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Energy Transition from Oil to Electricity

Ø Electricity demand would account for over 50% of total energy demand if we
were to achieve net zero carbon emission in 2050

BP Energy Outlook 2020
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Power Industry

Ø Electricity is generated at power plants and moves through a complex system, 
sometimes called the grid, of electricity substations, transformers, and power 
lines that connect electricity producers and consumers.

Independent system operators UtilitiesTraditional utilities &
Independent merchant 
generators
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Electricity Market in the US

Ø The electricity transmission network is controlled by Independent System 
Operators (ISOs). An ISO coordinates, controls, and monitors a multi-state 
electric grid. 

Ø Create a competitive wholesale electricity market where all generators can 
compete on an equal basis and have equal access to the grid.

ISOs in North America
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Optimization Problems Involved

Ø Wide-range applications in terms of the time scale. 

Ø From long term planning to short term control/scheduling

Arriaga et al. (2008)
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Economic Dispatch/Optimal Power Flow

Ø Economic dispatch is the short-term determination of the optimal output of a 
number of electricity generation facilities, to meet the system load, at the 
lowest possible cost, subject to transmission and operational constraints
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Economic Dispatch/Optimal Power Flow

Ø Economic dispatch is the short-term determination of the optimal output of a 
number of electricity generation facilities, to meet the system load, at the 
lowest possible cost, subject to transmission and operational constraints

Minimize cost

Power flow equation at each node, i.e., 
power injected = generation - load

Variable bounds for voltage, phase 
angle, real, reactive power
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Unit Commitment (Day-ahead Market)

Ø The Day-ahead market lets market participants commit to buy or sell wholesale 
electricity one day before the operating day, to help avoid price volatility

Day-ahead 
transactions
（ISO)

Producer 
offers

Consumer 
bids

Energy quantities and 
prices
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Unit Commitment

Ø Mixed-integer linear programming (MILP) model

§ Binary variables: generator on/off status

§ Continuous variable: power generation, power flow
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Unit Commitment

Ø Mixed-integer linear programming (MILP) model

§ Binary variables: generator on/off status

§ Continuous variable: power generation, power flow

Minimize cost

Generator on/off status
Minimum up and down time

Power generation bounds

Generation ramping constraints

Power flow equations

Binary constraints
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Research Communities Involved

Ø Electrical engineers (traditionally)

§ IEEE Transactions on Power Systems

Ø Increasing interest in industrial engineering

§ Operations Research, INFORMS Journal on Computing, Mathematical Programming

Nonconvex NLP

Large scale MILP

Large scale MILP



Project Motivation

Consider major generation sources:

– coal

– natural gas (simple and combined cycle)

– nuclear

– wind

– solar
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Goal: Develop Optimization Models for Power Generation  
and Transmission Expansion Planning  (multiperiod MILP)

Emphasis: Long term Planning to Minimize Total Cost



Ø Most electric capacity additions come from renewables

§ In 2019, 64% capacity additions in the US are from renewables. 34% from 
natural gas
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Current Capacity Additions



Ø Share of global power generation from wind&solar is expected to increase
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Renewable Generation

business as usual net zero

BP Energy Outlook 2020
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Problem Addressed in This Presentation

Ø We take the role of a central planner on the capacity expansion of generating
units and transmission lines to satisfy the increase in demand within a geographical
region, like a region corresponding to an Independent System Operator (ISO)

ISOs in North America
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Research Challenges in Transitioning to Renewables

Ø Renewables concentrate in remote areas not well connected to load demand. The 
model needs to coordinate transmission and generation expansion.
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Ø Power systems need to be able to adjust to the volatile power generation from 
renewables. The model has to capture the hourly variations.
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Research Challenges in Transitioning to Renewables
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Overview of our work on expansion planning

Ø Generation Expansion Planning (GEP) models and algorithm

§ Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, I. E. (2018). 
Deterministic electric power infrastructure planning: Mixed-integer programming model and nested 
decomposition algorithm. European Journal of Operational Research, 271(3), 1037-1054.

