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Ammonia: Feeding the World

§ Backbone of nitrogen fertilizer:
• Anhydrous ammonia (direct application), urea,               

ammonium nitrate, UAN, …
• Massive production scale (~180M mt/y)

§ Feeds half of the global population

Source: Ritchie, Our World in Data: 
https://ourworldindata.org/how-many-people-does-synthetic-fertilizer-feed#note-4; 

Erisman et al., 2008, Nat. Geoscience, 1 (10), 636-639. 



Ammonia Production: Haber-Bosch Process

§ Centralized production (~1M mt/y) - transportation 
§ 80% used for fertilizer

Source: Pattabathula & Richardson, CEP, September 2016, 69-75.



Methane: 
>2.5 mtCO2/mtNH3

Coal: 

>6 mtCO2/mtNH3

2

Ammonia Production: Hydrogen Source

§ 99% from fossil fuels 

§ 45% global H2 consumption

§ 2% GHG emissions

Need sustainable alternative

Source: Rouwenhurst et al. (2022), Sustain. Chem. 3(2), 149-171.



Ammonia Farmgate Price (Illinois)
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• Price depends on natural gas prices, food prices, global conflict,…

• Dominant variable operating cost for crop farmers

• Price stability key concern



Renewable (Green) Ammonia

§ Current demonstration facilities: ~10,000x smaller

§ Decreasing renewable electricity cost, policy (IRA) à
significant corporate, government interest

Wind energy

Solar energy

Electricity Ammonia

Water

Air
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Green Ammonia – Development Projects



Morris,  Minnesota  

Morris, Minnesota



Wind to Ammonia at Morris

§ Scaling down Haber-Bosch to match wind
§ Ammonia as fertilizer



Small-scale Renewable Haber-Bosch  

§ Installed in 2013 - first of its kind!
§ Uses ~10% of 1.65MW wind turbine
§ Fabricated by Sep-Pro Systems, Houston, TX
§ Produces 80 kg/day (26.3 ton/year)
§ Capital cost: 1.5 MM$ (synthesis), 2.6 MM$ total
§ Synthesis consumes ~2.12 kWh/kgNH3



Distributed Production of Green Ammonia

§ US wind resource synergistic with Midwest corn production 
and nitrogen fertilizer demand  

§ Opportunity to utilize “stranded” wind and solar resources 
(and excess nuclear)

§ Distributed production meaningful but costly
§ Economics crucial for process design and deployment
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Renewable Ammonia System Design 
Wind energy (“feedstock”) is intermittent 
§ Need for storage: Batteries/H2/N2 

§ Time-varying (rather than steady-state) chemical production

How do we design and size such a system ?
(location / intermittency, electricity price, scale)



Renewable Ammonia System Design
Wind energy is intermittent
§ Storage: Batteries/H2/N2

§ Time-varying (rather than steady-state) chemical production

Combined design and scheduling  
§ Fixed annual production capacity
§ Size each unit to minimize levelized cost of ammonia
§ Hourly scheduling simultaneously
[1] Palys and Daoutidis (2020). Comput. Chem. Eng. 136, 106785.



The Case for Time-varying Ammonia Production

§ Wind capacity factor: 42%

§ PPA @ $25/MWh

§ Electrolysis CAPEX: $900/kW

§ 50,000 mt/y production scale

Facility with time-varying production
§ Synthesis oversized by 70%
§ 35% lower energy costs
§ 90% less H2 storage

45% lower LCOA!



Renewable Ammonia Economics: Stevens County, MN

§ Wind capacity factor: 42%

§ PPA @ $25/MWh

§ Electrolysis CAPEX: $900/kW

Scale matters (synthesis, ASU) !



Renewable Ammonia Economics: Stevens County, MN

Electricity price impact is significant: ∆$10/MWh à ∆$100/mt  



Renewable Ammonia Economics: Nobles County, MN

§ Wind capacity factor: 51% ~$40/mt less than Stevens County

§ PPA @ $25/MWh

§ Electrolysis CAPEX: $900/kW

Electricity price > Scale (small) > Location



IRA H2 Production Tax Credit is Transformative
IRA: $3/kg H2 credit for CI<0.45 kgCO2/kgH2

§ $529/mt ammonia for first 10 years of production 

§ $356/mt ammonia levelized over 20 year project 

Wind-to-NH3

§ 42% CF
§ PPA @ $25/MWh



Renewable Ammonia Deployment
Palys et al. (2019). Ind. Eng. Chem. Res. 58 (15), 5898-5908.

