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MOTIVATION

A Onethird of U.S. CQ
emissions come from ol
power plants and other
point sources

Atmospheric CO,

A Available carbon capture
technologies would
Increase electricity costs SeaveSaion

I Pulverized coal plants
A Currently: 75% increase
A Goal: <30% increase http://www.netl.doe.gov/technologies/carbon_seg/index.html
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OBJECTIVE AND HURDLES

A Objective:

Optimize carbon capture processes using highly accurate
simulations

A Hurdles:

I Computationally costly simulations
I Scarcity of fully robust simulations  Results Available with Errors
I Lack of an algebraic model to aid optimization

Carnegie Mellon University 3



BATTLE PLAN

A Generate an accurate set of surrogate models to
describe the simulation

AUW#—‘D@

min  f(z)
s.t. g(x) <0
h(x) =0
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OVERVIEW

. Carbon capture process
. Method overview
. Surrogate model generation

Preliminary results

g A W N R

. Conclusions
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MEA CARBON CAPTURE PROC]
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CQ lean solvent
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CURRENT METHODS

A Simulation methods

I Aspen Plus

A Amann and Bouallou, 2009
A Fashami et al., 2007

A Abu-Zahra et al., 2007

A Alie et al., 2005

A Chang and Shih, 2005

A Corradetti and Desideri, 2005
A Fisher et al., 2005

A Alie, 2004

A Freguia and Rochelle, 2003
A Report DOE/NETL, 2002

A Desideri and Paolucci, 1999
A Desideri and Corbelli, 1998

I HYSYS

A Amannand Boualloy 2009
A 0Oi, 2007
A Singh et al., 2003

I MATLAB

A Mofarahi et al., 2008

I Fortran code

A Tobieseret al., 2007
A Tobieserand Svendsen2006
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CURRENT METHODS

A Simulation optimization methods
I Direct
A Emun, Gadalla, Majozi, and Boer, 2010
A Chen, Shao, and Qian, 2009
A Leboreiro and Acevedo, 2004

A De Simon, Parodi, Fermeglia, and R. Taccani, 2003
A Ernst, Garro, Winkler, Venkataraman, Langer, Cooney, and Sasisekharan, 1997

I Surrogate model based

A Henao and Maravelias, 2010
A Zhou, Xinping, Kefa, and Fan, 2004
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OVERVIEW OF THE METHOD

Simulation




OVERVIEW OF THE METHOD

Simulation
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OVERVIEW OF THE METHOD
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Simulation
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OVERVIEW OF THE METHOD

4 / \\
Simulation

S \_
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Disaggregated blocks o[ .- iy e

process unit(s)

o
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Surrogate models of

Algebraic constraints | Mass balances] [ Design specs |
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Nonlinear program Algebraic model for optimization:
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DISAGGREGATED BLOCKS

Iy » 21
i) » 29
x X
i > Ll
x X
Noars > 2K
Independent variablesy Dependent variablesz
A Inlet conditions A Outlet conditions
I Flow rates I Flow rates
I Composition I Composition
I Temperature I Temperature
I Pressure I Pressure
A Operating conditions A Other relevant conditions

A < ap < ¥
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SURROGATE MODEL GENERAT

Sample points

Build model

Add
points

Adaptive sampling
FAIL and
Model validation

PASS

Done
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SAMPLE PROBLEM SPACE

Design of experiments
1. Random points sampling
2. Factorial design
3. Latin hypercube design

[ Sample points ]

Build model A Spacefilling design
Add § ? ;
points . S —
Adaptive sampling o : : :
FAIL and R, .c.c. - A ——
Model validation X, : : .
PASS
[ J
s E N R R R RN NN NN EENNENENEARAEEEEEEEEEEAAAARES ; PP T ———|
Done
X1
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MODEL BUILDING

A Build model for outputz

Sample points ° T Z BiX;
jed
A Basis functions(z,x)
Build model . -
[ I I ExplicitX;(x)
Add A Polymonial ;'
points .
Adaptive sampling A Pairwise polynomial (#;zy)"  —
FAIL and Lif
Model validation A Exponential and logarithmic
A Expected basis functions
PASS
Done 1 Implicit X;(z,x)

A Ex: log mean temperature difference
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AVOID OVERFITTING THE DAT,

Increasing model complexity

- Cod
1

Quadratic Cubic

— True Function
* Data Points
—Model
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EMPIRICAL VERSUS TRUE ERF

—Empirical error
—True error

Error

Ideal Model

i Complexity

< — —>
Underfitting Overfitting

A Empirical error:
Error between the model and the sampled data points

A True error:
Error between the model and the true function
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BEST SUBSET METHOD

1. Start with a liner combination of basis functions
d=4 5= Bo+ Brz + Ban/T + Bae”

2. Generate all possible subsets of basis functions

One term Two terms Three terms Four terms

zZ = fo z2 =[P+ bz Z=Po+ bz + Pz 2= By + Prx + Bav/T + Pze”
z =[x zZ =B+ Pa/x z = B+ Brx + Bze”
2= P/ 2= Po+ B3e” zZ = Po+ Bav/x + B3e”
z=0z3e"  Z=px+Poyr 2= Prx+ Boy/T + B3€”
z2 = 1z + [ze”
Z = Pa/x + Bze”

