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Mission: accelerate sustainable/green innovations
Methods: multiscale modeling, optimization, uncertainty quantification, data science

Eugene, Phillip, Dowling (2019), COCHE.



Modeling and Optimization for Data-Driven Decision-Making

Novel Membrane Separations Uncertainty Quantification
Electric Grid & Energy Markets
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Challenge of increasingly integrated & dynamic grid/generation
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Integrated Energy Systems (IES) Provide Dynamic Flexibility

|IESs provide greater operational flexibility by optimally coordinating material flows and energy
conversions, multiple value streams

Multiple inputs and Multiple outputs
technologies: and markets:
Nuclear » » Electricity energy
Gas turbine Ancillary services
Fossil fuels H,

(w/ carbon capture) Chemicals

Solar Heating

Wind Cooling

Batteries

Figure: Arent, Bragg-Sitton, Miller, Tarka, Engel-Cox, Boardman, Balash, Ruth,
Cox, and Garfield. (2020). Joule.



California (CAISO) Energy Prices

Annual price distribution for 1-3pm
Data from http://oasis.caiso.com P P
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Fourier Analysis
N

m(t) = Agsin(wit) + By cos(wyt)
k=0

7 (jwr)| =\ Af + B;

97% of signal magnitude is from 10> Hz
(day-to-day) and faster frequencies

Dowling, Kumar, & Zavala (2017), Applied Energy

Dowling

& Zavala (2018), Comp. & Chem. Eng.



Spatiotemporal Price Variations Create New Opportunities

Integrated Fifteen Minute Real-Time Dispatch
Forward Market Market Process
(1-hour intervals) (15-min. intervals) (5-min. intervals)

Observations:

« OQOver 1 trillion prices for CA system in 2015 (500 GB uncompressed text)
» Localized volatility at slower timescales

« System-wide volatility at faster timescales



Market Hierarchy and Literature Review (Resource Perspective)

California (CAISO) circa 2015

Ancillary Services

(contingency products)

Electrical Energy siow ¢

(consumption and generation)

1 day i e e e e e e e = = = — = m e mmm = m == ===

Day-Ahead Market (DAM)

Schedule generators and loads
in 1-hour intervals for the next day
AWNI 7707575 s /o de s trd o s s ss Fr 4757 nininiiniininiiniinininiiniiiniiiiiliiiis
e . Fifteen Minute Market (FMM)

Non-Spinning Reserves
P . . Correct day-ahead schedule
Additional contingency capacity i
due to forecasting errors

15 min o e e i e e e e e e e = e e e e e e e e m === = = = =

Spinning Reserve§ Real-Time Dispatch (RTD)

Fast contingency capacity; Recenter regulation resources;

supports regulation and RTD settle ramping energy
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(Power) Regulation
Frequency control by adjusting
generators’ /loads’ power set-points

time

Similar structure in Texas (ERCOT), New York (NYISO),
Midwest (MISO), Eastern US (PJM), etc.

Figure: Dowling, Kumar, & Zavala (2017), Applied Energy
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Scheduling with Time-Varying Prices (and Uncertainty)
Ashok & Banerjee (2001), IEEE Tran. Power Sys.

lerapetritou, Wu, Vin, Sweeney, & Chigirinskiy (2002), IERC

Ashok (2008), Applied Energy

Castro, Harjunkoski, & Grossmann (2009), IECR

Castro, Harjunkoski, & Grossmann (2011), CACE

Mitra, Grossmann, Pinto, & Arora (2012), CACE

Mitra, Sun, & Grossmann (2013), Energy

Zhang, Cremer, Grossmann, Sundaramoorthy, & Pinto (2016), CACE

Reserves / Interruptible Loads
Zhang & Hug (2015), IEEE PES ISGT
Zhang, Morari, Grossmann, Sundaramoorthy, & Pinto (2016), CACE

Frequency Regulation

Fares, Meyers, and Webber (2014), Applied Energy

Zhang & Hug (2015), IEEE PES Gen. Meet.