Existing conventional producers Transportation

Candidate renewable 
production sites

Distribution to 
local demand

?
Renewable 

production facilities

Scale and location?

Account for spatial variation 
in wind availability 

How much ammonia from each producer?

Which distribution centers?



§ Manufacture systems of same size, then deploy
§ Efficiency through standardization 

Economies of volume instead of economies of scale

Modular Manufacturing and Deployment
Palys et al. (2019). Ind. Eng. Chem. Res. 58 (15), 5898-5908.
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C – total capital cost
Cm – single module cost
nm – number of modules installed



Supply Chain Optimization
Palys et al. (2019). Ind. Eng. Chem. Res. 58 (15), 5898-5908.

Minimize:
Total supply chain cost = Conventional purchase costs 

+ Transportation costs 
+ Capital and operating costs of new renewable plants

Decisions:
§ From which producer and how much conventional ammonia to buy 
§ How to distribute ammonia 
§ Where and how many renewable production modules to install

Constraints:
§ Ammonia mass balances at distribution and demand sites
§ Conventional purchase limits
§ Maximum renewable power availability (site-specific)



Conventional ammonia price in Minnesota:

§ Below $550/mt à Business-as-usual

§ $550/mt to $585/mt à Renewable ammonia becomes competitive

§ Above $585/mt à 100% Renewable, $560/mt stable supply cost!

Supply Chain Economics: 50,000 mt/y Modules

$560/mt



§ $560/mt vs. $555/mt stable average ammonia cost

§ Production scale in 50,000 mt/y to 100,000 mt/y range

Module Locations at 100% Renewable Supply
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(a) 50,000 mt/y (b) 100,000 mt/y



Storage capacity and duration for 
energy storage technologies 

Ammonia for Energy Storage



Storage Cost: Hydrogen vs. Ammonia 

Hydrogen
§ Gas in high pressure vessel: 200 bar to 700 bar
§ CAPEX1,2: $1,000/kg à $20/kWh

§ Salt cavern (geographically limited)1,2: $100/kg à $2/kWh

Ammonia
§ Liquid at ambient temperature, 10 bar
§ CAPEX1,2: $5/kg à $0.2/kWh

10 to 100x lower storage cost than hydrogen
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[1] Cesaro et al. (2021). Appl. Energy 282, 116009. 
[2] Fasihi et al. (2021). Appl. Energy 294, 116170.



Ammonia storage - CF Industries Glenwood Terminal

§ Capacity of 60,000 tons of NH3

§ Equivalent to an estimated 111,000 GWh of electricity

§ Currently served by Runestone Electric Association

§ >10M mt storage globally, not a theoretical concept



Ammonia as a Carbon-free Fuel

Combustion: Turbines or Engine-Generators
§ Ammonia-to-power efficiency: 30-45% LHV
§ System design and operational challenges (+$)

• Lower flame speed
• Corrosion
• NOx and N2O formation

§ Can be aided by H2 combustion promoter co-mixing
§ Can be used for heat or combined heat and power (CHP)
§ Demonstrated at MW scale

Direct-fed fuel cells
§ Higher efficiency than combustion: >60% LHV
§ Avoid combustion byproduct GHGs 
§ Still at lab/bench scale, years from commercialization
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NH3–Fueled Grain Dryer Demonstration 

• Successfully tested 
Oct & Nov 2022

• Scaled burner 
application

• 245 Bushel Capacity

• 20/80 mix of H2/NH3



Tractor Fueled by Renewable Ammonia

Field tested June 2019
(Reese, 2019)



Ammonia as a Carbon-free Fuel

§ “Cracking” to hydrogen via opposite of synthesis reaction

§ Hydrogen-to-power in established fuel cell technology

§ Ammonia-to-power efficiency: ~50% LHV

§ Demonstrated at 100 kW scale
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Ammonia-fueled tractor and semi-truck

