Future CCUS system driven by Allam cycle for simultaneous production of electricity and green fuels

Haoshui Yu

Department of Chemistry and Bioscience

Aalborg University, Denmark

Agenda

Introduction

- Aalborg University in Esbjerg
- **•** Research Background

System description and methodology

- System description
- System modeling

8 Results and discussion

- Steady state \bullet
- Transient behavior \bullet

Conclusions

Introduction

Where is Aalborg University?

Europe's largest Power-to-X plant in Esbjerg

Energy System Integration

Future EU integrated energy system : energy flows between users and producers, reducing wasted resources and money

Reference: EU strategy on energy system integration **AALBORG UNIVERSITY**

https://energy.ec.europa.eu/topics/energy-systems-integration/eu-strategy-energy-system-integration_en

Energy Generation

Renewable sources

Advantages

- o Environmentally sustainable
- o Infinite resource availability

Disadvantages

- o Intermittent power supply
- o Geographic limitations

Fossil fuels

Advantages

- o Mature, widely adopted technology
- o Cost-effective and reliable

Disadvantages

- o Greenhouse gas emissions
- o Finite resource with eventual depletion

Energy Storage

Source: Fraunhofer Institute, Germany, 2014

Gas-to-Power Considering Carbon Capture

AALBORG UNIVERSITY Reference: F. Raganati; P. Ammendola. CO₂ Post-combustion Capture: A Critical Review of Current Technologies and Future Directions. Energy &Fuels. 2021. 13858**.** <https://doi.org/10.1021/acs.energyfuels.4c02513>

Allam Cycle- an Oxyfuel Combustion Cycle

*https://netpower.com/technology/

Allam Cycle for Cross-sector Integration

(2) Fossil fuels can serve as a backup for PtX and renewable energy, providing a bridge as PtX develops and becomes more cost-effective. (3) Oxy-fuel cycles provide an energy-efficient carbon capture technology, which can mitigate the greenhouse gas emissions from fossil fuels. ⁽⁴⁾ Power-to-X storage produces O_2 as a by-product, which could potentially be used in oxy-fuel cycles that need pure O_2 for combustion. $^{(5)}$ Oxy-fuel cycles produce flue gas that is primarily pure CO₂. This could potentially address the disadvantage of Power-to-X storage, which usually requires an additional supply of material such as $CO₂$.

System description and methodology

Inputs: Renewable energy Natural gas Biomass

Subsystem: Electrolysis Allam cycle $CO₂$ utilization Biorefinery End users

[Subsystem operation:](#page-20-0) Short -term Medium -term Long -term

Renewable Energy

- ➢ The proposed Integrated Energy System (IES) exhibits exceptional flexibility for seamless integration with renewable energy sources, such as wind and solar.
- ➢ These renewable sources provide the primary *energy input* to the IES.

Natural Gas

- ➢ Natural gas continues to serve as a key energy source, ensuring reliable power generation.
- ➢ Natural gas provide both *energy and material input* for the integrated system

Electrolysis

- ➢ Electrolysis is foundational step in Power-to-X process
- ➢ Various technologies are available, with rapid advancements continuously enhancing their performance.
- ➢ PEM electrolyzers are investigated in this study.

Allam Cycle

CO² Utilization

- \triangleright The proposed system has the flexibility to produce methanol, methane, and other products, **methane** has been chosen in this study as an example of one possibility.
- \triangleright The methanation reactor combines captured CO₂ from Allam cycle with H2 from the electrolyzer using the Sabatier reaction to produce synthetic natural gas (SNG).

Biorefinery - Gasification

End Users

The system is designed to address the diverse energy requirements of both *residential and industrial users* through the simultaneous production of electricity, heat, and fuel.

Residential needs: Electricity for appliances, space and water heating system

Industrial needs: Large-scale electricity and heat for manufacturing, plus raw materials for production processes

Transportation needs: Fuels for cars, ships etc.

Short-, Medium-, and Long-Term Operation

Long-term During this phase, the Allam cycle, primarily fueled by natural gas, plays a crucial role in providing stable, dispatchable power while achieving near-zero emissions through its inherent carbon capture capability. Short-term Medium-term

The system exclusively utilizes renewable power and biomass as inputs. The Allam cycle operates on SNG and biomass-derived syngas, achieving a negative emission goal.

