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An Evolving Energy Ecosystem
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Coordinated Energy System

Solar
67

Billion kWh

Other
123

Billion kWh

Hydropower
292

Billion kWh

Wind
275

Billion kWh

Fossil Fuels
2,614

Billion kWh

Nuclear
807

Billion kWh

Total: 4,178 Billion kilowatt-hours (kWh)
Data source: EIA, 2018
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Variability in Electricity Production Requires Flexibility



Expanding U.S. Industry & Chemicals Production
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Shell Cracker Nears 'Peak Construction'



• Intensification smaller, cleaner, and more energy-efficient technology
– Reactive distillation
– Dividing wall columns
– Rotating packed bed
– Microreactors

• Modular design
– “Numbering up” instead of scaling up
– Reduced investment risk
– Improved time to market
– Increased flexibility
– Improved safety
– Reduced on-site construction

Process Intensification & Modularization
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Figure from Rawlings et al., 2019



Non-traditional Water Sources Require Innovation

• New operating paradigms
– Distributed
– Grid responsive
– Dynamic

• New treatment technology
– Innovation, intensification
– New materials

• Multiple source waters
– Robust designs
– Rapid reconfiguration
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Need for Dispatchable Power for Economic Deep Decarbonization
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“Firm low-carbon” resources like CCS 
and nuclear lower the cost of deep 
decarbonization by 10-62%

Sepulveda, et al., Joule (2018) 
https://doi.org/10.1016/j.joule.2018.08.006

https://doi.org/10.1016/j.joule.2018.08.006
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Energy System Analysis is Often Applied in Isolation
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Grid-centric ModelingProcess-centric Modeling

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png

Detailed steady state or dynamic process models, 
with the grid modeled as an infinite capacity bus

Detailed power flow models, 
with individual generators modeled as either 

dispatchable point sources or stochastic "negative loads"

From Dowling et al. (2020)
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Integrated Energy System For Power and H2 Production
Sell, store, or 
curtail power? 

Generate H2?
AEM, PEM, SOEC, 
reversible SOFC, 

Reformers?
Value of H2 for 

chemicals 
production?

Value of H2 for 
power 

generation?

Electricity prices?
Grid capacity?

Value of H2 for 
transportation?



Multiple Time Scales & Perspectives Across Tools
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Process/Generator – Integrated Energy Systems
Design, Operation/Control, Dynamics, Multiple Products

Electricity Grid
Dispatch, Power Flow

Complex effects of 
new generators

Capacity Expansion
20-30 Year Horizon

Difficult to value 
flexibility, reliability

Energy Economy 
Models

Long time horizons
Macro-economics

Real-Time 
Operations

High frequency 
dynamics

Multi-Sectoral Interactions & Infrastructure
Natural Gas & Fuels, Transportation, Heat, Hydrogen, Chemicals, Other



• Evolving energy ecosystem requires greater flexibility
• Expanding U.S. industry
• Process intensification & modularization
• Treatment & desalination of non-traditional water sources
• Integrated energy systems (Hybrid approaches)
• Tighter coupling across temporal and spatial scales/domains

Trends Requiring Innovation in Decision Support Tools 
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• Decision support for nonlinear, interacting systems: Optimization Focus
• Multi-Scale from molecular to process/plant to enterprise
• Dynamic optimization
• Enable Innovation
• Reusable Building Blocks
• Flexible & Customizable
• Leverage 30 years of progress in algorithms, hardware, modeling

Requirements for Advanced Modeling Platform



Simulator

Understanding large, complex systems: Don’t Simulate à Solve
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Optimization with
embedded algebraic model 

as constraints

Optimization over
degrees of freedom only

Glass-box optimization
~ 1-5 STE

Black-box optimization (DFO)
~ 100-1000 simulations

[Adapted from Biegler, 2017]



Process Optimization Environments and Nonlinear Solvers
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Black-box
Simulation > 100 Simulation Time EquivalentDFO

rSQP

SQP

IPOPT

Finite Difference
Derivatives (1980’s)

Exact First Derivatives (1990’s)

Exact First & Second Derivatives; Sparse Structure 
(2000’s +)

~ 10 STE

~ 5 STE

~ 3 STE

C
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# of Variables / Constraints

Glass-box

10                        102 104 106

Can now treat millions of variables … on your desktop ... in minutes

[Adapted from Biegler, 2017]



Integrated Platform
Hierarchical - Steady-State & Dynamic - Model Libraries

Modeling Framework
Steady 
State

Dynamic 
Model

Control Volume

Material Balances
Energy Balances

Momentum Balances

Inlet
State

Outlet
State

• 2019 •

FINALIST

2020

WINNER

Gurobi CPLEX Xpress
GAMS NEOS Mosek

CBC
BARON

Ipopt
GLPK

Plant Design 
Process Optimization

Open Source: https://github.com/IDAES/idaes-pse

Enterprise Optimization
Grid & Planning

Materials 
Optimization

!
"
#

Process Operations
Dynamics & Control

Conceptual Design AI/ML
Surrogate Modeling

Uncertainty Quantification
Robust Optimization

PyROS

https://github.com/IDAES/idaes-pse


Advanced Models for Solvent-Based CO2 Capture
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Process Optimization