§ Amogy (founded by 4 MIT 

alumni)

§ Cracker and fuel cell

§ H2 on demand

§ Commercial transportation
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Renewable Ammonia on the Farm
Renewable ammonia utilization:
§ Nitrogen fertilizer
§ Grain drying fuel
§ Tractor fuel
§ Energy storage 
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Potential to reduce conventional corn 
farming fossil fuel intensity by >90%1

[1] Tallaksen (2017). Life Cycle Assessment and Cropping Energy Audits for IREE Project RL‐0016‐13



§ Two 1.65 MW wind turbines
§ Ammonia for farm, approximately 40 mt/y 

• 280 acres corn, 116 acres soy
§ Corncob biomass, approximately 196 ton/year1

§ UMM Campus electrical load: annual average of 950 kWh
§ Export power during favorable price signals: Location marginal prices

Case Study at Morris, MN

WCROC Agricultural 
Ammonia Demands1

WCROC-UMM: Generation – Demand

[1] Tallaksen (2017). Life Cycle Assessment and Cropping Energy Audits for IREE Project RL‐0016‐13



Case Study at Morris, MN

NPC1: $123,000/y

CAPEX: $3.50 MM

OPEX: -$190,000/y
§ Power sale revenue
§ Replace fertilizer import
§ Replace fuel import

Emissions avoided: 4,325 mtCO2/y
§ Fertilizer production
§ Fuels
§ Replaced power generation

Emissions Avoidance:
~$25/mtCO2

125 years @ 10% discount rate



Renewable Energy Storage
Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

§ 100% renewable energy for 1 MW annual average demand
§ Hydrogen and ammonia energy storage pathways



H2-NH3 Energy Storage Analysis
Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

§ 15 locations across United States to capture all climate-moisture zones
§ Hourly time series data for renewable availability and demand data1

1: Miami 2: Houston 3: Phoenix 4: Atlanta 5: Los Angeles

6: Las Vegas 7: San Francisco 8: Baltimore 9: Albuquerque 10: Seattle

11: Chicago 12: Denver 13: Minneapolis 14: Helena 15: Duluth

Source: PNNL and ONNL. (2010). Guide to Determining Climate Regions by County.

[1] NREL. (2019). National Solar Radiation Data Base, 1991-2005 Update: Typical Meteorological Year 3.



Optimal Economics
Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

Combination of H2 and NH3 is optimal in all locations



Optimal Storage Schedules
Palys & Daoutidis. (2020). Comput. Chem. Eng., 136, 106875.

H2 fast, NH3 slow (seasonal) à Efficiency vs. storage cost

Minneapolis energy storage schedules

Phoenix energy storage schedules



Conclusions

§ Green ammonia: transformative potential  

§ Drop-in replacement in agriculture with significant 

sustainability and price stability benefits

§ Flexible utilization as a fuel

§ Sector coupling can improve economic 

competitiveness 

§ A key piece of the clean energy storage puzzle



Future Outlook – Ammonia Production

§ Haber-Bosch process still state-of-the-art

§ Separation alternatives: absorption, membranes,…

§ Catalysis alternatives

§ Electrochemical synthesis

§ Seawater electrolysis, offshore production 

§ Dynamic operation  

40



Future Outlook - Utilization 

§ Ammonia combustion 
• NOx, N2O mitigation
• Fuel cell development and commercialization

§ Inherently safe storage and transportation
• Enable broad adoption

§ New opportunities
• Urea production using captured CO2

• Dispatchable power generation
• Maritime transportation – green corridors
• Fuel for trains, barges, trucks
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Next-gen NH3 production and 
utilization technologies 

Demonstrate under real-world 
conditions

Connect with end-users and markets 
to accelerate commercialization

Next Generation Ammonia from Wind and Solar
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Future Outlook - Broader Challenges

§ Capital intensive (>100MM$) investments required
• How can the farmers be part of the solution?

§ Green hydrogen at scale 
• Can electrolysis supply keep up with demand?
• Effect on cost of electrolyzers?

§ Green ammonia certification and market design

§ Public perception and acceptance
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