Ø Representative day selection in Generation Expansion Planning
§ Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., Lara, C. L., & Grossmann, I. E. (2018). Impact of 

model resolution on scenario outcomes for electricity sector system expansion. Energy, 163, 1231-1244.

§ Li, C., A.J. Conejo, J.D. Siirola, I.E. Grossmann. On representative day selection for capacity expansion 
planning of power systems under extreme events. Under Review in Energy.

Ø Generation Expansion Planning under Uncertainty

§ Lara, C. L., Siirola, J. D., & Grossmann, I. E. (2019). Electric power infrastructure planning under 
uncertainty: stochastic dual dynamic integer programming (SDDiP) and parallelization 
scheme. Optimization and Engineering, 1-39.

Ø Integrated Generation and Transmission Expansion (GTEP) Planning
Ø Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. Mixed-integer Linear Programming 

Models and Algorithms for Generation and Transmission Expansion Planning of Power Systems. Under
Review in European Journal of Operational Research.
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Generation Transmission Expansion Planning + Unit Commitment 

INPUT

• Energy source (coal,
natural gas, nuclear,
solar, wind*);

• Generation and storage
technology;

• Location of existing 
generators;

• Nameplate capacity;
• Age and expected 

lifetime
• Potential transmission 

lines
• Emissions
• Operating and 

investment costs
• Ramping rates, 

operating limits, 
maximum operating 
reserve.

• Renewable generation 
profile.

• Load demand

OUTPUT

• Location, year, 
type and number
of generators, 
transmission lines
and storage units 
to install; 

• When to retire 
them;

• Whether or not to 
extend their 
lifetime; 

• Approximate 
power flow 
between 
locations; 

• Approximate 
operating 
schedule 

Minimize the net present cost (operating, 
investment, and environmental).
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Research Challenges

Ø Temporal complexity: 20 years× 365days× 24hours=175,200 hours

Ø Spatial complexity: Around 500-2,000 individual generators depending on 
the region

Ø Complexity of the optimization problem with hourly decisions can be easily 
over 1 billion variables.

Intractable. Need simplification
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Temporal Aggregation

k-medoids
clustering

Ø Aggregate the days with similar load and renewable output time 

series using machine learning-based clustering algorithms.

Li, C., A.J. Conejo,  J.D. Siirola, I.E. Grossmann. On representative day selection for capacity expansion planning of power systems 
under extreme events. Working paper.
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Temporal Aggregation

Hours

Ø d representative days per year to account for unit commitment and 

power flow in the hourly level

Weight of day d
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Spatial Aggregation

Region and cluster representation

§ Area represented by a few 
zones

§ Potential locations are the 
midpoint in each zone

§ Center for each region: 
Panhandle (Amarillo), West 
(Midland), South (San 
Antonio), Coastal (Houston), 
Northeast (Dallas).

§ Clustering of generators and 
storage units

§ Only consider the tielines that 
connect the centers of two 
neighboring regions
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Overview of Mixed-integer Linear Programming (MILP) Model

Objective function: 

Minimization of the net present cost over the planning horizon comprising: 

• Variable operating cost

• Fixed operating cost

• Startup costs

• Cost of investments in new generators, transmission lines and storage units

• Cost to extend the life of generators that achieved their expected lifetime 

• Fuel consumption

• Carbon tax for CO2 emission

• Penalty for not meeting the minimum renewable annual energy production requirement 

Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from renewable quota at t 
• Spinning reserve at s
• Quick-start reserve at s
• Voltage angle of region r at s
• Power level and power charged or

discharged  at storage cluster j

Discrete variables: 
• no. of generators installed at period t
• no. of generators built at  t
• no. of generators retired at t
• no. of generators with life extended at t
• whether  transmission line l is installed at t
• whether  transmission line l exists at t
• no. of generators ON at sub-period s
• no. of generators starting up at s
• no. of generators shutting down at s

Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, I. E. (2018). Deterministic electric power infrastructure planning: 
Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research, 271(3), 1037-1054.
Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. Mixed-integer Linear Programming Models and Algorithms for Generation and 
Transmission Expansion Planning of Power Systems. Under review in European Journal of Operations Research.