Lin, Barooah, Meyn, & Middelkoop (2015), IEEE Trans. Smart Grid
Dowling & Zavala (2018), CACE

Energy Markets & Distillation Systems (e.g., ASU)
Zhang, Grossmann, Heuberger, Sundaramoorthy, & Pinto (2015), AIChE J.
Cao, Swartz, Baldea, & Blouin (2015), J. Process Control

Cao, Swartz, & Flores-Cerrillo (2015), IECR

Pattison, Touretzky, Johansson, Harjunkoski, & Baldea (2016), IECR 8



Example: Energy Storage Investments in California
Mandate: procure 1,325 MW of battery energy storage by 2024

i% Utility

Opened

Storage Size
Power Rating
Cost
Supplier
Technology

Escondido, CAM

San Diego Gas &
Electric

Feb. 2017
120 MWh
30 MW
Not Disclosed
AES
Li-ion

El Cajon, CA ©

San Diego Gas &
Electric

Feb. 2017
30 MWh
7.5 MW

Not Disclosed
AES
Li-ion

Chino, CA%

Southern California
Edison

Dec. 2016
80 MWh
20 MW
$45 million (estimate)
Tesla
Li-ion



Market-Based Incentives for Battery Energy Storage Systems

max Market Revenue

(perfect information)

s.t. Market Rules
(is the bid legal?)

Market Dynamics
(price-taker,

ignore FR signals)

Resource Physics

(no degradation,

constant efficiency)

CAISO Markets
(IFM, FMM, RTDP)

|

1

Energy
Purchases

Energy Sales

|

Ancillary Service Sales
- Regulation Up

- Regulation Down

- Spin. Reserves

- Non-spin. Reserves

Tesla PowerPack

Efficiency:

Power Rating:

Max Storage:

n

1 MW

S

Data from www.tesla.com/powerpack, accessed March 2017

Goal: Maximize Revenue

Decision Variables:
« Market participation schedule

Constraints:
« (California market rules
« Battery physics

Input Data:

»  Which markets/products to
transact?

» Location in CAISO

« Storage size (in hours)

Time horizon: 1 year

Tesla PowerPack System

» 88% to 89% round trip efficiency

« 50 kW to 2.5 MW

* 2 hrto 6 hr of storage

« 900 $/kW to 2,700 $/kW 10



What Size and How to Interact with Markets?
Median Payback

120 . . .
Q Key Findings:
' - Participate in multiple markets
\ - Transact multiple products
100} . :
‘.‘ - Smaller energy to power ratios
. \
2 i _-="f |—e—100, Energy + AS| | Assumptions:
s 80r g =" 7 |-9-100, Ener : -
o Pt ) ay - Perfect information 2>
2 \ -~ 010, Energy + AS :
\ .—0~" ’ estimate lower bound for

O ) -
3 o, . 010, Energy payback
o 60f Mo P { |——011, Energy + AS Price-tak
o DAM only, -4--011, Energy - .rlce- aker .
j‘% Energy only | |-+-001, Energy - Simple battery physics
S 4ol | 111, Energy - Ig_nore FR signals and
5 111, Energy + AS mileage

o0 L |]: RTDP (5-min prices) ]

FMM (15-min prices) [ 2) - Yes
=“no
: DAM + RTM, ' — DAM (1-hr prices)
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Storage Size (hours) 11



Based on 2015 Market Prices

Where to Locate? 44.0°N

Full Market Participation
DAM and RTM
Energy and Ancillary Services

40.0° N
Storage Size:
1 hour

Investment:
$570,000 / MW 36.0° N

Revenue:
$330,000 to $550,000 / MW / yr

Computational Stats: . _; 5 ; : | -.
- 6,600 nodes analyzed 32.0° N e P P SR e o
- 10s to 24s per node (Gurobi : : : : : ‘

7.0)
- 200 CPU-hours (serial) for map 124.0° W 120.00 W 116.0° W

Is central CA optimal location for storage from grid operator’s perspective?
(e.g., maximize overall reliability, minimize overall system cost)

1.7
1.6 —
»
(qv]
1.5 &
©
1.4 -2
(€))
al
1.3 %
(qv]
O
12 &
al
1.1

12



Interdependencies of Sizing, Degradation, and Replacement Strategy

Goal: Maximize Net Present Value

max Net Present Value
Decision Variables:
« Market participation schedule

« Storage size (design)

(perfect information)

s.t. Market Rules
(is the bid legal?) Constraints:
e (California market rules

 Batte hysics
Market Dynamics ry pny

(price-taker, Sodium Sulfur Battery Input Parameters:
ignore FR signals) 6970 round trip efficiency | ~+ Which markets/products to
4,000 cycles to failure (80% loss in capacity) transact?
. $370,000 investment for 1 MWh system « Replacement horizon (N)
Resource Physics - Degradation rate (&)
(linear degradation, b dation Model
constant efficiency) egradation Node Problem Stats. (N = 5 yrs):

