M. M., “A Return on Investment Metric for Incorporating Sustainability in Process Integration and
Improvement Projects” Clean Technologies and Environmental Policy 19:611-617 (2017)
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Let us consider Project p or design P. In addition to the conventional annual economic profit of that project, we have a number of sustainability indicators each one has an index i such as reduction in carbon footprint, reduction in water usage and discharge, reduction in discharge of certain emissions, reduction in energy usage, and so on. For each one of those metrics, there is a weight wi which represents the relative importance of that indicator as a ratio to economic profit. This weight depends on the company’s core values and importance of that metric. For instance, if we are in an area with very limited fresh water resources, the company would assign a high value of the ratio wi. Or if in one year, reducing the carbon footprint is a major objective for a company, then that wi will also be high. 
Next, for each one of these indicators, we use targeting techniques to determine the best that that process can do. And in the numerator, we have the actual impact of project p on indicator i. This term may be postivie that is positive contribution to the indicator, or negative if it worsens the indicator, or zero if it does not impact the indicator. The ratio represents how well this project has done relative to the best that this process can do not some other process desired objective. The target here is the true potential for that plant. 
And, therefore this terms represents the increase or decrease on the annual economic profit based on the project’s contribution to sustainability and relative to how well this project is performing compared to the benchmark for the process. This gives us a new term of annual sustainability profit which when dividied by the total capital investment gives us a sustainability weighted return on investment metric that the decion makers can use because it analogous to the conventional ROI that is used all the time.
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To streamline the presentation, I will first give you an overview of sustainable design through process integration, then we’ll talk about the concept of benchmarking or targeting and how to use it to include sustainability in early design, then we’ll talk about industrial symbiosis and finally we’ll discuss key challenges and future direction. Let’s first start with this short video that gives an overview of sustainable design through process integration


THE MULTI-SCALE NATURE
PROCESS INTEGRATION

Example:
* Eco-Industrial Parks Macroscopic

Systems

Process Level

Equipment Level

Molecular Level
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As this Egyptian pyramid showsm systems integration should really coordinate all activities at multiple scales ranging from atoms and molecules, then going through the unit level, the process level, and then the mascroscopic scale. I would to illustrate this point using the application of eco-industrial parks.


.

ECO-INDUSTRIAL PARKS (EIPs)
What is an EIP?

An EIP may be defined as “a community of manufacturing and service businesses located
together on a common property. Members seek enhanced environmental, economic, and
social performance through collaboration in managing environmental and resource issues”

(Source: Lowe E. A, “Eco-Industrial Park Handbook for Asian Developing Countries”, A Report to Asian Development Bank. Indigo Development,
Santa Rosa, California (2001)).

Key Characteristic of a Successful EIP:

Synergism to promote industrial symbiosis is essential for the creation of an EIP and “a
key condition for an EIP to successfully attract industrial participants is that it should
demonstrate that the sum of the benefits achieved by working as collective is greater
than working as a stand-alone facility”

(Source: Lovelady, E. M. and M. M. El-Halwagi, “Design and Integration of Eco-Industrial Parks”, Environmental Progress and Sustainable
Energy, 28(2), pp. 265-272 (2009))

. . Plant 2
Mass Integration Representation of an EIP:
: Plant 1
Fresh - Centralized Mixing —
Resources —> and Interception Systems ) Wastes

Plant n

Plant i

— —

Source: Spriggs, H. D., E. A. Lowe, J. Watz, M. M. El-Halwagi, and E. M. Lovelady, “Design and
Development of Eco-Industrial Parks”, paper #109a, AIChE Spring Meeting, New Orleans, April, (2004)
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So, what is an eco-industrial park or EIP? It is a cluster of plants that collaborate by sharing resources and infrastructures. As my former PhD student Dr. Eva Lovelady has indicated: an important condition for a successful EIP is that working as collective is greater than working as a standalone facility. An extended form of the mass integration representation that I showed you earlier for direct recycle inside a plant can be used for an EIP as shown by this representation developed with Drs. Dennis Spriggs, Ernie Lowe, Jill Watz and Eva Lovelady. 
We can use the source-sink-interception mass integration framework to represent the participating facilities and the units to be added and evolve mass integration techniques to address this multiscale problem.