25

Overview of Mixed-integer Linear Programming (MILP) Model

Summary of constraints:

• Energy balance in each region r. 

• DC power flow calculate the power flow between any two nodes at each subperiod s

• Capacity factor of renewable generators .

• Unit commitment constraints to compute the startup and shutdown, operating limits 
and ramping rates for thermal generators.

• Operating reserve constraints to determine the maximum contribution per thermal 
generator for spinning and quick-start reserves, and the minimum total operating 
reserves.

• Investment constraints to ensure that the planning reserve and renewable energy 
contribution requirements are satisfied, and to limit the yearly installation per 
generation type.

• Balance of generators to define the number of generators that are operational, built, 
retired, and have their life extended in each time period t.
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DC v.s. AC Power Flow Equations

DC power flow

AC power flow

Pi =
NX

k=1

Bik(�i � �k) 8i 2 N (1)

Real power only
Linear equations

Real and reactive power
nonlinear equations
(trigonometric functions)

DC is a good approximation for AC if 
1) All system branch resistances are approximately zero
2) The differences between adjacent bus voltage angles are small
3) The system bus voltages are approximately equal to the 1.0 per unit
4) Reactive power flow is neglected
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Comparison of  Formulations of Transmission Expansion
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Generalized Disjunctive Programming

Big M reformulation

Hull reformulation

pflowl,t,d,s = Bl�✓1l,t,d,s 8l 2 Lnew, t, d, s (1)

✓sr(l),t,d,s � ✓er(l),t,d,s = �✓1l,t,d,s +�✓2l,t,d,s 8l 2 Lnew, t, d, s (2)
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�(1�ntel,t)M  pflowl,t,d,s�Bl(✓sr(l),t,d,s�✓er(l),t,d,s)  (1�ntel,t)M 8l 2 Lnew, t, d, s
(1)

�Fmax
l ntel,t  pflowl,t,d,s  Fmax

l ntel,t 8l 2 Lnew, t, d, s (2)

Tighter formulation, also has more variables

Grossmann, I.E. and F. Trespalacios, “Systematic Modeling of 
Discrete-Continuous Optimization Models through Generalized 
Disjunctive Programming,” AIChE J. 59, 3276-3295 (2013).
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Comparison of  Formulations of Transmission Expansion

Alternative big M formulation

pflow+
l,t,d,s �Bl�✓+l,t,d,s  0 8l 2 Lnew, t, d, s (1)

pflow�
l,t,d,s �Bl�✓�l,t,d,s  0 8l 2 Lnew, t, d, s (2)

pflow+
l,t,d,s �Bl�✓+l,t,d,s � �Ml(1� ntel,t) 8l 2 Lnew, t, d, s (3)

pflow�
l,t,d,s �Bl�✓�l,t,d,s � �Ml(1� ntel,t) 8l 2 Lnew, t, d, s (4)

pflowl,t,d,s = pflow+
l,t,d,s � pflow�

l,t,d,s 8l 2 Lnew, t, d, s (5)

✓sr(l),t,d,s � ✓er(l),t,d,s = �✓+l,t,d,s ��✓�l,t,d,s 8l 2 Lnew, t, d, s (6)

pflow+
l,t,d,s  Fmax

l ntel,t 8l 2 Lnew, t, d, s (7)

pflow�
l,t,d,s  Fmax

l ntel,t 8l 2 Lnew, t, d, s (8)

pflow+
l,t,d,s, p

flow�
l,t,d,s,�✓+l,t,d,s,�✓�l,t,d,s � 0 8l 2 Lnew, t, d, s (9)

The authors claim that alternative big M formulation is tighter than big M formulation

Theorem: The two formulations have the same feasible region when project on the 
original variable space

Bahiense, L., Oliveira, G. C., Pereira, M., & Granville, S. (2001). A mixed 
integer disjunctive model for transmission network expansion. IEEE 
Transactions on Power Systems, 16(3), 560-565.
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Solution Techniques-Benders Decomposition

Hours

Time scale approach:

d representative days per 
year to account for unit 
commitment in the hourly
level

Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. Mixed-integer Linear Programming Models and Algorithms for 
Generation and Transmission Expansion Planning of Power Systems. Under review in European Journal of Operations Research.