Energy Counter : C} = |S; — S;—1| +Cy—1, + Linear program
Max. Storage: S; < S —¢e4C;, teT. * 3todmillionvariables
* 4 to 7 million constraints

« 2 CPU-hours (mean) per instance1

Degradation Data: Rodrigues et al (2015), Energy  Cost Data: Dicorato et al (2012), IEEE Trans. STE 3



Degradation Effects for Sodium Sulfur Batteries

Net Present Value [M $]

Degradation Cycles to Key Findings
Case Failure ] )
N - AS and RTM drive economics
one € .
- Only 10% NPV improvement from technology breakthrough
- NPV is most sensitive to market participation mode
Low 40,000 - AS revenues justify 3 to 4x times larger battery
Medium 4,000
High 400
2 Results: 5-year replacement strategy
B No Deg. R Low Deg. — Medium Deg. BN High Deg.] s No Deg. @ Low Deg. — Medium Deg.
1.21 0.8 0.77
Economics Sizing H
1.0- —0.71 -"-68
|- 0.63
-]
0.6 1
0.8] 2
>05
0.61 S
Energy §0_4- Energy
0.4 1 ¥ © +
,gncﬂ-lary I- I- L; 0.3 Ancillary
ervices 0.240.24 . 0.25
i 0.190.18 22 1o P Services 0.2 i
0.2 Energy 014014014014 0.16 ., g 0.2 Energy Ceteirons *
Only ~ only 170.170.170.
0.0 o1
—0.21 -0.150.150.150.15 0.0 0.0 0.0 0.0 0.0

EmE High Deg. ]

Energy " E&AS
Day-Ahead

Energy
Real-Time

" E & AS

Energy

" E&AS
Both Markets

Energy

E & AS

Day-Ahead

Energy
Real-Time

E & AS

Both Markets



When to Replace? . .
*—x No Deg. ® @ Low Deg. & -4 Medium Deg. @ @® High Deg.
0-35 | | | | | | | | | I I I I I I I I I I

Propose consistent
metric to compare _
different replacement
horizons:
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! 147
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Y
[
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Y

PPYy = 015

0o o+ Full market participation
010 . DAMand RTM

Profit Per Year [M

0.05| /o
Y: Investment horizon ; : : : : : : : : : : : : : : : : :

NPVy: Net present value | S N N U NN U SN U S S N S S
i: inflation rate ' 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
r: discount rate Replacement Strategy [years]

Observation: optimization exploits degrees of freedom in market participation to mitigate degradation
Sorourifar, Zavala, Dowling (2020), IEEE Trans. Suis. En. 15



Optimal Multiscale and Multiproduct Market Participation

Optimization Framework
for Market-Based Energy

max

S.t.

System Design

Market Revenue

(perfect information)

Market Rules
(is the bid legal?)

Market Dynamics
(price-taker,

ignore FR signals)

Resource Physics

Framework and Market Data Analysis
Dowling, Kumar, Zavala (2017), Applied Energy
Dowling and Zavala (2017), CACE

Batteries are an attractive investment

- Payback in 1 to 2 years with optimized full market
participation

- Smaller storage sizes are optimal

- Install in central CA (near Fresno)

- Only 10% higher NPV with 10x slower degradation

New opportunities for solar thermal
- Up to 50% higher revenues with ancillary services

- Decomposition algorithm for simultaneous
scheduling, control, and market participation

Batteries Concentrated Solar Thermal
Sorourifar, Zavala, Dowling (2020), Dowling, Zheng, Zavala (2017), RSER
IEEE Trans. Suis. En. Dowling, Zheng, Zavala (2018), AIChE J. 16



What about uncertainty?

Actual Prices  Forecast Uncertainty Forecast Mean

v
Autoregressive Gaussian / [
Process (GP)

Price [$/MWh]

Gao & Dowling (2020),

Proc. American Control Conference. L j -
Y ime [hr]

Training Data

Dynamic Model
Decomposition

Elmore & Dowling (2021). Energy.



