

GREENSCOPE: A Tool for Chemical Process Sustainability Assessment and Design

Gerardo J. Ruiz-Mercado

U.S. Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory Sustainable Technology Division Carnegie Mellon University, Pittsburgh, PA 05-02-2013

Michael A. Gonzalez PhD, Chemistry

Gerardo Ruiz-Mercado PhD, Chemical Engineering

Raymond Smith PhD, Chemical Engineering

1

What is GREENSCOPE?

- Foundations
- Quantification of Sustainability for Chemical Processes
- Methodology
 - -Taxonomy
 - -Data Needs
- Application
- Tool
 - $-\mathsf{Excel}^{\mathbb{R}}$
 - –Java
- Global Sustainability Assessment
- Conclusions

3

The finite availability and accelerated depletion of ecological goods and services: The role of the chemical Industry

- ✓ Fundamental business sector for the global economy and society's quality of life
- ✓ 5% of the U.S. nominal gross domestic product
- ✓ directly employs \cong 800,000 people nationwide
- ✓ 11% of all U.S. patents /yr
- ✓ 96% of all final goods are directly influenced

- Exposure of workers to toxic and carcinogenic substances
 - Water pollution, air emissions and solid waste
 - Product use impacts: e.g., agrochemicals, fossil fuels
 - Disposal impacts: e.g., flame retardant substances, paint pigments
 - 6% of the total U.S. energy consumption

Sustainability for Chemical Processes

- Guidelines to achieve quality of life improvements
 - -without affecting the availability of ecological goods & services
 - -for new and existing manufacturing processes
- Address and assess environmental, social, and economic aspects that may be affected by industry
 - -identify which system components are affected
 - -localize process and product aspects which generate them
 - -redesign relevant processes and products
 - -demonstrate system improvements
- Minimize or eliminate the environmental impacts and maximizing the social/economic benefits

5

Quantitative Sustainability Assessment

- From qualitative to quantitative
- Improvements achieved in one area may simultaneously affect other areas negatively
- A more sustainable process is the result of an optimal tradeoff

6

Sustainable Process Design Procedure

- Support decision-makers to determine whether a process is becoming more or less sustainable
 Are we doing relatively good / bad?
- What benchmarks to use?
- How close are we to achieving absolute targets?

Sustainability & Process Design

Specific process changes to improve sustainability at early design stages will have greater potential influence on the sustainability of the process during operation

Taxonomy of Chemical Process Indicators

- Triple dimensions of Sustainable Development
 - -Environment, Society, Economy
 - -Corporate level indicators
 - -Assessment at corporate level

- Four areas of sustainable chemical processes
 - -Environmental, Efficiency, Economics, Energy (4E's)
 - -Process design level
 - -Taxonomy of chemical process indicators for use in
 - process design

8

The GREENSCOPE Tool

- Clear, practical, and user-friendly approach
- Monitor and predict sustainability at any stage of process design
- Currently developed into a spreadsheet tool, capable of calculating 139+ different metrics
- User can choose which indicators / metrics to calculate
- User can redefine absolute limits to fit circumstances

GREENSCOPE Sustainability Framework

- Identification and selection of two reference states for each sustainability indicator:
 - Best target: 100% of sustainability
 - Worst-case: 0% of sustainability
- Two scenarios for normalizing the indicators on a realistic measurement scale
- Dimensionless scale for evaluating a current process or tracking modifications/designs of a new (part of a) process

Percent Sustainabilty Score =
$$\frac{(Actual-Worst)}{(Best-Worst)} \times 100\%$$

GREENSCOPE: Systematic Evaluation Procedure

11

Environmental Indicators

- 66 indicators
- Specifications of process input material
- Health & Safety hazards: operating conditions and operation failures
- Impact of components utilized in the system and releases
- 100% sustainability, best target, is no releases of pollutants and no hazardous material use or generation
- 0% sustainability, worst cases, all inputs are classified as hazardous, and/or all generated waste for each potential EHS hazard is released out of the process