B CARBON-HYDROGEN-OXYGEN SYBIOSIS NETWORK (CHOSYN)
“A cluster of multiple plants with shared centralized facilities to enable the
exchange, conversion, separation, treatment, splitting, mixing, and allocation of
streams containing C-H-O compounds”

—> —> —> —>
Feeds — Plant —>Products Feeds — Plant —>Products
P = = p=2 =2
Internal Integrated Internal Integrated
Sources Recycles Sources Recycles
External Discharges
ources ) e, St
2T
F. 5 C-H-O Interception Network ———>p_
S laid —
!Snternal Integrated !Snternal Integrated
RULLES Recycles QUrces Recycles
s,i,p
Feeds — ¥t =2
G Plant Products Feeds _Plant Products
S,P P P = Nplants

Source: Noureldin, M. M. B. and M. M. El-Halwaegi”Svnthesis of C-H-O Svymbiosis Networks” AIChE J.. 64(4) 1242-1262 (2015)


Presenter
Presentation Notes
A special class of an EIP is CHOSYN. Here, the focus is on hydrocarbon processing and in addition to simply exchanging chemicals, we can actually convert them to other chemicals and to use atomic-based targeting to set the solution for the whole EIP. Let’s watch this video to learn more.





'® SUMMARY OF CHOSYN MULTI-SCALE TARGETING APPROACH
Flowrate & Composition Data of Internal Sourcesl, Flowrate & Composition Requirements of Participating Plants

Calculate Atomic Flowrates of Internal Sources
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5 Synthesize Reaction Pathways and Develop Conceptual Designs

CHOSYN Conceptual|/Design Alternatives

Source: El-Halwagi, M. M., “A Shortcut Approach to the Multi-Scale Atomic Targeting and Design of C-H-O Symbiosis Networks”, Process
Inteeration and Optimization for Sustainabilitvy 1(1). 3-13 (2017)
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One approach to generating design alternatives for a CHOSYN is shown by this flowchart which starts with atomic targeting, the molecular targeting then reaction pathway synthesis and process synthesis.


PLE
1. How to Best Integrate Discharges and Feedstocks?
2. How to Establish Targets (Atomic, Chemical Species, and Multi-Plant)for Integration Opportunities?

930 CO
%g;g EIOZ 900 CO,
Make not buy: Propylene
CH, Transportation 6,500 CH,OH MTP %
S EUBE : e |Coproducts
0 GTL
 —
0, |Coproducts
>
135 H,
39 CH,
C,H, Ethylene Sales
—=0
H,O Ethylene WCoproducts
180 CO,
2,000 H,
18 CO,
C;Hq Propylene Make not buy:
% —
H.0 PDH Eradats 140 CH,COOH VAM 4
: C,H [Coproducts
CH =~ VAM
sy
External Sources H.O 0,
(available for purchase) >
O,

Source: El-Halwagi, M. M., “A Shortcut Approach to the Multi-Scale Atomic Targeting and Design of C-H-O Symbiosis Networks, Process
Inteeration and Optimization for Sustainabilitvy 1(1). 3-13 (2017)
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To illustrate this multiscale approach, let’s look at this example. Here, we have five chemical plants that are adjacent to each other: gas to liquid, ethylene, propane dehydrogenation, methanol to propylene and vinyl acetate monomer.
At present, each plant operates separates and the wastes are discharged. What if we collect these wastes and convert them into value added products such as methanol and acetic acid to be used instead of buying fresh feedstock to these two plants?


D Key Targeting Results for the CHOSYN Case Study

Atomic Targeting

Ne
A4 = -1,803 kmol C/h (target for deficit in carbon)
AAZ" = -6,474 kmol H/h (target for deficit in hydrogen)

A Ag “ = 2,166 kmol O/h (target for surplus oxygen)

Molecular Targeting

Feqa = 2,252.25 (external)
Fipo= -1,267.50 (-ive > net discharge)
Dco, =-449.25 (-ive = net discharge)

Chemical Species Targets for Minimum
External Resource Usage and Discharge
How to achieve?