Dynamic Mode Decomposition

Integrated Fifteen Minute
Forward Market Maljket
(1-hour intervals) (15-min. intervals)

Book Sale @ SIAM UQ 2018

Real-Time Dispatch
Process
(5-min. intervals)

18



DMD: Find “Best” (Low Rank) Linear System Approximation

Define data matrices Low-rank approximation
X = [x1 - Xp_1] € R™*(=1) A=U'AU, =UX'V, X!
X' =[xy --%x,] € R™*(=1)

DMD modes & forecasts
Best fit linear system

AW = WA
=XV, T 'W

AX ~ X/

Singular value decomposition

mdip) if =
_ : Q=4 A /
X =UXV ’ 0 otherwise
~ X . _ o _ $o2
X~ X, =U,5 V=) wov, x(t) = ®eb

Elmore & Dowling (2021). Energy, 232, p. 121013.



Augmented DMD Overcomes “Standing Wave Problem”

Solution: stack / time-shifted
copies of data to create
x(t) = sin(t) augmented input matrix

Problem: DMD fails for

—Data - = DMD = =Augmented DMD - =
X1 X2 o Xp—[—-1
X X2 X3 Xn—1
O —
E aug
&5 )
| X1 X[41 Xn—1 |

Time

Elmore & Dowling (2021). Energy, 232, p. 121013. 20



Augment DMD Is a Fast Forecaster, Superior to DMD

Reconstruction error with ADMD is less sensitivity
to truncation level

ADMD works well with data from individual nodes. There is
negligible benefit to analyzing multiple nodes simultaneously.

Elmore & Dowling (2021). Energy, 232, p. 121013.

ADMD identifies low rank structures

ADMD forecasts outperform DMD and
recapitulate dominant timescales.

21



How much does uncertainty impact market revenues?

Optimal Energy Arbitrage (Control) Revenue Captured Relative to Perfect Information

T
d_
max p (d—c)

d;
st. By, =FE, 14+ cuy/n— :
1 V1 N
0 < FE, <4 MWh,
0<c, <1MW,
0<d, <1MW,
DMD 22% to 24%
Vu € {1,..., N.}.

Augmented DMD  81% to 92%
Elmore & Dowling (2021). Energy, 232, p. 121013. Backcasting 84% to 88% 22



Energy system analysis capabilities are applied in isolation

Process-centric Modeling Grid-centric Modeling

Detailed steady state or dynamic process models,
with the grid modeled as an infinite capacity bus

Detailed power flow models,
with individual generators modeled as either
dispatchable point sources or stochastic "negative loads"

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png

Gao, Knueven, Miller, Siirola, Dowling. (2022) Applied Energy (accepted)

23



Bridging timescales in IDAES enables unique analyses

High-Fidelity Process Modeling

«

https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/igcc-config

Integrated Resource-Grid Model

Real-Time Market Loop

(1 cycle = 1 hour)

Day-Ahead Market Loop

(1 cycle = 1 day)

(iii) Settle
¢ _
]

(a) Forecast

(ii) Track

(i) Dispatc)r

(b) Bid

(c) Clear

Grid Modeling

https://icseg.iti.illinois.edu/files/2013/10/IEEE118.png

1. Elucidate complex relationships between resource dynamics and market

dispatch (with uncertainty, beyond price-taker assumption)

2. Predict the economic opportunities and market impacts of emerging
technologies (e.g., H, production, integrated energy systems)

3. Guide conceptual design & retrofit to meet current and future power grid needs

24



Modeling multiscale resource and grid decision-making

Real-Time Market Loop

(1 cycle =1 hour)

(iii) Settle

$ -

[e]

bal : .
S ost (ii) Track

* health
+ tracking penalty

min system generation costs

(i) Dispatch

TTTTTTTT

(a) Forecast

Day-Ahead Market Loop

(1 cycle = 1 day)

(b) Bid

max E[ Profit ]

(c) Clear

min system generation costs

IDAES integrates detailed process models (b, ii) into the daily

(a, ¢) and hourly (i, iii) grid operations workflows

25



Case Study 1: Quantifying Resource-Grid Interactions

Real-Time Market Loop Day-Ahead Market Loop Bus 102 Steam 3: Optimizing Bids
(1 cycle =1 hour) (1 cycle = 1 day) 76 MW
(iii) Settle (a) Forecast 32.6% efficient (full capacity)
$ o
. . .

