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Energy Transition from Oil to Electricity

» Electricity demand would account for over 50% of total energy demand if we
were to achieve net zero carbon emission in 2050
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Power Industry

» Electricity is generated at power plants and moves through a complex system,
sometimes called the grid, of electricity substations, transformers, and power
lines that connect electricity producers and consumers.

GENERATION TRANSMISSION DISTRIBUTION
IER B0 hees
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Electricity Market in the US

» The electricity transmission network is controlled by Independent System
Operators (ISOs). An ISO coordinates, controls, and monitors a multi-state
electric grid.

» Create a competitive wholesale electricity market where all generators can
compete on an equal basis and have equal access to the grid.
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Optimization Problems Involved

» Wide-range applications in terms of the time scale.

» From long term planning to short term control/scheduling

function
Expanssion
planning
maintenarice
scheduling
system
studies
operational
studies
load
forecasting
hydro
cheduling
economic
dispatch
generation
control .
protection time scale
second minute hour day week year

Arriaga et al. (2008)




Economic Dispatch/Optimal Power Flow

» Economic dispatch is the short-term determination of the optimal output of a
number of electricity generation facilities, to meet the system load, at the
lowest possible cost, subject to transmission and operational constraints
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Economic Dispatch/Optimal Power Flow

» Economic dispatch is the short-term determination of the optimal output of a
number of electricity generation facilities, to meet the system load, at the
lowest possible cost, subject to transmission and operational constraints

min

S.t.




Unit Commitment (Day-ahead Market)

» The Day-ahead market lets market participants commit to buy or sell wholesale
electricity one day before the operating day, to help avoid price volatility
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Unit Commitment

» Mixed-integer linear programming (MILP) model
= Binary variables: generator on/off status

= Continuous variable: power generation, power flow
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Unit Commitment

» Mixed-integer linear programming (MILP) model
= Binary variables: generator on/off status

= Continuous variable: power generation, power flow

s.t.

Binary constraints
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Research Communities Involved

» Electrical engineers (traditionally)
= |EEE Transactions on Power Systems
» Increasing interest in industrial engineering
= Operations Research, INFORMS Journal on Computing, Mathematical Programming
Strong SOCP Relaxations for the

Optimal Power Flow Problem
Burak Kocuk, Santanu S. Dey, X. Andy Sun Nonconvex NLP

H. Milton Stewart School of Industnial and Systems Engincering, Georgia Institute of Technology, Atlanta, Georgia 30332

Learning to Solve Large-Scale Security-Constrained Unit
Commitment Problems

Alinson S. Xavier,? Feng Qiu,? Shabbir Ahmed® Large scale MILP

A model and approach to the challenge posed
by optimal power systems planning

Richard P. O’Neill - Eric A. Krall - L e MILP
Kory W. Hedman - Shmuel S. Oren arge scale
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Project Motivation

Goal: Develop Optimization Models for Power Generation
and Transmission Expansion Planning (multiperiod MILP)

Consider major generation sources:
— coal
— natural gas (simple and combined cycle)
— nuclear

— wind

— solar

Emphasis: Long term Planning to Minimize Total Cost




Current Capacity Additions

» Most electric capacity additions come from renewables

= |n 2019, 64% capacity additions in the US are from renewables. 34% from

natural gas
U.S. electric capacity additions and retirements, 2019 planned additions
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Renewable Generation

» Share of global power generation from wind&solar is expected to increase
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Problem Addressed in This Presentation

» We take the role of a central planner on the capacity expansion of generating
units and transmission lines to satisfy the increase in demand within a geographical
region, like a region corresponding to an Independent System Operator (ISO)

Alberta Electric
System Operator MidwestISO
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Research Challenges in Transitioning to Renewables

> Renewables concentrate in remote areas not well connected to load demand. The
model needs to coordinate transmission and generation expansion.

U.S. electric capacity additions and retirements, 2019
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Research Challenges in Transitioning to Renewables

» Power systems need to be able to adjust to the volatile power generation from
renewables. The model has to capture the hourly variations.
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Hourly wind and solar generator output in 8 days
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Overview of our work on expansion planning

» Generation Expansion Planning (GEP) models and algorithm

* Lara, C. L., Mallapragada, D.S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, |. E. (2018).
Deterministic electric power infrastructure planning: Mixed-integer programming model and nested

decomposition algorithm. European Journal of Operational Research, 271(3), 1037-1054.