Safety hazard, fire explosion

sн _Prot	babl	e energy potential for reaction with O_2
STI _{fire/explosion} — ——		Mass of product
$(-\Delta$	H_;>	$\times 10^{4 \times Ind \lor al_i - 4}) m_i^{\bullet}$
$SH_{fire/explosion} = $	С,1	$\overline{m_{\text{product}}^{\bullet}}$
If ΔT_{flash} is k	nov	wn
∫-0.005	$5\Delta T_{\rm fl}$	$_{\text{hash},i}$ + 1.0 if $0 < \Delta T_{\text{flash}} < 200$
$IndVal_i = \begin{cases} 1 \end{cases}$		if $\Delta T_{\text{flash}} \leq 0$
0		if $\Delta T_{\text{flash}} \ge 200$
Elseif R _{code} is kno	wn	
1	if	R _{code} = 12,15,17,18
0.875	if	$R_{code} = 11,30$
1000000000000000000000000000000000000	if	$R_{code} = 10$
0	if	$R_{code} = other$
Elseif NFPA-f	is kr	nown
[1	if	NFPA-flamm=4
0.833	if	NFPA-flamm=3
$IndVal_{i} = \begin{cases} 0.667 \end{cases}$	if	NFPA-flamm=2
0.5	if	NFPA-flamm=1
13 0	if	NFPA-flamm=0
end		

S	ustainability value
Best, 100%	Worst, 0%
	All combustion enthalpy
0 kJ/kg	of each process
	substance is released
$\Delta H_{\rm c}$: combus	stion enthalpy, kJ/kg
ΔT_{flash} : temp	erature difference between
the standard	I flash point and process
temperature	, °С
R _{code} : Risk p	hrases of European
community	
NFPA-f: flam	mability hazard class

according to the U.S. National Fire Protection Agency (NFPA)

Efficiency Indicators

- 26 indicators
- Amount of materials and inputs required to generate the desired product (reaction) or complete a specific process task (e.g., separation)
- Mass transfer operations have implicit influence in the amount of energy demand, equipment size, costs, raw materials, releases, etc.
- Efficiency indicators connect material input/output with the product or intermediate generated in the process or operating unit

Efficiency Indicators: Example

Economic Indicators

- 33 indicators
- A sustainable economic outcome must be achieved for any new process technology or modification proposed for the commercial scale
- Based in profitability criteria for projects (process, operating unit), may or may not account for the time value of money
- Indicators supported in cost criteria:
 - -Processing costs: capital cost, manufacturing cost
 - -Process input costs: raw material cost, utility costs
 - -Process output costs: waste treatment costs

Economic Indicators: Example

Net present value

NPV = The total of the present value of all cash flows minus the present value of all capital investments

 $NPV = \sum_{cf,m}^{n} \mathsf{PWF}_{cf,m} \Big[\big(S_m - COM_m - d_m \big) \big(1 - \Phi \big) + \mathsf{rec}_m + d_m \Big]$ $-\sum_{r}^{n} \mathsf{PWF}_{r,m}TCI_{m}$ $S_m = \sum_{i=1}^{r} m_{m, \text{ product } i}^{\bullet} \times C_{m, \text{ product } i}$ $COM_{m} = 0.280FCI_{Lm} + 2.73C_{OLm} + 1.23(C_{UT,m} + C_{WT,m} + C_{RM,m})$ $d_{m} = 0.1 FCI_{L}$ $\operatorname{rec}_{m} = \begin{cases} C_{\operatorname{Land}} + WC + FCI_{L} - \sum_{m=1}^{n} d_{m} & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$ $TCI_m = C_{Land.m} + FCI_{L.m} + WC_m$ $FCI_{L} = C_{TM} = 1.18 \sum_{i=1}^{n} C_{BM,i}$ $C_{BMi} = C_{o,i}^{o} F_{BM,i}$ $C_{ol} = 4.5 N_{ol} \times (\text{annual salary})$ $N_{ol} = (6.29 + 31.7P^2 + 0.23N_{no})^{0.5}$ $N_{nn} = \sum Equipment$

