

Institute of Mechanical Engineering Sciences et Techniques de l'Ingénieur Ecole Polytechnique Fédérale de Lausanne (EPFL) Switzerland

(IVAL Industrial Process and Energy Systems Engineering

Computer Aided methods for Energy Systems Engineering

Prof. Francois Marechal, PhD, Chem Eng.

Ecole Polytechnique Fédérale de Lausanne EPFL-STI-IGM-IPESE

- Speciality Chief Editor :
 - Frontiers in Energy : Process and energy systems engineering section.
 - http://www.frontiersin.org/Process and Energy Systems Engineering
- Scientific committee of IFP Energie Nouvelle
- Board of ECOINVENT

My scientific challenge :

Develop systemic approaches for the Rational Use and Conversion of Energy and Resources in Industrial Process and Energy Systems

- 15 Researchers developing research in Computer aided energy systems engineering
 - Thermo-economic-environomic modeling
 - -Process and Energy Systems Integration
 - Modeling the system's interactions
 - Energy-Water-Waste
 - Renewable Energy Integration
 - -Multi-objective optimisation for decision support
 - Thermo-Economic and Environomic Pareto
 - Life Cycle Environmental Impact Assessment
 - -Understanding the energetics of complex systems
 - •Thermodynamic methods and metrics for system analysis and design

(M) 3 Domains of application

Energy and resource efficiency in industrial processes

Process system design

Urban systems

- •Fuel cells systems
- •Power plants, Biomass & Biofuels,...
- •Water prod., Waste water
- •CO2 capture
- •Electricity Storage

Thermo-economic Pareto front

- •District networks : CO2 swiss knife
- •Smart grid :Virtual power plants
- Industrial ecology/symbiosis
- Integration of renewable energy resources

"System Engineering : Treatment of Engineering Design as a decision making process"

Hazelrigg, 2012

What is the Role of Process System Engineering for the energy transition ?

- Problem Statement
- Open Questions

Smart Engineers for Smart Systems ?

(III The Energy Transition

2012

2050

(M The Energy Transition

Figure ES.1 > Key technologies for reducing CO, emissions under the BLUE Map scenario

- Efficient energy and resources use and reuse
- Efficient energy conversion
- Integration of renewable energy resources
- Large Scale and Complex System integration
- Sustainable processes & Environmental impact

(IVAL Sustainable Energy System design

(IVAL Energy Transition Actions

Actions

- Sobriety => ask less for the same services
- Efficiency => do more from the resources
- **R**enewables => Integrate the endogenous resources
- Integrate => Look for synergies
- Equip => Invest Capital for equipments and infrastructure
- **S**ystem => define the right system boundaries

(PA) The Vision : energy transition by system integration

Process system engineering

Selection, Integration, Sizing and optimal Operation in industrial system

(PA) Process integration in practice

• A systematic implementing approach

(PAL Large Scale Process Integation : in practice

Process operation

Process units integration

Site scale integration

Utility streams flowrate are fixed

a) MILP: minimum operating cost

d) MILP: HLD between

virtual and utility streams

 b) Defining process subsystems

i) Final solution, Heat recovery network

Combined heat and power

Heat exchanger network

Profitability analysis

200

Heat recovery

Heat Load

Heat pumping

(III Total site integration : Open questions

IPFSF

• How to organise heat transfer between processes

- -Third Party : ESCO ?
 - Process interfaces
 - -contract + confidentiality
- -Restricted matches & HEN design

• How to realise a holistic system design ?

- -Energy conversion
 - Combined Heat Cold and power production
 - •Waste management integration
 - Combined Water/Solvent/Hydrogen integration
- -Industrial Ecology
 - -Multi processes and stakeholders
- -Multiperiod
 - Processes operating scenarios
- -Robustness & flexibility
 - •Operation
 - Robust design / backup equipment

(Process system design

Process system engineering

Selection, Integration, Sizing and optimal Operation in industrial system

(I'Al The energy system engineering methodology

(MALOSMOSE : Computer Aided Platform

(PA) Process synthesis of a fuel cell hybrid system

(Smart system design ?

(??. A paradigme for the energy system ?

• Replace centralised power plants -1 unit of 750 MWe / 61% elec

- -75000 units of 10 kWe / 80% elec
- -Distributed production
- -13% heat for poly-generation (heating or cooling)
- -Cost scaling factor near 1

(PA) Motivation : for a typical Swiss household

W means Wyear/year/cap

• Smart engineers: Renewable energy integration

Producing Natural gas from Wood

Renewable natural gas : Synthetic natural gas from biomass

Gassner, M., and F. Maréchal. "Thermo-economic optimisation of the integration of electrolysis in synthetic ©Francois Marechal -IPESE-IGN 5TLEPFF 2014 duction from wood." *Energy* 33, no. 2 (February 2008): 189-198.

