Sustainable Process Synthesis and Intensification for Industrial Decarbonization

Faruque Hasan, PhD

Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station, TX, USA

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Texas A&M Engineering Experiment Station

2022 Seminar for Energy Systems Initiative (ESI) at the Center for Advanced Process Decision-Making (CAPD) November 09, 2022

Chemical Process Industry (CPI)

Meets the societal demands for chemicals and commodity products

Raw materials

OLL

Chemical enterprises

Products

- In 2017, the chemical industry contributed \$5.7 trillion to global GDP ٠
- In 2018, top 50 chemical companies, excluding PetroChina, had a combined chemical revenue of \$926.8 billion (C&EN, July 2019) •

Global Challenges

Increasing demand

Increasing emission

Global CO2 emissions from industry: key sectors

Source: World Economic Forum

Process Systems Engineering Opportunities

Fundamental Questions in Process Design

- Feasibility
 - product quality, demand
- Optimality
 - Cost, energy consumption, waste, emission
 - Profit, NPV, ROI
- Operability, flexibility
- Sustainability, circularity
- Safety

Pillars of Process Design

Conceptual Design

Process Integration

Process Synthesis

Process Intensification

Intensification can be viewed as an extreme case of integration (Baldea, 2015)

Process Intensification

- Synergistic combination of multiple phenomena and tasks to achieve drastic improvement
- Examples include reactive distillation, membrane reactors, dividing wall columns

Conventional Proceess

Eastman Chemical Task-integrated Column

Computer-aided Process Intensification

- Synthesis
 - How can we systematically discover innovative and intensified process systems without waiting for "eureka moments"?
- Identification
 - How can we systematically identify intensification pathways or "intensification hotspots"?
- Analysis
 - Under what conditions is intensification desirable?
 - Can we measure intensifiability? How?
 - Which phenomena should be intensified?

Representation is fundamental to systematic process innovation

Representation Methods

Superstructure Representation

Optimization-based Process Synthesis

Systematic screening of alternatives (Mencareli, Chen, Pagot, Grossmann, Compute. Chem. Eng., 2020, 136, 106808)

- Postulate a process superstructure (e.g., P-graph, STN, SEN, UPCS, etc.) and formulate a mathematical program
- Use optimization algorithm to search configurations

Unit operation Focus

Phenomena/Functional/Modular Approaches

- Phenomena Building Blocks (PBB)
- Lutze et al., 2010; Babi et al., 2014; Tula et al., 2017
- Generalized Modular Framework (GMF)
- Papalexandri and Pistikopoulos, 1996; Tian et al. 2018
- IDEAS Approach and State-space Representation
- Wilson and Manousiouthakis, 2000; Cruz and Manousiouthakis, 2017
- Functional modules
- Freund and Sundmacher, 2008; Kaiser et al., 2018

Departure from Unit Operation Focus

Representation using Design Building Blocks

Demirel, Li and Hasan, Compute. Chem. Eng., 2017

External Feed

Stream from

another block

Building block

Μ

Stream to

another block

Product

withdrawal

Block boundaries

Physical Attributes: Temperature, Pressure, Composition A unit use of a material (e.g. catalyst)

Stream to

another block

3 types of Building Block Boundaries

Phenomena Representation

Building Blocks to Phenomena to Unit Operations

Plug Flow Reactor (PFR)

Building Blocks to Phenomena to Unit Operations

Building Blocks to Phenomena to Unit Operations

Flash separator

Process Flowsheet Representation

Block 1	Block 2	Block 3	 Block b	 Block <i>B-1</i>	Block B
Block 1	Block 2	Block 3	 Block b	 Block <i>B-1</i>	Block B
Block 1	Block 2	Block 3	 Block b	 Block B-1	Block B
Block 1	Block 2	Block 3	 Block b	 Block B-1	Block B

Intensified Equipment Alternatives

Given: Process Feed; Product purity and recovery; Material properties; Physicochemical data

Transition from Building Blocks to PFDs

Membrane

Boundary

Membrane

Boundary

Membrane

Reactor

Membrane

Reactor

Expansion

Product

Block

0

Product

Block

0

Membrane

M1

Membrane

M1

niversity

19

Process Synthesis

20

SPICE Framework

Building Block Representation

Model Formulation

Thermodynamic Models

Error Bounded surrogate model parameter estimation: NLP Formulation

Solubility prediction

Iftakher et al., In 2022 American Control Conference (ACC), pp. 4814-4819. IEEE, 2022

Solid lines: Gamma-Phi model with (a) Margules activity coefficient, (b) NRTL activity coefficient

Circles: GEMS prediction

SPICE Suits

- Process Synthesis (SPICE_SYN)
- Retrofitting (SPICE RF)

• ...

