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Ammonia: Feeding the World

= Backbone of nitrogen fertilizer:

e Anhydrous ammonia (direct application), urea,
ammonium nitrate, UAN, ...

e Massive production scale (~180M mt/y)
= Feeds half of the global population
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Ammonia Production: Haber-Bosch Process

= Centralized production (~1M mt/y) - transportation
= 80% used for fertilizer
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Ammonia Production: Hydrogen Source
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Source: Rouwenhurst et al. (2022), Sustain. Chem. 3(2), 149-171.
= 999% from fossil fuels

= 459% global H, consumption
= 2% GHG emissions

Need sustainable alternative



Ammonia Farmgate Price (Illinois)

Figure 1. Anhydrous Ammonia, Henry Hub Natural Gas Price, and Corn Prices
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* Price depends on natural gas prices, food prices, global conflict,...
« Dominant variable operating cost for crop farmers

« Price stability key concern




Renewable (Green) Ammonia
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= Current demonstration facilities: ~10,000x smaller

= Decreasing renewable electricity cost, policy (IRA) -
significant corporate, government interest




Green Ammonia — Development Projects
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e Siemens Energy will serve as the technical partner to Brooge and
exclusive provider of solutions.




Morris, Minnesota

Morris, Minnesota




Wind to Ammonia at Morris

Scaling down Haber-Bosch to match wind
Ammonia as fertilizer




Small-scale Renewable Haber-Bosch

= Installed in 2013 - first of its kind!

= Uses ~10% of 1.65MW wind turbine

= Fabricated by Sep-Pro Systems, Houston, TX

= Produces 80 kg/day (26.3 ton/year)

= Capital cost: 1.5 MM$ (synthesis), 2.6 MM$ total
= Synthesis consumes ~2.12 kWh/kgNHs;




Distributed Production of Green Ammonia
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Planted Acres by County ) United States - Annual Average Wind Speed at 80 m
for Selected States % S

HA

Pl

-
R

Not Estimated
< 10,000

10,000 - 24,999
25,000 - 49,999
50,000 - 99,999

Source: Wind resource estimates developed by AWS Truepower,
LLC for gator® Wed. hitp. com |

9 cuL Ritp Iy awstruspower com Spatal resokibon of wind fesource
100,000 - 149,999 > S’ date 25 km Projection Albers Equal Area WGSS4
o USDA (B
| = < s
=—s - i : .NREI
U.S. Department of Agricuiture, National Agricultural Statistics Service _ “opns S AWS True Pt

= US wind resource synergistic with Midwest corn production
and nitrogen fertilizer demand

= Opportunity to utilize “stranded” wind and solar resources
(and excess nuclear)

= Distributed production meaningful but costly

Economics crucial for process design and deployment
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Renewable Ammonia System Design

Wind energy (“feedstock”) is intermittent
= Need for storage: Batteries/H-/N,
= Time-varying (rather than steady-state) chemical production
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How do we design and size such a system ?
(location / intermittency, electricity price, scale)




Renewable Ammonia System Design

Wind energy is intermittent
= Storage: Batteries/H,/N-
= Time-varying (rather than steady-state) chemical production
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Combined design and scheduling

= Fixed annual production capacity

= Sijze each unit to minimize levelized cost of ammonia
= Hourly scheduling simultaneously

[1] Palys and Daoutidis (2020). Comput. Chem. Eng. 136, 106785.




The Case for Time-varying Ammonia Production
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Synthesis oversized by 70%
35% lower energy costs
90% less H, storage

= PPA @ $25/MWh

= Electrolysis CAPEX: $900/kW

45% lower LCOA!
= 50,000 mt/y production scale




Renewable Ammonia Economics: Stevens County, MN
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Scale matters (synthesis, ASU) !




Renewable Ammonia Economics: Stevens County, MN
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Electricity price impact is significant: A$10/MWh = A$100/mt




Renewable Ammonia Economics: Nobles County, MN
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= Wind capacity factor: 51% ~$40/mt less than Stevens County

= PPA @ $25/MWh
= Electrolysis CAPEX: $900/kW

Electricity price > Scale (small) > Location




IRA H, Production Tax Credit is Transformative

IRA: $3/kg H2 credit for CI<0.45 kgCOZ/kgHZ Wind.to.NH3
$529/mt ammonia for first 10 years of production = 42% CF

$356/mt ammonia levelized over 20 year project = PPA @ $25/MWh
1400
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Renewable Ammonia Deployment

Palys et al. (2019). Ind. Eng. Chem. Res. 58 (15), 5898-5908.