Sustair	ability value
Best, 100%	Worst, 0%
	NPV @ r _d =
	minimum
NPV @	acceptable rate of
discount rate	return
$(r_{\rm d}) = 0\%$	(<i>MARR</i>)=40% for
	very high risk
	projects

n: life of the plant or equipment, yr PWF_{cf,m}: the selected present worth factor S_m : total income from all sales in year *m*, \$ COM_m : cost of manufacture without depreciation, \$ FCI_L : Fixed capital investment without including the land value d_m : depreciation charge. Here, it is assumed as 10% of the FCI_L evaluated in year *m*, however it can be estimated by different methods Φ : fixed income tax rate given by the IRS rec_m: salvage-value recovered from the working capital, land value, and the sale of physical assets evaluated at the end of the plant life. Often this salvage value is neglected, \$

- 14 indicators
- Different thermodynamic assessments for obtaining an energetic sustainability score

-Energy (caloric); exergy (available); emergy (embodied)

- Zero energy consumption per unit of product is the best target (more products per unit of consumed energy)
- Most of the worst cases do not have a predefined value
 - -They depend on the particular process or process equipment
 - -The designer has to choose which value is unacceptable
 - -Some worst cases can be assigned by taking the lowest scores found through comparing several sustainability corporate reports

Energy Indicators: Example

Exergy intensity

Indicators and Data Needs

- To generate a sustainability assessment a model must have available data
- Data is not the final goal, but it is mandatory to get there
- *M* & *E* flows, operating conditions and equipment specifications; substance properties: physicochemical, thermodynamic, and toxicity; manufacturing and capital costs
- Data-source alternatives can be used to fulfill potential data gaps
 - Simulators
 - Physiochemical
 - Toxicological

- QSAR models
- Databases
- Classification lists

21

Indicators and Data Needs: Efficiency

Indicators and Data Needs: Economic

22

Data Sources

Data source	Property or type of provided data
DOT, TOXNET, ACToR	Hazardous material list
TRI program	TRI PBT chemical list
TOXNET/HSDB	ERPG-2, ERPG-3, MW, ΔH_c , ρ , pH, K _{OW} , P _v , T _{flash} , NFPA-r, NFPA-f, IDLH, EC ₅₀ , LC ₅₀ , LD ₅₀ , TWA
NIST Chemistry WebBook	MW, ΔH_r , $C_p(T)$, ΔH_f , ΔH_c , ΔH_v , T_{flash} , $P_v(T)$, U, ΔG_r ,
AIHA	ERPG-2, ERPG-3
ACToR	MW, IDLH, LC_{50} , LD_{50} , ρ , K_{OW} , P_{v} , MAK-CH, TWA, hazard, acute toxicity, chronic toxicity, carcinogenicity, reproductive toxicity, neurotoxicity, immunotoxicity, dermal toxicity, respiratory toxicity, nephrotoxity, endocrine effects, ecotoxicity
ACToR/ICSC	MW, EU _{class} , R _{code} , NFPA, MAK-CH, T _{flash} , , μ , EC _{class} , TWA
IRIS	MW, P_v , K_{OW} , RfD, toxicity kinetics, pharmacokinetic modeling, hazard identification, mode-of-action and dose-response, cancer factors, and cancer descriptors

Sustainability Assessment: Biodiesel Case Study

- External data: ERPG, IDLH, T_b, T_m, LC₅₀, etc.
- Process data: $m_{i, in}$, $m_{i, out}$, C_{RM} , C_{UT} , $C_{equipment}$, etc.
- Definition of best & worst case scenarios