—

(ii) Track (b) Bid

(i) Dispatck M (c) Clear

TTTTTTTT

Case Study Setup: RTS-GMLC Test System

1. Generator 102 Steam 3 optimizes bids using stochastic
programming (time-varying)

2. Other generators use static bids

3. Simulation dates: 01/02/2020 — 12/29/2020



Optimized bidding changes extreme price events

Gao, Knueven, Miller, Siirola, Dowling. (2022) Applied Energy (accepted)

26% shortfall of renewable energy
production

Extreme price events near hour 72
shortens from 4 hours to 2 hours
duration

Changes in bidding strategies can
impact the commitment decisions
across the entire grid/market
network

27



Optimized bidding changes unit commitment and dispatch

decisions across the network

Bus 102 Steam 3: Optimizing Bids

76 MW
32.6% efficient (full capacity)

Demonstration Dates:
July 10 — July 14, 2020

7

Bus 323 Combined Cycle 2

Effects ripple through grid:
« Commitment and dispatch
decisions are impacted
across the grid.

Gao, Knueven, Miller, Siirola, Dowling. (2022) Applied Energy (accepted)

Bus 107 Combined Cycle 1

Bus 213 Combined Cycle 3

28




Case Study 1: Take Away Messages

A small change in the bid for a target thermal generator (Bus 102 Steam 3)...

Changes overall market statistics by less than 1%: Shifts dispatches and profits across markets for all
» Fixed, Generation, and Total Costs resources:
. 5% Reserve
* Load Shedding .
- Reserve Shortfall e
« Renewables Curtailment ° -
« Total On/Offs 25 Resc?tl:]rce
. 2 Wi
» Average Price S 4 strategic
5 I DAM 1 bidding
Conclusion: Ignoring bidding is reasonable for many g3 / : DAM |
(]
aggregate modes. O, I I . RTM 1
20 to 40%
1 | | / incr:ase in
0 , profits

-60 —-40 -20 0 20 40 60
Increase in Total Profit [%]

Design and analysis of integrating energy systems must consider interactions with the

grid to accurately capture economic impacts and rewards. -



Case Study 2: Benefits of Integrated Energy Systems

i Existin Generalized
Real-Time Market Loop Day-Ahead Market Loop Goneratar Energy Storage

(1 cycle =1 hour) (1 cycle = 1 day)

(iii) Settle (a) Forecast %
$ o
m | , :Discharge |
(ii) Track (b) Bid Track market dispatches
(i) Dispatch (c) Clear
| |
Case Study Setup:

RTS-GMLC Test System

1. Augment thermal generators in RTS-GMLC test system with onsite
storage systems.

. Using static bids to get dispatch signals from Prescient.

2
3. Explore benefit of hybrid system by tracking dynamic dispatch signals
4. Simulation dates: 01/02/2020 — 12/29/2020



Leveraging energy storage in IES...

Reduces the number of start-ups Reduces the ramping mileage

15% decrease

\

25% decrease

\ 87% decrease

N\

Significance: IES with storage can decrease the need to dynamical operate CO, capture systems, thereby
reducing costs, simplifying designs, and mitigating control challenges.

Gao, Knueven, Miller, Siirola, Dowling. (2022) Applied Energy (accepted)



Holistic Analysis of Integrated Energy Systems (IES)

IESs provide greater operational flexibility by optimally coordinating material flows and energy
conversions, multiple value streams

Multiple inputs and Multiple outputs
technologies: and markets:
Nuclear » - Electricity energy
Gas turbine Ancillary services
Fossil fuels H,

(w/ carbon capture) Chemicals

Solar Heating

Wind Cooling

Batteries

Process-centric Analysis: Grid-centric Analysis:

« Which technologies are the best investment? * How can IES improve grid reliability/resiliency/flexibility?
« How to size and operate (energy) storage? » How does adoption of IES impact market signals for

« Which markets to participate in? How? conventional generators?

» Which market rules/structures fully leverage IES?

32



Design & Optimization Infrastructure for Tightly Coupled Hybrid Systems

Sandia
National
Laboratories

Value Proposition Project Objectives

» Conceptual design of novel hybrid systems in a way that
enables rigorous exploration of the design space

» Values the output of the hybrid system within the context -
of the grid and region it is deployed

* Detailed dynamic models coupled with nonlinear model .
predictive control based on market signals

Open, multi-lab computational platform to support the design,
optimization, and analysis of tightly coupled hybrid systems.

Demonstrate and quantify the benefits of potential hybrid
systems based on case studies

Build on DOE investments in modeling and simulation
capabilities to support a resilient, reliable, and cost-effective
bulk power system.