How much ammonia from each producer?

Existing conventional producers

~

Scale and location?

Account for spatial variation
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Which distribution centers?




Modular Manufacturing and Deployment

Palys et al. (2019). Ind. Eng. Chem. Res. 58 (15), 5898-5908.

= Manufacture systems of same size, then deploy
= Efficiency through standardization
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C - total capital cost

C,, — single module cost
n, — number of modules installed

N

Number of modules

Economies of volume instead of economies of scale




Supply Chain Optimization

Palys et al. (2019). Ind. Eng. Chem. Res. 58 (15), 5898-5908.

Minimize:
Total supply chain cost = Conventional purchase costs
+ Transportation costs
+ Capital and operating costs of new renewable plants

Decisions:

= From which producer and how much conventional ammonia to buy
= How to distribute ammonia

= Where and how many renewable production modules to install

Constraints:

= Ammonia mass balances at distribution and demand sites
= Conventional purchase limits

= Maximum renewable power availability (site-specific)




Supply Chain Economics: 50,000 mt/y Modules

Conventional: | | Transportation | |Purchase
Renewable: | |Transportation | |CAPEX | |OPEX
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Conventional ammonia price in Minnesota:
= Below $550/mt - Business-as-usual
= $550/mt to $585/mt > Renewable ammonia becomes competitive

= Above $585/mt 2> 100% Renewable, $560/mt stable supply cost!




Module Locations at 100% Renewable Supply

(a) 50,000 mt/y

@ 50,000 mtly

€ 100,000 mtly
(2 modules)

@ 100,000 mtly

(b) 100,000 mtly
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= $560/mt vs. $555/mt stable average ammonia cost

= Production scale in 50,000 mt/y to 100,000 mt/y range
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Ammonia for Energy Storage

Storage capacity and duration for
energy storage technologies
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Storage Cost: Hydrogen vs. Ammonia

Hydrogen
= @Gas in high pressure vessel: 200 bar to 700 bar
= CAPEX!2: $1,000/kg » $20/kWh

= Salt cavern (geographically limited)!2: $100/kg - $2/kWh

Ammonia
= Liquid at ambient temperature, 10 bar
= CAPEX12: $5/kg - $0.2/kWh

10 to 100x lower storage cost than hydrogen

[1] Cesaro et al. (2021). Appl. Energy 282, 116009.
[2] Fasihi et al. (2021). Appl. Energy 294, 116170.
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Ammonia storage - CF Industries Glenwood Terminal

= Capacity of 60,000 tons of NH;
= Equivalent to an estimated 111,000 GWh of electricity

= Currently served by Runestone Electric Association

= >10M mt storage globally, not a theoretical concept




Ammonia as a Carbon-free Fuel

Combustion: Turbines or Engine-Generators
= Ammonia-to-power efficiency: 30-45% LHV
= System design and operational challenges (+$%$)
e Lower flame speed
e Corrosion
e NO, and N,O formation
= Can be aided by H, combustion promoter co-mixing
= Can be used for heat or combined heat and power (CHP)
= Demonstrated at MW scale

Direct-fed fuel cells

= Higher efficiency than combustion: >60% LHV

= Avoid combustion byproduct GHGs

= Still at lab/bench scale, years from commercialization

27



NH;—Fueled Grain Dryer Demonstration

ool g T,

« Successfully tested
Oct & Nov 2022

 Scaled burner
application

. 245 Bushel Capacity




Tractor Fueled by Renewable Ammonia

(Reese, 2019)

Field tested June 2019




Ammonia as a Carbon-free Fuel

“Cracking” to hydrogen via opposite of synthesis reaction
Hydrogen-to-power in established fuel cell technology
Ammonia-to-power efficiency: ~50% LHV

Demonstrated at 100 kW scale

NH: cracking

L Hz on-demand

Fuel Cell

-----------------------------------------------
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Ammonia-fueled tractor and semi-truck

= Amogy (founded by 4 MIT

alumni)
= Cracker and fuel cell
= H, on demand

= Commercial transportation
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Renewable Ammonia on the Farm

Renewable ammonia utilization:
= Nitrogen fertilizer

= Grain drying fuel

= Tractor fuel

Energy storage

41.63%

I Nitrogen
1.18% [ Phosphorus

| Potassium

I Pesticides
13.88% || Drying

I Transportation

| | Field Work

36.42%

Potential to reduce conventional corn
farming fossil fuel intensity by >90%!