Biodiesel: Process Description

- Soybean oil
- 95% Oil conversion
- 1 Ton FAME/h
- 99.60% Purity

- 0.1 Ton Glycerol/h
- Utilities: steam, electricity, cooling water
- Solid, liquid, & air releases

Environmental Indicator Results

Indicator	Description	Sust. (%)
1. N _{haz. mat.}	Number of hazardous materials input	40.00
6. HH _{irritation}	Health hazard, irritation factor	99.31
10. SH _{reac/dec I}	Safety hazard, reaction / decomposition I	97.00
22. EH _{bioacc.}	Environmental hazard, bioaccumulation (the food chain or in soil)	98.34
27. PCOP	Photochemical oxidation (smog) potential	99.83
32. WPI _{acid. water}	Aquatic acidification intensity	99.88
38. WPI _{O2 dem.}	Aquatic oxygen demand intensity	0.60
43. EP	Eutrophication potential	98.89

Efficiency Indicator Results

Indicator	Description	Sust. (%)
2. AE _i	Atom economy	90.60
7. MI _v	Value mass intensity	99.46
17 pROI	Physical return on	00 76
I'' picol _M	investment	99.70
	Mass fraction of	
21. <i>W</i> _{recycl. prod.}	product from	4.50
	recyclable materials	
25. WI	Water intensity	100

27

Energy Indicator Results

Indicator	Description	Sust. (%)
1 D	Specific energy	00.40
$2. R_{\rm SEI}$	intensity	99.49
6 12	Resource-energy	62.76
0. η_E	efficiency	05.20
Q DE	Breeding-energy	ED 20
о. DГ _Е	factor	55.50
10 Ev	Exergy	02 50
IV. EX _{total}	consumption	92.59
14 BE	Breeding-exergy	100.00
14. $D\Gamma_{Ex}$	factor	100.00

Economic Indicator Results

Indicator	Description	Sust. (%)
1. NPV	Net present value	44.52
8. PBP	Payback Period	81.10
19. COM	Manufacturing cost	68.70
23. C _{E, spec.}	Specific energy costs	88.07
33. C _{pur. air fract}	Fractional costs of purifying air	85.26