Integrating heat recovery technologies in the superstructure

(Process integration of the energy usage

• The Heat Cascade is the HEN model

(PAL Comparing options

• Each point of the Pareto is a process design Thermo-economic Pareto front (cost vs efficiency):

Note : 1.5 years of calculation time !

× steam drying

+ hot gas cleaning

- Separation:
- PSA
 - downstream
 - upstream
 - of methanation

Phys. abs.

- downstream
- upstream
- of methanation

Membranes

- downstream
- of methanation

Gassner, Martin, and François Maréchal. Energy & Environmental Science 5, no. 2 (2012): 5768 – 5789.

Area = 40 km2

Transport = 10 % of the energy

Process Size => Investment

- 20 MW_{th}: 51.4 Mio. CHF (1)
 - 29.5 Mio. CHF (2)
 - 35.4 Mio. CHF (3)

Efficiency : 5000 Wyear/year/ha

(PA) Environmental Process performance indicators

Identification of Life Cycle Inventory elements

IPESE

• Process superstructure, extended with LCI

use of ecoinvent emission database (1) for each LCI element, to take into account off-site emissions

(1) http://www.ecoinvent.org

(PAL LCA based design

• Optimal configurations

Land & supply chain are constraints

• Selecting the process in the Pareto set

(PA) Decision-making

• Uncertainty of the economical conditions

- -Economic assumptions probability distribution functions
 - •Normal, uniform, beta distribution

• Relative competitiveness of Pareto solutions

-Ranking with regard to most economically competitive solution

-CO₂ capture is economically competitive for capture rates between 70 and 85%!

©Francois Marechal -IPESE-IGM-STI-EPFL 2014 Laurence Tock, Thesis, 2013

(PA) What is the best process design ?

Pareto optimal configurations => new process model for the energy system design

(I'' Smart Energy Systems : Problem statement

Annual investment costs

Fixed operating costs

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(PACESS integration in buildings

• Definition of the energy needs

- -Heating
- -Air renewal
- -Hot water
- -Waste Water
- -Air renewal

Do not forget Carnot (Exergy demand) :

- * Heat with the lower possible temperature
- * Cool with the highest possible temperature

(PY) Local heat recovery

(III Local Heat pumping on waste water

COP = 5 to 6

(III Define the demands of a district

• Characterizing the services

(PAL Energy system design : problem definition

IPESE 39

Given a set of energy conversion technologies :

Where to locate the energy conversion technologies ?

How to connect the buildings ?

How to operate the energy conversion technologies ?

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(PA) Access to local resources

Girardin et al., ENERGIS, A geographical information based system for the evaluation of integrated energy conversion systems in urban areas, Energy, 2010

(III Carbon valorisation of a renewable energy source

(IVAL CO2 District heating network for multiple sources

Complex system with heating and cooling : (ERA) 687'800 m ²			
•Commercial:	23% inc. HVAC and refrigeration	Heating	53.2 GWh/year
•Offices:	60 % inc. data center	Cooling	49 4 GWh/vear
•Residential:	17%	coomig	Triff Group gear

- The CO2 network integration : reduction of **84%** of the primary energy consumption if specific technologies are used
 - Profitability analysis : break-even in 5 years
- Combined with SOFC cogeneration : savings reach 88 %
- Combined with renovation : savings reach 92 % !

39.6%

25%

20%

11.3%

4.1%

- Share of the various costs:
 - Cost of electricity:
 - Initial Investment:
 - Replacement of the equipments:
 - Maintenance:
 - Operation:

- Cost of services :
- 56 % related to equipment Investment !

HENCHOZ S, FAVRAT D., WEBER C *Performance and profitability perspectives of a CO2 based district energy network in Geneva's city center.* DHC13, 13rd Int Symposium on District Heating and cooling, Copenhagen Sept 2012

• Can we solve a problem ?

- -100000 buildings
- -100000 + nodes => routing algorithm
- -Centralised and decentralised energy conversion technologies ?
- -How to estimate the profit
 - infrastructure investment : 60 years
 - daily and seasonal variation of the operation
 - •decentralised and centralised units

(PA) District heat distribution cost : cts CHF/annual kWh

Girardin, Luc, François Marcha, Matthas Dubuis, Nicole Calame-Darbellay, and Daniel Favrat. "EnerGis: A Geographical Information Based System for the Evaluation of Integrated Energy Conversion Systems in Urban Areas." Energy 35, no EN (Formation 2010): 830–840.