Investment	decisions	 for	the		planning	horizon	Benders	master	problem

….
Year	T	

operating	
decisions	

Year	1	
operating	
decisions	

Year	2	
operating	
decisions	Benders	subproblems

Subproblems are	decomposed	 by	year	

Add	Benders	cutsFix	investment	decisions
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2

T

t

Time period 
t = {1, …, T}

Upper bound
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Solution Techniques-Nested Benders Decomposition

The forward pass 
solves the model in a 
myopic fashion. Lara, C.L. et al., “Electric Power Infrastructure Planning: Mixed-Integer Programming 

Model and Nested Decomposition Algorithm,” European Journal of Operational 
Research 271, 1037–1054 (2018).
Birge, J. R. (1985). Decomposition and partitioning methods for multistage stochastic 
linear programs. Operations research, 33(5), 989-1007.
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Solution Techniques-Nested Benders Decomposition

1

T

t

Time period 
t = {T, …, 1}

T-1

Lower bound Backward Pass generates 
Benders cuts and improves 
the cost-to-go 
approximation
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ERCOT Case Study

• 20 year time horizon (1st year is 2019)

• Load Data from ERCOT database

• Solar and wind capacity factor data from NREL

• Generator cost information from NREL (Annual Technology 

Baseline (ATB)

• Storage data from Schmidt et al. (2017) Nature Energy.

• Transmission line data from Texas Synthetic Grid. Only 500 kV 

tielines between two neighboring regions are considered

• All costs in 2019 USD

• Regions: Northeast, West, Coastal, South, Panhandle 

• Fuel price data from EIA Annual Energy Outlook 2016 (reference 

case)

• Carbon tax is zero in the first year and grows linearly across 

years to $0.325/kg CO2.
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4 representative days, 15 years results

formulation
Integer 

Var
Binary 

Var
Continuous 

Var Constraints UB LB
Wall 
time

big-M 274,920 2,800 564,826 1,543,966 - 21.13 36,000
alternative big M 274,920 2,800 1,102,426 2,081,566 - 21.13 36,000

hull 274,920 2,800 833,626 2,081,566 - 281.73 36,000

algorithm formulation ub lb gap Wall time (secs)
Benders big-M 283.7 282.6 0.38% 5,115
Benders alternative big M 283.9 281.6 0.82% 3,693
Benders hull 282.6 280.6 0.71% 8,418

nested Benders big-M 295.7 268.9 9.98% 53,682
nested Benders alternative big M 294.2 265.5 10.81% 43,389
nested Benders hull 288.0 269.3 6.97% 37,577

The Benders decomposition algorithm with the alternative big-M 
formulation has the best computational performance

All the problems are solved with Cplex v 12.9.0.0 from Pyomo. The fullspace model 
cannot be solved directly. No feasible solution can be found within 10 hours

Fullspace mixed-integer linear programming (MILP) models

Decomposition algorithms
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20-year Generation Expansion
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• Natural gas capacity increases in the beginning and then decreases due to the increase 

in carbon tax

• Most projected capacity expansion is in wind and solar. 27-fold increase in solar and

87% increase in wind.
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Geographical Distribution of Natural Gas Capacity

• Most natural gas expansions are expected  to take place in the Northeast and Coast
regions where the absolute increase in load is high and capacity factors for 
renewables are relatively low.
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Transmission Expansion

• Most of the transmission lines are built for Northeast-Panhandle and South-

West in order to transfer the power generated by the renewables in West and 

Panhandle to other regions
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Transmission Expansion

Average annual solar irradiance

Average annual wind speed at 80 meter

Data source: NREL
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Power Flow in ERCOT

2.73

2.41

8.63

0.44

6.05
10.72

Power	flow	 (GW)

Year 20 (2038), representative day 15, 11pm

The largest power flow 
magnitudes are Panhandle-
Northeast, West-South due 
the surplus of their renewable 
energy generation

There are potential benefits in
integrating generation and
transmission expansion
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Representative Day Selection