26  %

• Modular, multi-scale, dynamic rate-based
• Film model: multi-component mass and heat transport

• Simultaneous reaction & transport of molecular & ionic species
• Rigorous properties

• Modified eNRTL model for mixed solvent systems
• Plant-wide model enables complex optimization

Model Validation



Robust Design to Reduce Technical Risk

Robustness achieved 
utilizes smaller 

equipment overall, 
putting more emphasis 

on reboiler and 
condenser duty control

Robust design
guarantees CO2 capture 

in all scenarios; cost 
increase is kept to the 
minimum necessary to 

achieve this

Deteministic design
fails to meet CO2

capture performance 
requirement with a 33% 

probability
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Robust Solution
Cost: $10.90 MM/yr

Expected Second-stage Cost: $5.51 MM/yr

Labs = 6.00 m
Dabs = 4.96 m  

Lreg = 3.00 m
Dreg = 4.04 m  

Axhx = 3,928 m2

Qreb = [17.6, 20.5] MW
Qcon = [-6.7, -0.53] MW 

Deterministic Solution
Cost: $7.25 MM/yr

Second-stage Cost: $5.19 MM/yr

Labs = 7.57 m
Dabs = 4.95 m  

Lreg = 4.00 m
Dreg = 3.44 m  

Axhx = 4,734 m2

Qreb = 18 MW
Qcon = -4.5 MW

Nominal Capture = 85%
Worst-case Capture = 63% 
Prob. of Satisfactory Capture = 58%

Nominal Capture = 92%
Worst-case Capture = 85%
Prob. of Satisfactory Capture = 100%

Inherent uncertainty in process design models
Operational uncertainty: e.g., fluctuations in feed
Economic uncertainty: e.g., cost of utilities
Epistemic uncertainty: e.g., mass/heat transfer, kinetics

4 iterations 
of GRCS

N.M. Isenberg, P. Akula, J.C. Eslick, D. Bhattacharyya, D.C. Miller and C.E. Gounaris (2021). A Generalized Cutting-Set Approach for 
Nonlinear Robust Optimization in Process Systems Engineering Applications. AIChE Journal, 67(5):e17175, DOI 10.1002/aic.17175



Optimizing Flexible System Design to Respond to LMP Signals
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12 Representative Days

• Design a flexible carbon capture system for power plants to operate in a high VRE grid
• Different scenarios based on carbon prices, regions
• Resulting problem is a multi-period stochastic optimization problem



Conceptual Design of Thermal Energy Storage with GDP
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Charging Case (20 possibilities) Discharging Case (15 possibilities)

Problem Specification
• Uses IDAES unit models, IDAES costing library, and 

IDAES conceptual design tools
• Problem formulated as Generalized Disjunctive 

Programming (GDP) problem
• Able to explore several combinations with a single 

model
• Avoid exhaustive enumeration
• Solution time: 

• Charge - 7 mins wall time
• Discharge – 3 mins wall time

Implementation
• Power reduced to 521 MW (baseload is 693 MW)
• 150 MWth diverted to charge; 148.5 MWth extracted during 

discharge
• System designed for 6h of charging/discharging at rated 

storage capacity
• Minimize total annualized cost

Optimal Design
• Salt selected: Solar salt
• Charge:

• Steam source – T3 (IP inlet)
• Steam sink – FWH7 Mixer

• Discharge:
• BFW source – FWH4 
• Steam sink – T2 (HP stage)

MIP: Gurobi, NLP: IPOPT. 572 constraints, 512 variables, 9 integer vars MIP: Gurobi, NLP: IPOPT. 532 constraints, 442 variables, 8 integer vars



NMPC Control of Generator + Thermal Energy Storage

Tracks market dispatch 
signal for hypothetical 
thermal generator with 
integrated thermal 
energy storage



Bridging Timescales Enables Unique Analyses & Design of IES

1. Elucidate complex relationships between resource dynamics and market dispatch 
(with uncertainty, beyond price-taker assumption)

2. Predict the economic opportunities and market impacts of emerging technologies 
(tightly-coupled hybrid energy systems)

3. Guide conceptual design & retrofit to meet current and future power grid needs

Grid ModelingIntegrated Resource-Grid ModelHigh-Fidelity Process Modeling

(b) Bid

(c) Clear

(ii) Track

(iii) Settle (a) Forecast

Real-Time Market Loop
(1 cycle = 1 hour)

Day-Ahead Market Loop
(1 cycle = 1 day)

(i) Dispatch

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png
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Market Surrogates Enable Conceptual Design

1.) Define system search space
4.) Define and solve superstructure 
optimization problem to determine optimal 
design

Surrogate models predict 
market outcomes

given generator decisions

5. Simulate optimal participation of 
candidate designs in electricity markets

Best candidate designs

Optimal market outcomes 
over annual time horizon.