3. Pick the best
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BEST SUBSET METHOD

1. Start with a liner combination of basis functions
d=4 5= Bo+ Brz + Ban/T + Bae”

2. Generate all possible subsets of basis functions

One term Two terms Three terms Four terms

zZ = fo z=Bo+ b z2 = Po+ Pix + P2z 2= Bo+ Prix + Bav/x + [3e”
z =[x 2= o+ Bz zZ = Po+ b1z + Bze”
2= P/ 2= Po+ B3e” z2 = Po + Bav/x + B3e”

z=pB3e"  Z=px+ B/ Z=[Prx+ Boy/x + Bze” 2d_1
z = Prx + Pze” |
5 = Bon/T + fBae” subsets!

3. Pick the best
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HOW TO PICK THE BEST SUBS

A Corrected Akaike Information Criteriom|Cc)

I Gives an estimate of the difference between a model and

the true function
AICc =nlog (SS—E) + 2d + 2d{d+1)
n n—d-—1
(| ) (| J
| |
Accuracy + Complexity

Number of basis functions in mode
0 2 4 6

Solution

j |
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min

S.t.

CHOOSING THE BESSUBSET

SE:ZGZ

1=1

Carnegie Mellon University

Choose basis functions to

~  minimize the total model error

1=1,2,...,n
1=1,2,...,n
Vied
Vied
Vied
1=1,2,....n



CHOOSING THE BESSUBSET

min

S.t.

SE:ZGZ

1=1

EERL Basis function

used in the model;

b, chosen to
satisfy a least
[ squares regressiol

Otherwise:
bj =0

Vje.J
i=1,2,...
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CHOOSING THE BESSUBSET

min SFE = i e;
=1

s.t. e = ‘Z@' — 2@| 1= 1, 2,..., n

27,:2/83)(23 ’621,2 ..... n
jed
—U(l—yg)SZXW(Z%—?:’@)SUO—%) ViedJ
i=1

Bly; < B; < By; vjeJ
Zyj _T } QnIyT terms allowed
ieJ in the model
y; =1{0,1} vjed
0<e; <e* 1=1,2,..., n
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ADAPTIVE SAMPLING

A Find values ok where the model is
Inconsistent

I Maximize the relative model error using a
derivative-free solver (SNOBFIT):

- (z(x) - 2(@)2

Sample points

Build model x z(x)
A_dd — True function
palfits — Model
Adaptive sampling ~ © Data point

FAIL and
Model validation z(X) |

-

PASS

Done
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Add
points

FAIL

-

ADAPTIVE SAMPLING

A Find values ok where the model is
Inconsistent

I Maximize the relative model error using a
derivative-free solver (SNOBFIT):

Sample points

Build model

Adaptive sampling
and
Model validation

PASS

Done

Z(X) -

z(x) — 2

max
T

z(x) = ) |

— True function
— Model
.~ O Data point

X
(@)
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Add
points

FAIL

-

ADAPTIVE SAMPLING

A Find values ok where the model is
Inconsistent

I Maximize the relative model error using a
derivative-free solver (SNOBFIT):

Sample points

Build model

Adaptive sampling
and
Model validation

PASS

Done

Z(X) -

z(x) — 2

max
T

z(x) = ) |

— True function
— Model
.~ O Data point

X
(@)
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Add
points

FAIL

-

ADAPTIVE SAMPLING

A Find values ok where the model is
Inconsistent

I Maximize the relative model error using a
derivative-free solver (SNOBFIT):

Sample points

Build model

Adaptive sampling
and
Model validation

PASS

Done

Z(X) -

- (z(x) - 2(@)2

— True function
— Model
.~ O Data point
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REBUILD THE MODEL

A Add the data points found during
adaptive sampling to the training
set

A Rebuild the model

Sample points

Build model I
Add — True futnction
paints | _ — Model
Adaptive sampling o Data point
FAIL and
Model validation
PASS
Done
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ILLUSTRATIVE EXAMPLE

A True model:

1
z=>5+0.1z1 + 022329 + — + 0.5e72
L2

I <x,29 <3

Carnegie Mellon University



Done

4.

3. Adaptive sampling

SN
R

Ordinary least squares

c
o
—
(]
-
-}
Y
O]
>
S
T

= Model

SRR
SRR
SRR

Model

ILLUSTRATIVE EXAMPLE

2. Build model

1. Sample points

1

lteration

Data points

X

e Current data points
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ILLUSTRATIVE EXAMPLE

1. Sample points 2. Build model 3. Adaptive sampling 4. Done

Iteration 1
Data points Model Ordinary least squares
model
To z A
T L2 L2
I I
e Current data points True function
Added data points = Model
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