GREENSCOPE.xlsm

1 Total 2 Speci 5 6 7 7 5 Solve	Indicator	Symbol	Definition	Equation	¥alue	Input	unit	Best case	e Vorst case	
1 Total 2 Speci 3 Energ 4 Waste	al energy consumption	Symbol	Definition	Equación	♥ aiue	input	unic	Bestcase	worst case	
1 Total 2 Speci 3 Energ 4 Waste 5 Solve	al energy consumption					E 'separau flow rate as a heat flow or nower			- OIST OUST	ercent Sc
2 Speci 3 Energ 4 Waste 5 Solve		1. <i>E</i> total	Total energy consumed by the process or process unit as primary fuel equivalent	$\begin{split} \mathcal{E}_{aac} &= \left(\mathbb{C}_{aac} \mathcal{E} \right)_{aacacac} + \left(\mathbb{C}_{aac} \mathcal{E} \right)_{aac} + \left(\mathbb{C}_{aac} \mathcal{E} \right)_{aacacac} + \left(\mathbb{C}_{aaca} \mathcal{E} \right)_{aacacac} \\ \mathcal{E}_{i} &= \left[\frac{\mathcal{E}_{i}}{\mathcal{E}_{i}} \right] = \mathbf{v} $	2970.331629	provided by utilities such as natural gas, fuel oil, steam, and electricity, MMh; C_{statas} : conversion factor to fuel energy. (At where the such as a MMh; in $\Re =$ energy flow $\&$ for power needs, iw/hh; $\aleph =$ into tail mass flow rate of the input stream /, kgh; mjout total mass flow rate of the output stream /, kgh; $\&$ $\&$, mass enthalpy of the	MJ/h	2740.1	27401	99.07
s Energ 4 Waste 5 Solve	cific energy intensity	2. R _{sei}	Total energy consumed by the process or process operating unit as primary fuel equivalent per unit mass of product	$R_{\rm int} = \frac{\left(\mathbf{C}_{\rm int} \mathcal{E}'\right)_{\rm interaction} + \left(\mathbf{C}_{\rm inter} \mathcal{E}'\right)_{\rm out} + \left(\mathbf{C}_{\rm inter} \mathcal{E}'\right)_{\rm inter} + \dots + \left(\mathbf{C}_{\rm inter} \mathcal{E}'\right)_{\rm interes}}{m_{\rm interes}^2}$	2.714752602	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	MJ/kg	0	1949	99.86
4 Waste	rgy intensity	3. R _{EI}	Measurement of the net fuel-energy consumed to provide the heat and the power requirements for the process per unit of sales revenue or value addedd	$\boldsymbol{g}_{ij} = \frac{\left(C_{inte}E^{*}\right)_{interim}}{S_{ij}} + \left(C_{inte}E^{*}\right)_{interim} + \left(C_{inter}E^{*}\right)_{interim} + - \left(C_{inter}E^{*}\right)_{interim}$	1.6972	\mathcal{E} ': energy flow rate as a heat flow or power provided by utilities such as natural gas, fuel oil, steam, and electricity, MJH: C_{such} : conversion factor to fuel energy; GM + heat flow stream k , MJH; W^* : energy flow k for power needs,	MJ/\$	0	37.3	95.45
5 Solve	ste treatment energy	4. WTE	This is the net amount of energy required by the waste process unit per mass of product	$\text{WTE} = \frac{\left[\left(C_{inv}E^{*}\right)_{ant/p}, \P\left(C_{inv}E^{*}\right)_{ant/p}, \P\left(C_{inv}E^{*}\right)_{ant/p}\right]_{ant/p}}{n_{p,inv}^{*}}$	0.040679198	C ⁺ is energy flow rate as a heat flow or power provided by utilities such as hourd gas, field oil, steam, and electricity, hMh; C _{static} conversion factor to fuel energy; 30 × heat flow stream it hMh; lith *: energy flow it for power needs, liwhh; if product total mass flow rate of the product stream, kg/h. All energy flows to the woste	MJ/kg	0	0.27147526	85.02
	vent recovery energy	5. SRE	This is the net amount of energy required by the process to recover and reuse solvents per mass of product	$SRT \bullet \frac{\left[\left[C_{inst}E'\right]_{maxim} + \left[C_{inst}E'\right]_{maxim} + \left[C_{inst}E'\right]_{max} + \cdot + \left[\left(C_{inst}E'\right)_{maxim}\right]_{maxim}^{\perp m}}{n_{paxim}^{t}}$	0	C is energy flow rate as a heat flow or power provided by utilities such as natural gas, field oil, steam, and electricity, kMb; Creater conversion factor to fuel energy; GM + heat flow stream Å kMb; kM + receipt flow Å for power needs, kWhN; # product total mass flow rate of the product stream, kgN. All energy flows to the solven recovery	MJ/kg	0	0.27147526	100