Overall stoichiometric equation for the internal streams & external (fresh + discharges) :

2,291.25 CH, + 930.00 CO + 3558.75 CO, + 9,965.00 H,
= 6,500.00 CH,OH + 140.00 CH,COOH + 1,267.50 H,0

Next, Reaction Pathway Synthesis

29
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I’ll show you briefly the key results. First, we carry out atomic targeting to find out that in order to deliver the required amounts of methanol and acetic acid from the waste streams, we have deficiency in carbon and hydrogen buut we have surplus of oxygen. Then, we consider 
External fresh streams such as natural gas primarily methane, water, and CO2. We find out that we need this much of external methane but we will have to discharge these amounts of water and CO2. These are targets that we have
Determined ahead of detailed design. Then, we combine the internal and external streams to create an overall stoichiometric equation for the whole CHOSYN. Next, we use reaction pathway synthesis to generate the various options to reach the target.


.

Examples of Implementation: Option 1
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140 CO
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Here is an option, it has steam reforming of methane, methanol synthesis, CO2 hydrogenation, and acetic acid from methanol and CO. So, we have detailed the building blocks for the reaction. And look, after all is said an done, we’re using 2252 of methane and discharging 1267.7 og water and 449.25 of CO2 which are the targets that we calaculated before carrying out any detailed design. Although there is one unique target, there can be multiple implementations.


'® Examples of Implementation: Option 2

930 CO
2,910 CO, 18 €O,
GTL  |7.830H, _
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180 CO Mixing
PDH 2 449.25
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~2,252.25CH, ==
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940.00 H,
CO k,850.00 [3,358.75 CH, +2H,0 2 CO, +4 H,
i oz 4,582.50
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co, HO0  1,267.50 p 000
; >"H,0
5,850.00 5,850.00
co, H,0
13,280.00 H,
H,+CO, > H,0+CO - :
5,850.00
co
790.00 | 6,640.00 g,l_els:lgl._loo g,ﬁgg.oo
Bl 2 H,+CO > CH,OH NL MTP
140.00 : -
140.00 CH,0 g;ll-lo(g(()) o
co 3
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Here is a second implementation which has steam reformning of methane to hydrogen and CO2 (the previous one was to CO), and it has reverse water gas shift reaction. Look at the usage of methane and discharge of water and CO2 same as the targets.


'® Examples of Implementation: Option 3

930 CO
2,910 CO, HEECSs
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2
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790 CO
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1,267.50 | 25320 €6
H, + CO,> H,0 + CO
| 13,280.00 H,
1,267.50 H,0 6,640.00 CO
6,640.00 g,aog H
2 H,+CO > CH,OH CHOH 3
140
CH,0

2a0Ca CH,OH + CO > CH,COOH
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Here is a third option which has dry reforming of methane, 


o 930 CO 1
2,910 CO, 8.9,
GTL |7,830H,
135 H,
Ethylene | 39 CH, So0CH
2
180 CO,
PDH | 2,000 H,
449.25
2,252.25 CH, < O,
2,535.00 H, 2,291.25 CH, | [2,925.00
633.75 CO, co, 7,430.00 H,
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vl s,
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CH,OH CH,OH
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And so on, we can generate multiple deisgns that meet the targets. If we add another objective such as maximum profit or maximum sustainability weighted return on investment, then we wind up with a unique implementation.
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There are different categories of the CHOSYN problem. It started with the work of my former student Dr. Mohamed Noureldin, there is a shortcut approach using algebraic equations, one can use dijunctive programming such as in the work with Dr. Jose’ Maria Ponce Ortega and his student Maricruz Juarez Garcia. We can also look at the so called anchor tenant problem to start the design with two large plants then invite other plants that make sense such as in the work of my former students Dr. Kevin Topolski and Dr. Mohamed Noureldin in collaboration with Dr. Fadwa Eljack. Or we can use CHOSYN an a multiscale cluster to reduce the carbon footprint such as in the work of my former students Dr. Marc Panu, Dr. Kevin Topolski, and Ms. Sarah Abrash. We can also include the impact of stream uncertainty and reliability as in the work with Dr. Rajib Mukherjee. In addition to integrating mass, we can also integration energy such as in the work of Drs. Topolski, Fernando Lira, and Ponce Ortega.


