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ÅOne-third of U.S. CO2
emissions come from 
power plants and other 
point sources

ÅAvailable carbon capture 
technologies would 
increase electricity costs

ïPulverized coal plants
ÅCurrently: 75% increase

ÅGoal: <30% increase

MOTIVATION

http://www.netl.doe.gov/technologies/carbon_seq/index.html
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ÅObjective: 

Optimize carbon capture processes using highly accurate 
simulations

ÅHurdles:

ïComputationally costly simulations

ïScarcity of fully robust simulations

ïLack of an algebraic model to aid optimization

OBJECTIVE AND HURDLES
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ÅGenerate an accurate set of surrogate models to 
describe the simulation

BATTLE PLAN
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1. Carbon capture process

2. Method overview

3. Surrogate model generation

4. Preliminary results

5. Conclusions

OVERVIEW
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ÅSimulation methods

ïAspen Plus 
ÅAmann and Bouallou, 2009

ÅFashami et al., 2007

ÅAbu-Zahra et al., 2007

ÅAlie et al., 2005

ÅChang and Shih, 2005

ÅCorradetti and Desideri, 2005

ÅFisher et al., 2005

ÅAlie, 2004

ÅFreguia and Rochelle, 2003 

ÅReport DOE/NETL, 2002

ÅDesideri and Paolucci, 1999

ÅDesideri and Corbelli, 1998

CURRENT METHODS

ïHYSYS
ÅAmannand Bouallou, 2009

ÅOi, 2007

ÅSingh et al., 2003

ïMATLAB
ÅMofarahi et al., 2008

ïFortran code
ÅTobiesenet al., 2007

ÅTobiesenand Svendsen, 2006
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ÅSimulation optimization methods

ïDirect
ÅEmun, Gadalla, Majozi, and Boer, 2010

ÅChen,  Shao, and Qian, 2009

ÅLeboreiro and Acevedo, 2004

ÅDe Simon, Parodi, Fermeglia, and R. Taccani, 2003

ÅErnst, Garro, Winkler, Venkataraman, Langer, Cooney, and Sasisekharan, 1997

ïSurrogate model based
ÅHenao and Maravelias, 2010

ÅZhou, Xinping, Kefa, and Fan, 2004

CURRENT METHODS
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OVERVIEW OF THE METHOD

Simulation



Carnegie Mellon University 12

OVERVIEW OF THE METHOD

Disaggregated blocks of 
process unit(s)

Simulation
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OVERVIEW OF THE METHOD

Surrogate models of 
blocks

Disaggregated blocks of 
process unit(s)

Simulation

f1(x) f3(x)f2(x)
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OVERVIEW OF THE METHOD

Surrogate models of 
blocks

Algebraic constraints

Nonlinear program

Disaggregated blocks of 
process unit(s)

Simulation

f1(x) f3(x)f2(x)

Mass balances Design specs

Algebraic model for optimization
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OVERVIEW
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DISAGGREGATED BLOCKS

Independent variables, 
Å Inlet conditions
ïFlow rates
ïComposition
ïTemperature
ïPressure

ÅOperating conditions
Å

Dependent variables, 
Å Outlet conditions
ïFlow rates
ïComposition
ïTemperature
ïPressure

ÅOther relevant conditions

Χ
Χ

Χ
Χ
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SURROGATE MODEL GENERATION

Sample points

Build model

Adaptive sampling 

and 

Model validation

Done

PASS

Add 
points

FAIL
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Design of experiments

1. Random points sampling

2. Factorial design

3. Latin hypercube design
Å Space-filling design

SAMPLE PROBLEM SPACE

Sample points

Build model

Adaptive sampling 

and 

Model validation

Done

PASS

Add 
points

FAIL

x1

x2
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ÅBuild model for output z

ÅBasis functions Xj(z,x)

ïExplicit Xj(x)

ÅPolymonial

ÅPairwise polynomial

ÅExponential and logarithmic

ÅExpected basis functions

ïImplicit Xj(z,x)

ÅEx: log mean temperature difference

MODEL BUILDING

Sample points

Build model

Adaptive sampling 

and 

Model validation

Done

PASS

Add 
points

FAIL



Carnegie Mellon University 20

AVOID OVERFITTING THE DATA

Linear

Increasing model complexity

Quadratic Cubic 5th Order
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Empirical error

True error

ÅEmpirical error: 
Error between the model and the sampled data points

ÅTrue error:
Error between the model and the true function

EMPIRICAL VERSUS TRUE ERROR

Complexity
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OverfittingUnderfitting
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One term Two terms Three terms Four terms

1. Start with a liner combination of basis functions 
d=4:

2. Generate all possible subsets of basis functions

3. Pick the best

BEST SUBSET METHOD



Carnegie Mellon University 23

One term Two terms Three terms Four terms

1. Start with a liner combination of basis functions 
d=4:

2. Generate all possible subsets of basis functions

3. Pick the best

BEST SUBSET METHOD

2d-1

subsets!
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ÅCorrected Akaike Information Criterion (AICc)

ïGives an estimate of the difference between a model and 
the true function

HOW TO PICK THE BEST SUBSET

Accuracy    +    Complexity

-5

-4

-3

-2

-1

0

0 2 4 6

AICc

Number of basis functions in model

Solution
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CHOOSING THE BEST T SUBSET

Choose basis functions to 
minimize the total model error
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CHOOSING THE BEST T SUBSET

Basis function 
used in the model:

ɓj chosen to 
satisfy a least 

squares regression

Otherwise: 
ɓj = 0



Carnegie Mellon University 27

CHOOSING THE BEST T SUBSET

OnlyT terms allowed 
in the model
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ADAPTIVE SAMPLING

ÅFind values of x where the model is 
inconsistent
ïMaximize the relative model error using a 

derivative-free solver (SNOBFIT):

Sample points

Build model

Adaptive sampling 

and 

Model validation

Done

PASS

Add 
points

FAIL

z(x)

True function
Model
Data point

x
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ÅFind values of x where the model is 
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derivative-free solver (SNOBFIT):

ADAPTIVE SAMPLING

Sample points

Build model

Adaptive sampling 

and 

Model validation
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Add 
points
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z(x)
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Model
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ÅFind values of x where the model is 
inconsistent
ïMaximize the relative model error using a 

derivative-free solver (SNOBFIT):

ADAPTIVE SAMPLING
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ÅFind values of x where the model is 
inconsistent
ïMaximize the relative model error using a 

derivative-free solver (SNOBFIT):

ADAPTIVE SAMPLING

Sample points

Build model

Adaptive sampling 

and 

Model validation

Done

PASS

Add 
points

FAIL
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True function
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ÅAdd the data points found during 
adaptive sampling to the training 
set

ÅRebuild the model

REBUILD THE MODEL

Sample points

Build model

Adaptive sampling 

and 

Model validation

Done

PASS

Add 
points

FAIL

z(x)

True function
Model
Data point

x
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ÅTrue model:

ILLUSTRATIVE EXAMPLE
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ILLUSTRATIVE EXAMPLE
1.  Sample points 2.  Build model 3.  Adaptive sampling 4.  Done

True function

Model

Current data points

Iteration 1

Data points Model Ordinary least squares 
model
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ILLUSTRATIVE EXAMPLE
1.  Sample points 2.  Build model 3.  Adaptive sampling 4.  Done

True function

Model

Current data points

Added data points

Iteration 1

Data points Model Ordinary least squares 
model