6 Reso	ource-energy efficiency	6. η _Ε	The ratio of the physical "value" of the products (\mathcal{Y} E) to the total resource use in the same energetic unit. \mathcal{Y} E is the quantity of the raw materials energy remains in the desired product	$\eta_{0} = \frac{m_{polar}^{*} * \Delta H_{polar}}{\sum\limits_{i=1}^{i} m_{i}^{*} * \Delta H_{i}}$	0.631606851	m_V^{i} vin: total mass flow rate of the input stream /, kg/h; m·product; product flow rate, kg/h; ΔH_J ; mass enthalpy of the stream / in the respective phase (2 : liquid, P : vapor), kJ/kg	fraction	1	0	63.16
7 Renet	ewability-energy index	7. RI _e	The ratio of the consumption of renewable energy to total energy consumption	$R_{i_{s}}^{\prime} = rac{\left(Z_{_{vil}} ight)_{_{model}}}{Z_{_{vid}}}$	0	\mathcal{E} ': energy flow rate as a heat flow or power provided by utilities such as natural gas, fuel oil, steam, and electricity, kJh ; c_{salar} : conversion factor to fuel energy; $dh :$ heat flow stream h , kJh; $kh :$: energy flow h for power needs, kWh ;	fraction	1	0	0
8 Breed	eding-energy factor	8. BF _e	The total energy output of the process divided by the non-renewable material input energy	$BF_{x} = rac{oldsymbol{m}_{ ext{restars}}^{*} \mathbf{\Delta} oldsymbol{H}_{ ext{restars}}}{\sum\limits_{j=1}^{r} oldsymbol{m}_{ ext{rest}}^{*} encodest_{i,j} \mathbf{X} oldsymbol{\Delta} oldsymbol{H}_{j}}$	5.338203779	m_i^j (in: total mass flow rate of the input stream /, kg/h; m=product: product flow rate, kg/h; ΔH_j : mass enthalpy of the stream / in the respective phase (2 : liquid, P : vapor), kJ/kg; utility rates from non-renewable sources	scalar	10	0	53.38
9 Energ	rgy for recycling	9. E recycl.	This is the net amount of energy required by the recycling operating units per mass of product	$\beta \text{segcl} = \begin{bmatrix} \left(C_{\max} \mathcal{E}^{*} \right)_{\min} + \left(C_{\max} \mathcal{E}^{*} \right)_{\min} + \left(C_{\max} \mathcal{E}^{*} \right)_{\min} \\ + \dots + \left(C_{\max} \mathcal{E}^{*} \right)_{\max} + \dots \end{bmatrix}_{\max} \end{bmatrix}_{\substack{m \in \mathcal{M} \\ m \in \mathcal{M}}} f_{m} f_{\min}$	0.832567995	$ \begin{split} \mathcal{E} & : energy flow rate as a heat flow or power provided by utilities such as natural gas, fuel oil, steam, and electricity, kJ/h; C_{statet} conversion factor to fuel energy; GM + heat flow stream A, kJ/h; kJ/h; energy flow A for power needs, kWh/h. \end{split}$	MJ/kg	0	0.27147526	0
10 Exerg	rgy consumption	10. Ex _{total}	It describes quantitatively the amount of resources in exergy units in order to deliver a product	$\begin{split} \mathbf{E}_{\mathbf{L}_{nod}} &= \mathbf{E} \mathbf{C}^{n-1} \mathbf{E} \mathbf{C}_{nodes}^{n-1} \\ \mathbf{E} \mathbf{C}^{n-1} &= \left[\mathbf{E} \mathbf{C}^{n-1} \mathbf{E} \mathbf{C}^{n-1} \mathbf{C} \mathbf{E} \mathbf{C}^{n-1} \mathbf{E} \mathbf{C}^{n-1} \mathbf{C} \mathbf{E} \mathbf{C}^{n-1} \mathbf{E} \mathbf{C} \mathbf{C}^{n-1} \mathbf{E} \mathbf{C}^{n-1} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{C} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} \mathbf{E} E$	2366.554424	Limit total exergy flow input to the process or process and, high mip total mass flow rate of the stream /, kg/h, 2.H /; mass anthalpy of the stream /, kg/h, 2.H /; mass anthalpy of the stream /, kg/h, br /; molar flow rate of substance /, kmol/h, Euri ch: standard channical exergy of substance /, kmol/h, Euri ch: standard channical exergy of substance /, kg/kmol/A; the gas constant, $\mathcal{P} = 8.314$ kg/(kmol K); x ; molar fraction of species /; h^{-1} exergy flow \mathcal{A} for power needs, kW/hh, $\mathcal{Q} \circ \mathcal{A}$; heat flow stream \mathcal{A} .	МЈЊ		42962.6154	93.1