(PA) Clustering in sub-systems

19 sub networks

(PA) Clustering techniques for typical days

- 40 time steps : 7 days*5 time sequence + 1 Extreme * 5 time sequence => instead of 20*8760 hours
- Probability of appearance (number of days)
- Using clustering techniques

Validation is performed

- 0.3-4.1% errors
- 40 times faster

(III Virtual power plant concept

What is the role of the district as a micro grid for the electricity supply ?

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(III Multi-objective optimisation algorithm

(III List of technology options in the data base

(PAL Each node is a process with network connections

(III MILP process integration model @node k

S. Fazlollahi, G. Becker and F. Maréchal. Multi-Objectives, Mul.-Period Optimization of district energy systems: II-Daily thermal storage, in Computers & Chemical Engineering, 2013a

(III Virtual power plant Operation

(PA) Smart predictive control management box

Sensors

Collazos et al., Computers and Chemical Eng. 2009

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(PA) Process integration : do not use batteries

CHP : 2000 kWe Heat pump : 2000 kWe Storage 200 m3 Mean heating power = 3000 kW

(IVAL Electro Thermal Storage (ETES - ABB)

IPESE 56

Round-trip eff.: 60%

Hot Water Storage Transcritical CO₂ cycles

Morandin, Matteo, François Maréchal, Mehmet Mercangöz, and Florian Buchter. "Conceptual Design of a Thermo-Electrical Energy Storage System Based on Heat Integration of Thermodynamic Cycles – Part B: Alternative System Configurations." Energy 45, no. 1 (September 2012): 386–396.

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(PAL ETES & district heating/cooling

A Long term electricity storage by converting electricity to fuel

Power to gas concept

Gassner, M., and F. Maréchal. *Energy* 33, no. 2 (2008) 189–198.

(III Round trip efficiency of electrcity storage

IPESE 59

• H2 electrolysis integrated in SNG process

-CO2 emissions are negative (wood carbon neutral, CO2 is captured)

$$\eta_c = \frac{\Delta CH4^-_{LHV}}{\Delta E^+} = 85\%$$

• CH4 conversion NGCC (CO2 = 0 because C biogenic)

$$\eta_d = \frac{E^-}{CH4^+_{LHV}} = 60\%$$

• Roundtrip efficiency

$$\eta = \frac{E^-}{E^+} = 50\%$$

• Long term storage on the gas grid !

(If Electricity production efficiency increases

• Hybrid gas turbine SOFC combined cycle

$$\eta = \frac{E^-}{E^+} = 68\%~$$
 A battery is 80%

• Round trip with long term storage on gas grid and decentralised production

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Multi-objective optimisation : application to a canton (PA)

IPESE

* 3 Objectives optimisation

(Pf. Integrating Renewable energy : Seasonal storage !

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Al-musleh et. al, Computer Aided Chemical Engineering, 2013.

(PA) Power train optimisation

Collaboration with PSA

Component set

- ICE -> Drive
- Fuel cell
- Batteries
- El Motor
- Pneumatic storage
- Transmission line
- HVAC
- Energy conversion
- => Size & Weight & Cost

Figure 6.2 New European Driving Cycle.

* ORC integration

Operation strategy

(PA) Power train Multi-objective Optimisation

- Decision variables

- Component sizes
- Control strategies

- Evaluation

- Driving cycles
- Seasons

(PA) Smart engineers/ Smart Businesses / Smart systems

Today's consumption : 100 kJ of Natural Gaz

IPESE

One more Sustainable energy system

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

- 31 kJ of renewable energy replaces 100 kJ of fossil fuel
 - Decentralised & Centralised equipment
 - Cogeneration
 - Optimal management
 - Waste heat integration by district heating
- Understand the process system integration
 - Technologies
 - Services

(PAL Energy transition needs smart process systems engineers

IPESE

• Integrate technologies

- Model the interactions by mass and heat integration
- Use of Multi-objective optimisation to generate the list of solutions

• Integrate services

- Multi-services
 - fuel/heat/electricity/storage/waste treatment
- Optimal management

Integrate knowledge

- Reveals the inter-disciplinarity

• Integrate the system

- Waste heat valorisation
- System boundaries extension

• Integrate the renewable energy resources

- Use of Biogenic carbon as an energy carrier/storage

Smart Energy transition needs Smart Process system engineers !

Smart Process system engineers needs Methods to solve complex problems

So that they are not complex anymore ...