Curtailed Wind/Solar Energy Integration with CHOSYN (PtG)

“Curtailment of energy which is 2018 California Solar Curtailment = 403,641 MWh

100%

w
=}
a

the activity of lowering the < 0% E
. ; 250 SEI‘;é E
delivery of energy from a =3 -
— 200 ot
60% 3
source (e.g., solar energy g -
collector) to the electric grid. W oo s0% 2
. . 30% £
Curtailment may be driven by § % || 0% £
. . . . 10%
limited capacity of the grid, 3 o A b /alllih.\ o
. 13 5 7 9111315171921 231 3 5 7 91113151719 21231 3 5 7 9 111315171921 23 1 3 5 7 9 11 13 15 17 19 21 23
energy Supply CXCCCdlIlg Winter Spring Summer Fall
demand; and the deSITe tO aVOld m— Average Curtailment (MWh) s % of time under curtailment
unfavorable selling price of
(13
cnergy. 2018 California Wind Curtailment = 28,686 MWh
= 8 100%
= 5 90% &
= 80% E
g ; 70% é
5 o 0% o
= 50% £
LI-; : 40% g
Q2 30% £
g 200 E
3% ettt TS _/(rmTh‘m-..._‘.._ 0%
2 4 6 8 1012 141618 202224 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 1012 141618 202224 1 3 7 9 1113 1517 19 21 23 )
Winter Spring Summer Fall
- Average Curtailment (MWh) =% of time under curtailment
= ¢ — — — — —
Wind/Solar Power Production - ~
Production I Chemicals

g | E:,f:f b fgmand Oxygen Symbiosis i
B R — I
|
Time {1 1 1 CHOSYN
| 302+ CHs — CO + 2H, |
YAF] Electrolysis Jo2bAIAE] Partial Oxidati = .
;_!_T.—. ectrolysis : F!Ti artial Oxidation 1 i
= e~ + H,0 - 0, + H
2 2 2 i Syngas or
\ Natural Gas Syngas 1 \ Natural Gas ]
| S — — — — — — — /
v I+ [

Natural Gas + Syngas

Natural Gas Pipeline
Panu, M., Zhang, C., El-Halwagi, M.M., Davies, M. and Moore, M., 2021. Integration of Excess Renewable Energy with Natural Gas
Infrastructure for the Production of Hydrogen and Chemicals. Process Integration and Optimization for Sustainability, pp.1-18.




OUTLINE

o Overview of Sustainable Design Through
Multiscale Process Integration

o Application Examples:
o Incorporation of renewables in energy integration
and energy-water nexus
o CO, monetization and reduction of carbon footprint
for energy carriers and chemicals

o Use of Targets to Incorporate Sustainability in
Decision Making
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Directions
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To streamline the presentation, I will first give you an overview of sustainable design through process integration, then we’ll talk about the concept of benchmarking or targeting and how to use it to include sustainability in early design, then we’ll talk about industrial symbiosis and finally we’ll discuss key challenges and future direction. Let’s first start with this short video that gives an overview of sustainable design through process integration


S
Contemporary Challenges and Future Directions

 Process intensification and modular integration

« Scaleup of decarbonization technologies

 Integration of Renewable Energy and Creation of Global
Chains of Energy Carriers

 Process Safety

 Disaster-Resilient Design
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Looking ahead, there are various challenges and opportunities in the field. I will talk about six of them.


>

Process Intensification

*Reduce plant size for a given throughput
*Increase throughput (raw materials or products) for a given size of plant
*Reduce number of processing steps
*Increase performance of the process (as a whole):
— Higher profit
— Lower cost (CAPEX/OPEX)

— Higher mass intensity (e.g., process yield, use of material utilities per unit
product, less waste per unit product)

— Higher energy intensity
| L

Edited by
Dominic C.Y. Foo, and Mahmoud M. El-Halwagi

Process Intensification
and Integration for
Sustainable Design

Enhanced Sustainability

Reference: Ponce-Ortega, J. M., M. M. Al-Thubaiti, M., and M. M. El-Halwagi, “Process Intensification: New Understanding
and Systematic Approach”, Chemical Engineering and Processing, 53, 63-75 (2012), DOI: 10.1016/j.cep.2011.12.010
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Process intensification is naturally aligned with sustainability.  As described my my former student Dr. Musaed Althubaiti and by Dr. Jose’ Maria Ponce Ortega, there are three primary manifestations of intensification: to reduce the plant size for a given throughput, or increase the throughoput for a given plant size, or to enhance the process performance as a whole including enhancing profit, mass  intensity, energy intensity, and so on. As we have seen before, these objectives are at the very heart of process integration and targeting techniques and they lead to enhanced sustainability.