Stand Alone GREENSCOPE Software

GREENSCOPE

- Currently in development
- Dr. Rajib Mukherjee (ORISE Post-Doc)
- JAVA Language
- Based on the Excel® version
- User can define
 - -level of interaction
 - which indicators to calculate
 - best and worst case scenarios

Welcome to GREENSCOPE

	V	- K	_					
Energy	Environme	nt Economy						
ency infor	rmation							
C	Compound ID	Compound Na	Product	Hazardous	Renewable	Recyclable	# of C	
1		FAME	Y	N	Y	N	19	
2		Glycerol	Ŷ	N	Y	Y	3	
3		Methanol	N	Y	Y	N	1	
4		Phosphoric acid	N	Y	N	Y	0	
5		Trisodium Phos.	N/A	Y	N	N	0	
6		OIL	N	N	Y	Y	57	
7		Water	N	N	N	N	0	
8		Sodium Hydroxi	N	Y	N	Y	0	
				Upload	Confirm			

- 0 SREENSCOPE Calculate efficiency indicators, choose from the list : 1. Reaction Yield 2. Atom Economy 3. Actual Atom Economy 4. Stoichiometric Factor 5. Reaction Mass Efficiency 6. Total material consumption 7. Mass Intensity 8. Value mass intensity 9. Mass Productivity 10. Environmental Factor 11. Mass Loss Index I2. Environmental Factor based on molecular weight I3. Effective Mass Yield 14. Carbon Efficiency Is. Material Recovery Parameter 16. Solvent and Catalyst Environmental impact Parameter I7. Physical Return on Investment 18. Renewability-Material Index In the second 20. Recycled material fraction 21. Mass fraction of products from recyclable materials 22. Mass fraction of products designed for disassembly, reuse or recycling 23. Total water consumption 24. Fractional water consumption 25. Water intensity 26. Volume fraction of water type Select All

Commit

33

Global Sustainability Assessment

- Impact assessment beyond the process to decide which design alternative is more sustainable based on the lifecycle considerations
- Identifying stages contributing greater than any other stage to the global life-cycle impact within the product life cycle

Global Sustainability Assessment

A complete quantification of sustainability performance requires an extensive evaluation of the entire system beyond the manufacturing facility

35

- Performance indicators for designing sustainable chemical processes at any level:
 - Provides direction to the designer (0% and 100% sustainability)
 - Modifying existing processes as well as implementing new chemistries
 - Approximates manufacturing scale sustainability from a bench or pilot scale
- With GREENSCOPE, the results of sustainable chemical practices are quantified:
 - Modifications in the type and magnitude of goods and services
 - Preventing and minimizing all types of releases
 - Manufacturing the desired product without negatively affecting the economic profitability
- GREENSCOPE can be used as a reliable and robust tool for the development of chemical processes

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

References

- Ruiz-Mercado, G. J.; Gonzalez, M. A.; Smith, R. L., Sustainability Indicators for Chemical Processes: III. Biodiesel Case Study. Ind. & Eng. Chem. Res. 2013, DOI: 10.1021/ie302804x.
- Ruiz-Mercado, G. J.; Gonzalez, M. A.; Smith, R. L., Expanding GREENSCOPE beyond the Gate: A Green Chemistry and Life-Cycle Perspective. *Clean Tech.* & *Env. Policy* 2012, DOI: 10.1007/s10098-012-0533-y.
- Ruiz-Mercado, G. J.; Smith, R. L.; Gonzalez, M. A., Sustainability Indicators for Chemical Processes: II. Data Needs. *Ind. & Eng. Chem. Res.* 2012, 51, (5), 2329-2353.
- Ruiz-Mercado, G. J.; Smith, R. L.; Gonzalez, M. A., Sustainability Indicators for Chemical Processes: I. Taxonomy. *Ind. & Eng. Chem. Res. 2012*, 51, (5), 2309-2328.

Thanks!

Questions?