The medium-term operational strategy focuses on increasing the share of renewable energy and enhancing the integration of Power-to-Gas (PtG) technologies. To support this, electrolyzer capacity will be expanded to manage the higher penetration of renewable energy effectively.

Process Modeling

Results and Discussion

Steady-state

Assumptions

Design parameters of the proposed system

Biomass Composition

Decision Variables

TOPSIS _B \overline{C} 48 47 ERTE $(\%)$ 46 45 Distribution of three objective Pareto 3 front based on NSGA-II2.95 2.9 \dot{Z}_{tot} (\$/s) CONCOCOOL 3000000 2.85 $2.8\,$ 130 125 120 LCoS (\$/MWh) 115 110 3 110 45 46 48 2.8 2.9 120 130 47

P A G E 2 9

TOPSIS

Scattered distribution of decision variables

AALBORG UNIVERSITY

Grassman exergy diagram of the proposed storage system of long-term scenario

AALBORG UNIVERSITY Cost rate diagram of the proposed storage system of long-term scenario

Sensitivity Analysis

Sensitivity analysis of decision variables with easyGSA

Comparative Analysis

Levelized Cost of Storage (LCoS) as a function of yearly energy discharge for longduration ES systems (not including the cost of electricity) *

AALBORG UNIVERSITY * Jülch, V. (2016). Comparison of electricity storage options using levelized cost of storage (LCOS) method. Applied Energy (Vol. 183, pp. 1594–1606). Elsevier BV. https://doi.org/10.1016/j.apenergy.2016.08.165

Comparative Analysis

AALBORG UNIVERSITY

* Rohit, A. K., Devi, Ksh. P., & Rangnekar, S. (2017). An overview of energy storage and its importance in Indian renewable energy sector. Journal of Energy Storage (Vol. 13, pp. 10–23). Elsevier BV. https://doi.org/10.1016/j.est.2017.06.005

Transient Performance

This study analyzes three key renewable energy technologies in Europe's energy transition: **offshore wind, onshore wind, and solar photovoltaic (PV)**. Each technology has unique capacity factors, intermittency, and geographical suitability that affect its integration into a large-scale energy storage system.

To ensure consistency in the analysis, the study assumed a **profile load of 1000 GWh per year** to evaluate the feasibility of integrating these renewable sources with the proposed system.

Capacity factors for each technology are calculated using **historical data** (based on [https://energy](https://energy-charts.info/)[charts.info/](https://energy-charts.info/)) from each country, ensuring the model reflects realistic operation.

In the short term, the cost of PEM electrolyzers is \$1000 per kW. In the long term, it is expected that the cost of electrolyzers will be less than \$200 per kW [2].

[1] IEA (2024), *World Energy Outlook 2024*, The International Energy Agency [2] IRENA (2021), *Making the breakthrough: Green hydrogen policies and technology costs*, International Renewable Energy Agency.

Modeling Framework

AALBORG UNIVERSITY

Renewable Power Generation and Load Profile

Temporal patterns of renewable power generation and load profiles over 8760 hours (one year) for three different countries: a) Denmark's offshore wind, b) Italy's solar generation, and c) Sweden's onshore wind.

Optimization – 2023 Scenario

Operation Results - 2023 Scenario

a) Operation of the Allam cycle b) Extra methane capacity c) Share of each parameter in LCoS d) Extra oxygen capacity

4 2

Optimization – 2050 Scenario

LBORG **UNIVERSITY**

4 3

Operation Results - 2050 Scenario

a) Operation of the Allam cycle b) Extra methane capacity c) Share of each parameter in LCoS d) Extra oxygen capacity

Conclusions

Conclusions

- □ A future CCUS system powered by Allam cycle for simultaneous production of electricity and green fuels is proposed in this project.
- □ The integrated system's performance has been analyzed under both steady-state and transient conditions.
- □ The ERTE and LCoS demonstrate competitiveness with other existing processes, particularly within the 2050 scenario.
- ❑ The integrated system can be emission free or negative emission.
- □ The proposed system is versatile and adaptable to various applications.

Thank you for your attention!

Haoshui Yu hayu@bio.aau.dk

Acknowledgement

AAU Startup Support Ph.D. Candidate Seyed Mojtaba Alirahmi