() Process Safety: e.g., Sustainability and Safety Weighted
Return on Investment Metric “SASWROIM”

» consider a set of process integration project alternatives: p = 1,2,..., N

Projects*

 For the p'" project, a new term called the Annual Sustainability and Safety Profit
“ASSP” is defined as follows
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Guillen-Cuevas, K., A. P. Ortiz-Espinoza, E. Ozinan, A. Jiménez-Gutiérrez, N. K. Kazantzis, M. M. El-Halwagi, “Incorporation of Safety and
Sustainabilitv in Concentual Desien via A Return on Investment Metric . ACS Sustainable Chemistrv and Engineerine 6. 1411-1416 (2018)


Presenter
Presentation Notes
Next, I would like to highlight the need to consider process safety both in conceptual design and also as part of sustainable design. To help process designers include safety, metrics must be developed to guide the design. Here I am showing you a sustainability and safety weighted return on investment metric which is more general than the sustainability weighted return on investment metric that I showed you earlier. This work was led by Prof. Arturo Jimenez Gutierrez and his PhD students Karen Guillen Cuevas and Paulina Ortiz Espinoza with collaboration by Prof. Nick Kazantzi and my former student Ecem Ozinan. And actually for this work, Karen and Paulina received the AIChE’s Sustainable Engineering Forum Best Student Paper Award.
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Of course, there are many other ways of including safety in conceptual design and I recommend this review paper led by my PhD student Sunhwa Park where she in collaboration with Drs. Xu, Rogers, and Pasman provided a critical review of the various methods and metrics for including inherent safety in conceptual design. Also, as shown by the work of my PhD student Ahmad Al-Douri in collaboration with Drs. Kazantzi , Eljack, and Mannan It is also possible to develop an economic framework for including reliability, availability, and maintainability to help process engineers include these aspects during conceptual design.


Disaster-Resilient Design through Process Integration

12 principal strategies for creating disaster-resilient designs:

(1) Fail-safe by design

Performance

(2) Redundancy Metric
(3) Reconfigurability

(4) Modularity/Mobility/Distributability
(5) Repurposability,

(6) Flexibility,

(7) Controllability,

(8) Reliability,

(9) Recoverability/restorability,
(10)Rapidity,

(11)Robustness, and
(12)Resourcefulness.
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El-Halwagi, M. M., D. Sengupta, E. N. Pistikopoulos, J. Sammons, F. Eljack, and M. K. Kazi, “Disaster-Resilient Design of Manufacturing
Facilities Through Process Integration: Principal Strategies, Perspectives, and Research Challenges”, Sustainable Chemical Process Design,
Frontiers in Sustainabilityv. 1:8 (2020). https://doi.ore/10.2280/frsus.2020.505061
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Another important area is the use of process integration to develop disaster resilient designs of industrial processes. In addition to the conventional approach of protecting the physical infrastructures and restoring operations to the original performance, the new persepctives include options for accepting failure through fail-safe designs and also repurposing the facility to cope with emerging needs following a disaster. For instance, if there is shortage in certain supply of chemicals, how do we pre-design the process so that it can be repurposed to produce the chemicals in shortage during times of pandemics or other disasters. It turns out that process integration provides a powerful framework for creating disaster-resilient designs. As shown by this paper with my colleagues Drs. Sengupta, Pistikopouls, Sammons, Eljack, and Kazi, there are 12 primary strategies for using process integration to create resilient designs.

https://doi.org/10.3389/frsus.2020.595961

CONCLUDING THOUGHTS

» Effective decarbonization requires a
systems approach

» Multi-scale system integration provides a
powerful framework at atomic, unit,
process, and macroscopic scales with
multiple objectives

» Paradigm shift of integrating energy and
monetizing CO, and other GHG gases
creates exciting opportunities



Thank you!
Questions?
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