Hours

Ø Motivation: Expansion planning decisions sensitive to the selection of

representative days

§ Algorithms to select the representative days

§ Estimation of “optimality gap”

Weight of day d
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Fullspace model and Reduced model

(FD) OBJFD = min
X

t2T

⇣
c
>
t xt +

X

d2D

365

|D| f
>
t yt,d

⌘
(1a)

s.t. At,dxt +Btyt,d  bt,d 8t 2 T , d 2 D (1b)

Ct�1xt�1 +Dtxt  gt t = 2, 3, . . . , |T | (1c)

xt 2 Xt, 8t 2 T , yt,d 2 Yt, 8t 2 T , d 2 D (1d)

(RD) OBJRD = min
X

t2T

⇣
c
>
t xt +

X

k2K
wkf

>
t yt,k

⌘
(1a)

s.t. At,kxt +Btyt,k  bt,k 8t 2 T , k 2 K (1b)

Ct�1xt�1 +Dtxt  gt t = 2, 3, . . . , |T | (1c)

xt 2 Xt, 8t 2 T , yt,k 2 Ỹt, 8t 2 T , k 2 K (1d)

Investment decisions
for year t

operating decisions
for year t day d

The whole dataset

operating decisions
for year t representative

day k

The set of representative days

Relaxed integrality
constraints
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K-means clustering

Ø Objective: minimize the within cluster variance.

S⇤ = argmin
S

kX

i=1

X

x2Si

||x� µi||2 (1)

min
c,d,y

nX

i=1

di (1a)

di �
⇣ DX

j=1

(xij � clj)
2
⌘
�Mi(1� yil) 8i 2 {1, . . . , n}, l 2 {1, . . . , k} (1b)

kX

l=1

yil = 1 8i 2 {1, . . . , n} (1c)

cl 2 RD 8l 2 {1, . . . , k} (1d)

di 2 R+ 8i 2 {1, . . . , n} (1e)

yil 2 {0, 1} 8i 2 {1, . . . , n}, l 2 {1, . . . , k} (1f)

MINLP formulation:
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K-medoids clustering

Ø The center 𝜇! has to be a data point. Centroid v.s. medoid

min
z,y

X

ij

dijzij (1a)

nX

j=1

zij = 1 8i = 1, 2, . . . , n (1b)

zij  yj 8i = 1, 2, . . . , n, j = 1, 2, . . . , n (1c)

nX

i=1

yi = k (1d)

MILP formulation:
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k-medoids
clustering

Input-based method

Ø Clustering is performed directly on the input data (load, capacity 

factors)
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Cost-based method
Ø Hypothesis: The days with similar optimal investment decisions, i.e., the days that 

need similar generators, transmission lines, and storage units, are similar and should be 

assigned to the same cluster

Raw data

Investment cost 
breakdown

after reduction 
(million dollars)

Solve CEP for each day 
in the full dataset individually &
Dimension reduction 
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Cluster 1, w=141

Cluster 2, w=65

Cluster 3, w=159

Cost-based method

K-medoids clustering
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Failures of the Representative Day Approach

Ø Extreme events, such as highest ramp and lowest generation, are not 

captured by the representative days.

Ø The investment decisions from (RD) are usually infeasible for (FD).

Ø Solution: adding days with extreme events

Ø Option 1: adding extreme days based on some predefined 

characteristics, e.g., peak load day.

Ø Alternative strategy?

Scenario with high ramp rates (volatility) 

Representative day

Scenario with low generation levels (intermittency)
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Extreme Events Selection

Ø Load shedding cost

Energy balance at each node

X

i

(pi,r,t,d,s) +
X

l|r(l)=r

pflowl,t,d,s �
X

l|s(l)=r

pflowl,t,d,s +
X

j

pdischargej,r,t,d,s �
X

j

pchargej,r,t,d,s = Lr,t,d,sPower generation ± power flow in/out ± power discharge/charge = LoadPower generation ± power flow in/out ± power discharge/charge = Load – Load shedding

1) Fix the investment decisions from (RD)
2) Solve the operating problem corresponding to each day in our dataset
3) Find the infeasible day with the highest load shedding cost

Min Load shedding
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Extreme Events Selection

Ø Highest cost

§ In the cost-based approach, we have obtained the total cost 

(operating + investment) for each day in our dataset

§ Select the day with the highest cost as our extreme day
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Optimality Gap

Ø Motivation: Provide upper and lower bound for the fullspace problem (FD)

Ø Upper bound: Fix the optimal investment decisions from the reduced 

model, solve each day in the fullspace model.