- Process Optimization (SPICE OPT)
- Membrane Assisted Reactive Separations (SPICE_MARS)
- Reactive Distillation (SPICE RD)
- Membrane Separation (SPICE_MS)
- Membrane Distillation (SPICE MD)
- Extractive Distillation (SPICE ED)
- Dividing Wall Column (SPICE DWC)

Demirel, Li, El-Halwagi and Hasan, ACS Sus. Chem. Eng., 2020

Feed Streams:

- Ethylene Oxide (Sat'd Liquid)
- Water (Liquid at 298 K)

Reaction:

 $C_2H_4O + H_2O \rightarrow C_2H_6O_2$

EthyleneOxide + Water → Ethylene Glycol

 $\mathrm{C_2H_4O} + \mathrm{C_2H_6O_2} \rightarrow \ \mathrm{C_4}\ \mathrm{H_{10}O_3}$

Ethylene Glycol + Etyhlene Oxide → Diethylene Glycol

Liquid phase Homogeneous Reactions

$$r_{1} = \exp\left(13.62 - \frac{8220}{T}\right) C_{EO}C_{H2O}$$

$$r_{2} = \exp\left(15.57 - \frac{8700}{T}\right) C_{EO}C_{EG}$$

Target: 25 kmol/h EG production with 95% purity

Semiresticted Boundary (Separation Phenomena)

- $\circ~$ Antoine equation for vapor pressure
- o Ideal phase equilibrium
- ASPEN Plus parameters for density and vapor pressure

Maximize Return on Investment (ROI)

- Capital Investment
- Raw material Cost
- Hot and Cold Utility Costs

Minimize Total CO₂ emissions:

- Emissions pertained to EO Production
- o Electricity
- Steam production

Not intensified: PFR-distillation-recycle

53 × 3 Superstructure:

Plug Flow Reactor (PFR): 50 building blocks (CSTRs-in-series)

Intensified: Single reactive distillation column

50 × 3 Superstructure:

50 Reactive/non-reactive V-L equilibrium block

Multiobjective Optimization

Ethylene Glycol (EG) Production

Demirel, Li and Hasan, Ind. Eng. Chem. Res., 2019

Minimize Total Annual Cost for 25 kmol/h EG production with 99.8% purity

Feeds:

- Ethylene Oxide (Sat'd Liquid at 1 atm)
- Water (Liquid at 298 K)

Reactions:

 $C_2H_4O + H_2O \rightarrow C_2H_6O_2$

EthyleneOxide + Water → Ethylene Glycol

 $C_2H_4O + C_2H_6O_2 \rightarrow C_4H_{10}O_3$ Ethylene Glycol + Etyhlene Oxide \rightarrow Diethylene Glycol

• Liquid phase Homogeneous Reaction

Most cost-effective cryogenic separation process for carbon capture

SIMPLIFIED SCHEMATIC

Separation of High-GWP Refrigerant Mixtures

- More than 3 million tons of refrigerant are in use worldwide
- Hydrofluorocarbons (HFCs)
 - Some have global warming potential (GWP) up to 12,400 CO₂-eq. (Asensio-Delgado et al., 2021)
 - Leakage of refrigerants contributes to 7.8% of global GHG emissions (Harders et al., 2022)
- Market value of R-410A separation is over \$1 billion
- Challenges in R-410a separation
 - Constituent refrigerants (R-32 and R-125) form azeotropic mixture
 - Conventional distillation-based separation becomes highly energy- and cost-intensive
 - Currently there exist no commercial separation techniques for refrigerant mixtures separation

Extractive Distillation (ED) is an intensification technique that utilizes a high boiling point solvent to change the component relative volatilities

Process-based Screening of Existing Ionic Liquids

Concluding Remarks

- Process intensification shows potential for addressing some of the new and old challenges in the chemical process industry
- Representation is critical in systematic innovation in process intensification
- Design building blocks
 - Provide a seamless transition between phenomena, tasks, equipment and flowsheets
 - Allow optimization-based approach for automated flowsheet generation, process synthesis and intensification
 - Provide an initial starting point for approaching the central tradeoff in superstructure-based synthesis (between generality and tractability)
- · Several outstanding challenges remain to be addressed
 - Generality: It is an open question how many rows and columns should be postulated in the initial superstructure
 - Tractability: New solution techniques are required considering inherent symmetry and degeneracy

Acknowledgement

Jianping Li Keegstra Postdoctoral Researcher, University of Wisconsin–Madison

Salih Emre Demirel Senior Research Specialist, Core R&D Dow Chemical

Sadaf Monjur PhD Student, Texas A&M University

National Science Foundation (NSF)

AIChE/RAPID Institute for Process Intensification

Department of Energy (DOE)

ACS Petroleum Research Fund

Professor Efstratios N. Pistikopoulos, TAMU Professor Mahmoud El-Halwagi, TAMU Professor Rafiqul Gani, PSE for SPEED

Sustainable Process Synthesis and Intensification for Industrial Decarbonization

Faruque Hasan, PhD

Artie McFerrin Department of Chemical Engineering, Texas A&M University College Station, TX, USA

ARTIE MCFERRIN DEPARTMENT OF CHEMICAL ENGINEERING TEXAS A&M UNIVERSITY

Texas A&M Engineering Experiment Station

2022 Seminar for Energy Systems Initiative (ESI) at the Center for Advanced Process Decision-Making (CAPD) November 09, 2022