6. Verify results are consistent with 
surrogate models

Defines simulation space

2.) Perform market simulations

>68,000 simulations link 
generator parameters to 

market outcomes 

3.) Train surrogate models to map generator 
characteristics to market outcomes



Scalable Conceptual Design with Market Interaction Surrogates
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Hybrid Energy System Design Superstructures for Case Studies
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Advanced Fossil + Thermal Storage + Hydrogen + CCS Nuclear + Hydrogen

Renewables + Battery + Hydrogen



Integrated Energy Systems for H2 Production & Use: SOFC/SOEC
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HCC-SOFC Process Concepts Scenario
1 SOFC + Gas Turbine + Steam Cycle + CCS
2 SOFC + Gas Turbine + Steam Cycle + Thermal Energy Storage + CCS
3 NGCC + SOEC + CCS
4 rSOFC + Gas Turbine + Steam Cycle + CCS
5 SOFC + SOEC + Gas Turbine + Steam Cycle + CCS
6 NGCC + SOEC + H2 Storage/Turbine + CCS

7 rSOFC + Gas Turbine + Steam Cycle + H2 Storage + CCS

8 SOFC + SOEC + Gas Turbine + Steam Cycle + H2 Storage + CCS

Variable Power, Fixed or Limited H2 Demand

Variable Power

Variable Power, Unlimited H2 Demand
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Optimizing Operation of IES Process Designs 
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CO2 Compression & 
Purification Unit

How to manage 
thermal gradients 

when cycling load?

How can CPU meet 
specs across range 

of operation?

Run in reverse to make 
H2 when electricity 

prices are low? 
Use power from grid? 

From storage?

Operational 
limits of entire  

system?



Water Desalination as Part of Integrated Energy Systems
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Long Term Enterprise Expansion Planning Model
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Development
• Open source – Requires commercial solver such as CPLEX
• Flexible 

– Modifications can address specific questions
– Capture intermittency and volatility

Timescales
• Yearly (decades) investment decision
• Hourly unit commitment problem
Inputs
• Aggerated spatial and temporal (representative days) information
• Operation and investment parameters, renewable capacity factor, 

load, etc.
• Existing transmission between regions
Outputs
• Location, year, type and number of generators, transmission lines 

and storage units to install
• When to retire or extend life
• Transmission expansion between regions
• Approximate operating schedule

Limitations
• Limited to 1 hour time intervals (some extreme 

ramp rate scenarios not accounted for)
• Number of representative days and balancing 

regions limited due to trackability 
• Data can be time consuming to aggerate for 

specific regions (ERCOT and SPP currently 
modeled)
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Lara, C. L., Siirola, J. D., & Grossmann, I. E. (2019). Electric power infrastructure planning under uncertainty: stochastic dual dynamic integer programming (SDDiP) and 
parallelization scheme. Optimization and Engineering, 1-39. Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, I. E. (2018). Deterministic 
electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research, 271(3), 1037-1054.



Identifying Opportunities for Future Integrated Energy Systems
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Cut loop stabilization

Converge ? 

All constraints are met ?

Solve sub-problems of normal 
representative days

Formulate violated constraints

Check extreme ramp days

Converge ?

No

Yes

Yes

Calculate core point

Solve master problem

Check lazy constraints

All extreme days feasible?

Generate feasibility cuts Cut pool management

No

No

Cut pool management

Cuts generated from 
normal rep-days

Cuts generated from 
extreme ramp days

For normal rep-days

Yes
Output

No

Yes

Cut generation algorithm for incorporating extreme days
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Website: https://idaes.org/
GitHub repo: https://github.com/IDAES/idaes-pse
Support: idaes-support@idaes.org

Ask questions, subscribe to our user and/or 
stakeholder email lists

Documentation: https://idaes-pse.readthedocs.io
Getting started, install, tutorials & examples

Overview Video
https://youtu.be/28qjcHb4JfQ

Tutorial 1: IDAES 101: Python and Pyomo Basics
https://youtu.be/_E1H4C-hy14

Tutorial 2: IDAES Flash Unit Model and Parameter 
Estimation (NRTL)

https://youtu.be/H698yy3yu6E
Tutorial 3: IDAES Flowsheet Simulation and 
Optimization; Visualization Demo

https://youtu.be/v9HyCiP0LHg

Open Source Platform
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https://idaes.org/
https://github.com/IDAES/idaes-pse
mailto:idaes-support@idaes.org
https://idaes-pse.readthedocs.io/
https://youtu.be/28qjcHb4JfQ
https://youtu.be/_E1H4C-hy14
https://youtu.be/H698yy3yu6E
https://youtu.be/v9HyCiP0LHg


Partnership and Impact
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Stakeholder Advisory Board
• Keep informed of developments, progress
• Provide input on key challenges

Collaborate with IDAES to apply the tools
• Cooperative Research & Development Agreement (CRADA)

• Protects IP, enables information sharing

Join the IDAES development community (Open Source Release Available)
• Access to IDAES Integrated Platform
• Opportunity to expand capabilities of the tools
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