April 5,2022 | 33



DISPATCHES Case Studies

Nuclear Case Renewables Case

Fossil Case (Greenfield) Fossil Case (Retrofit)

April 5, 2022 34



Multiscale Market-Based Optimization of IES

Multi-period

Steady-state

o

Candidate IES designs
. e e . i.e., IDAES models) to . . .
Design Optimization ( ) Multiscale Simulation
evaluate
(Maximize Net Present Value) /-\ (Quantify Grid/IES Interactions)
| Real-Time Market Loop Day-Ahead Market Loop
; (1 cycle =1 hour) (1 cycle = 1 day)
Model time-coupling constraints (iii) Settle (a) Forecast
(e.g., ramping) a‘nd energy holdups $ .,
| [e]
~ Representative o Market » -
or Historical Data Surrogates (i) Track (b) Bid
(c) Clear

Ignore time-
coupling constraints (i) Dispatcl m

v

Price Taker Markgt
Interactions \_/

Data to refine market
representation (e.q.,

prices, surrogates)
April 5, 2022

35



DISPATCHES Workflows

RAVEN  -----—-—-—--- !
_ s i Generate Stochastic
9 : i Realizations of LMPs
(1" |
~ HistoricallsO | i
2 Data !
a v
Optimal
Optimization Model Hybrid
g —
> (IDAES & Pyomo) Energy
System
: :
2 :
o
o
£ Data
c Market Surrogates
- INDULS «ereveeer PRESCIENT  cererereveemep 0 e OO RS rrirrarenanat
E P g e (IDAES Surrogates)
<
=

April 5, 2022 36



DISPATCHES Workflows — Price Taker

RAVEN ============- !
Y i Generate Stochastic
g ! i Realizations of LMPs
E Historical ISO __________________j E
= Data i
o v
Optimal
Optimization Model Hybrid
(IDAES & Pyomo) —  Energy
System

April 5, 2022 37



Multi-Period Price Taker (Self-Schedule)

Weight /
Frequency

Revenue

A

=y

(Operating + Capital)

Cost

A

|

1

Simulated or Historical ISO Prices

=

d Design decisions

8¢ | Power output decision for scenario

Uus ¢+ | Operating decisions for scenario

Ts¢ | Scenario price (data)

R() | Revenue: function of decisions and prices
C() | Cost: function of decisions

April 5, 2022

38



DISPATCHES Workflows

Optimal
Optimization Model ___, Hybrid
(IDAES & Pyomo) Energy
System

Market Surrogates
(IDAES Surrogates)

Market Interaction

April 5, 2022 39



How would a new generator change market outcomes?

Production Cost Modeling:

RTS-GMLC Test System Revenue & Dispatch Results

Simulation Design

64,800 1-year Prescient simulations (@ 3 hr each)

April 5, 2022 40



Surrogates Accurately Predict Market Outcomes

Fit Market
Surrogates

April 5, 2022 41



Steady-State with Market Surrogates (Bid)

Cost
Revenue (Operating + Capital)

— : |
max R(x) — z ws(x)[C(d, ug, 65)]

du

g(d’ U, 55) =s€8, Vs € § Process Model
h(d,x) =0 “Bid Rules”

R(x) — frev(x) Revenue Surrogate
WS(X) = fg(x), Vs €S Dispatch Surrogates

d Design decisions

d; | Power output data for scenario

u; | Operating decisions for scenario

X Market Inputs (bid decisions)

R() | Revenue: function of market inputs

C() | Cost: function of decisions

W | Scenario weight: function of market inputs




Example: Optimal Design of Rankine Cycle for RTS-GMLC

Steam Generator

Power 6
—

—l

Price

Energy Market

April 5, 2022
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Price Taker vs. Market Surrogates (P,,., = 433.5 MW)

Revenue Capacity Factor

April 5, 2022 44



Take Away Messages

Integrated Energy Systems (IES) provide
dynamic flexibility

Modeling and data-driven co-optimization
of IES design, operations, and control

Real-Time Market Loop Day-Ahead Market Loop

(1 cycle = 1 hour) (1 cycle = 1 day)

(iii) Settle (a) Forecast
$ o

<]

Multiscale simulation + machine learning [ (o) Bid
embeds |IES-market interactions into

O ptl m |Zat| on (i) DiSPatEEJ_ (c) Clear




Further Reading: dowlinglab.nd.edu/publications

Multiscale & Multiproduct Markets
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