OBJFD(xRD) � OBJFD(xFD) = OBJFD (1)

Theorem 1. For both cost-based and input-based approaches, if k-means clus-

tering is used, (RD) provides a lower bound for the optimal objective value of

(FD), i.e., OBJRD  OBJFD. This lower bound holds before and after adding

extreme days.

Gap =
OBJFD(xRD)�OBJRD

OBJFD(xRD)
⇥ 100% (1)

Ø Lower bound: Reduced model provides lower bound under certain 

assumptions.
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Case Study

Algorithm option Data Clustering Algorithm Extreme Day Method
1 Input k-means load shedding cost
2 Input k-medoids load shedding cost
3 Cost k-medoids highest cost
4 Cost k-medoids load shedding cost
5 Cost k-means highest cost
6 Cost k-means load shedding cost

Ø ERCOT region, 5 years planning problem

Ø The whole dataset D has 365 days that consists 

of load and capacity factor data
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Infeasibility without the Extreme Days

Ø Only using the representative days from 

centroids/medoids of the clustering 

algorithms cannot guarantee feasibility

Ø Cost-based approach has fewer infeasible 

days when k is large

Algorithm option k #infeasible day

1
5 70

10 63
15 42

2
5 35

10 21
15 40

3
5 98

10 13
15 12

4
5 98

10 13
15 12

5
5 34

10 30
15 29

6
5 34

10 30
15 29
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Feasible After Adding Extreme Days

Option k #Extreme day

1
5 3 79.16

10 2 79.04
15 2 78.81

2
5 3 78.92

10 2 78.72
15 2 78.74

3
5 5 78.83

10 3 78.67
15 3 78.81

4
5 3 78.93

10 2 78.79
15 1 78.75

5
5 4 78.98

10 6 79.09
15 4 78.98

6
5 3 79.12

10 4 78.93
15 3 78.81

Ø Adding the extreme days makes the 

investment decisions feasible for the 

fullspace problem.

Ø K-medoids clustering has lower cost in 

most cases

OBJFD(xRD) < +1

OBJFD(xRD)
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Optimality Gap

Ø “Optimality gap” can be 

obtained when k-means 

clustering is used

Ø Gap improves as k increases

Option k LB Gap

1
5 79.16 76.09 4.0%

10 79.04 76.29 3.6%
15 78.81 76.58 2.9%

2
5 78.92 - -

10 78.72 - -
15 78.74 - -

3
5 78.83 - -

10 78.67 - -
15 78.81 - -

4
5 78.93 - -

10 78.79 - -
15 78.75 - -

5
5 78.98 76.16 4.2%

10 79.09 76.64 3.7%
15 78.98 76.74 3.4%

6
5 79.12 76.15 3.9%

10 78.93 76.63 3.0%
15 78.81 76.73 2.7%

OBJFD(xRD)
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Effects of Adding Extreme days

Ø Comparison of k=15, option 6 before and after adding the extreme days

§ Total investment cost +325 million

§ Thermal generator cost +350 million

§ Transmission line cost +186 million

§ Storage investment cost +0.2 million

§ Renewable generator cost -212 million

0
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Thermal
Generator Cost

Renewable
Generator Cost

Transmission
Line Cost

Total Investment
Cost

Option 6

k=15 k=15+X

Trillion dollar:
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Conclusion and Future work

Ø We have developed models and algorithms for capacity expansion of 
power systems with high penetration of renewables.

Ø The capability to analyze powers systems enables to study hybrid energy 
systems that have both electricity generators and electricity/heat 
consumers, such as chemical plants.
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