[1] Tallaksen (2017). Life Cycle Assessment and Cropping Energy Audits for IREE Project RL-0016-13




Case Study at Morris, MN

Two 1.65 MW wind turbines
= Ammonia for farm, approximately 40 mt/y
e 280 acres corn, 116 acres soy
= Corncob biomass, approximately 196 ton/year!
= UMM Campus electrical load: annual average of 950 kWh
= Export power during favorable price signals: Location marginal prices

WCROC Agricultural WCROC-UMM: Generation — Demand
Ammonia Demands' S 2000 Excess Wind Generation Schedule
< 1,500
S 1,000 -
= Fertilizer (t/y) ®
. _ o 500 -
= Grain Drying (t/y) s "
g Ll
Tractor Fuel (t/y) @ 500 -
®
£ -1,000 -
L 2 3, g e e o ey s g
S=3<835280284

[1] Tallaksen (2017). Life Cycle Assessment and Cropping Energy Audits for IREE Project RL-0016-13



Case Study at Morris, MN

NPC!: $123,000/y
CAPEX: $3.50 MM

OPEX: -$190,000/y

= Power sale revenue

= Replace fertilizer import
= Replace fuel import

___________

___________

...........

Emissions avoided: 4,325 mtCO,/y

= Fertilizer production
= Fuels
= Replaced power generation

125 years @ 10% discount rate

ASU N, ST
0.32 mt/d 0.1 mt
SYN
0.35 mt/d
ELY H, ST
275 kW 0.25 mt
FC
75 KW

Emissions Avoidance:




Renewable Energy Storage

Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.
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= 100% renewable energy for 1 MW annual average demand
= Hydrogen and ammonia energy storage pathways



H,-NH5; Energy Storage Analysis

Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

= 15 locations across United States to capture all climate-moisture zones
= Hourly time series data for renewable availability and demand datal
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& ‘ ]
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Source: PNNL and ONNL. (2010). Guide to Determining Climate Regions by County.
1: Miami 2: Houston 3: Phoenix 4: Atlanta 5: Los Angeles
6: Las Vegas 7: San Francisco 8: Baltimore 9: Albuquerque 10: Seattle
11: Chicago 12: Denver 13: Minneapolis 14: Helena 15: Duluth

[11 NREL. (2019). National Solar Radiation Data Base, 1991-2005 Update: Typical Meteorological Year 3.




Optimal Economics

Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

= Wind turbine =PV array mH2 production ®H2-to-power mH2 storage ®mNH3 production = NH3-to-power mNH3 storage
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Optimal Storage Schedules

Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

Minneapolis energy storage schedules
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Conclusions

= Green ammonia: transformative potential

= Drop-in replacement in agriculture with significant

sustainability and price stability benefits
= Flexible utilization as a fuel

= Sector coupling can improve economic

competitiveness

= A key piece of the clean energy storage puzzle



Future Outlook — Ammonia Production

= Haber-Bosch process still state-of-the-art

= Separation alternatives: absorption, membranes,...
= Catalysis alternatives

= Electrochemical synthesis

= Seawater electrolysis, offshore production

= Dynamic operation
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Future Outlook - Utilization

= Ammonia combustion
e NO,, N,O mitigation
e Fuel cell development and commercialization

= Inherently safe storage and transportation
e Enable broad adoption

= New opportunities
e Urea production using captured CO,
e Dispatchable power generation
e Maritime transportation — green corridors
e Fuel for trains, barges, trucks

41



Next Generation Ammonia from Wind and Solar
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Next-gen NH; production and Demonstrate under real-world Connect with end-users and markets

utilization technologies conditions to accelerate commercialization
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Future Outlook - Broader Challenges

Capital intensive (>100MM$) investments required
e How can the farmers be part of the solution?

Green hydrogen at scale
e Can electrolysis supply keep up with demand?
o Effect on cost of electrolyzers?

= Green ammonia certification and market design

= Public perception and acceptance
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