> Representative day selection in Generation Expansion Planning

» Mallapragada, D.S., Papageorgiou, D. J., Venkatesh, A., Lara, C. L., & Grossmann, |. E. (2018). Impact of
model resolution on scenario outcomes for electricity sector system expansion. Energy, 163, 1231-1244.

= Li, C.,AJ. Conejo, J.D. Siirola, I.E. Grossmann. On representative day selection for capacity expansion
planning of power systems under extreme events. Under Review in Energy.

» Generation Expansion Planning under Uncertainty

» Lara, C. L., Siirola, J. D., & Grossmann, I. E. (2019). Electric power infrastructure planning under
uncertainty: stochastic dual dynamic integer programming (SDDiP) and parallelization

scheme. Optimization and Engineering, 1-39.

» Integrated Generation and Transmission Expansion (GTEP) Planning

» Li, C,, A.J.Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.LE. Grossmann. Mixed-integer Linear Programming

Models and Algorithms for Generation and Transmission Expansion Planning of Power Systems. Under
Review in European Journal of Operational Research.
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Generation Transmission Expansion Planning + Unit Commitment

Minimize the net present cost (operating,

INPUT investment, and environmental).
Energy source (coal,
natural gas, nuclear, OUTPUT
solar, wind*); * Location, year,

Generation and storage
technology;
Location of existing
generators;
Nameplate capacity;

type and number
of generators,
transmission lines
and storage units

to install;
Age and expected When to retire
lifetime them;
Potential transmission Whether or not to
lines extend their
Emissions lifetime;
Operating and Approximate
investment costs power flow
Ramping rates, , between
operating limits, locations;
maximum operating * Approximate
reserve. E— operating
Renewable generation + schedule
profile.

Load demand
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Research Challenges

» Temporal complexity: 20 years X 365days X 24hours=175,200 hours

» Spatial complexity: Around 500-2,000 individual generators depending on
the region

» Complexity of the optimization problem with hourly decisions can be easily
over 1 billion variables.

Intractable. Need simplification

20



Temporal Aggregation

» Aggregate the days with similar load and renewable output time

series using machine learning-based clustering algorithms.

Normalized load Load
: 3

2

k-medoids :
clustering _,

5 10 15 20 S 10 15 20
Normalized PV
2.5 2.5
2.0 2.0
1.5 1.5
1.0 1.0
0.5 0.5
0.0 0.0
~0.5
i—l.o

S 10 15 20
Normalized wind

5 10 15 20 ' s 10 15 20 5 10 15 20

Li, C., A.J. Conejo, J.D.Siirola, I.E. Grossmann. On representative day selection for capacity expansion planning of power systems
under extreme events. Working paper.
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Temporal Aggregation

» drepresentative days per year to account for unit commitment and

power flow in the hourly level

Beginning of End of the
the time- Years:t €T time-
horizon horizon
. — 9 “-ee &
I I | I I
. t =1
Representative | { | | | |
daYS:d € D l d=1 dw?2 d=3 e d=D l
‘ Hours d=1
_ B T — W
Subperiod:se s L o1 .. )W
Py

Weight of day d
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Spatial Aggregation

Region and cluster representation

Clusters: i € Z,

coal-st-old

Regions: r € R

ng-st-old

» Area represented by a few pante

.
Ampriic

Zzones

ng-ct-old

\ pv-old

= Potential locations are the
midpoint in each zone

nuc-st-old

H? ]

%‘f nuc-st-new H coal-igec-ces-mew

YT wind-new M rg-cC-rew
ng-c-es-naw

m pyv-new “

~Ct-new
H coal-igec-new Q’ e

= (Center for each region:
Panhandle (Amarillo), West
(Midland), South (San
Antonio), Coastal (Houston),

Northeast (Dallas). panhandie

= (Clustering of generators and
storage units

= Only consider the tielines that
connect the centers of two
neighboring regions
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Overview of Mixed-integer Linear Programming (MILP) Model

Continuous variables: Discrete variables:

*  Power output at sub-period s * no. of generators installed at period t

*  Curtailment generationslackats | * no. of generators built at t

*  Powerflow betweenregionsats | * no.of generators retired at t

*  Deficit from renewable quotaatt | ¢ no. of generators with life extended at t

*  Spinning reserve ats *  whether transmission line [is installed at t
*  Quick-start reserve at s *  whether transmission line [ exists at t
. . PR * Voltage angle of regionrats * no. of generators ON at sub-period s
O bJeCtIVG function: *  Powerlevel and power chargedor | * no. of generators starting up at s
discharged at storage cluster * no. of generators shutting down at s

Minimization of the net present cost over the planning horizon comprising:
 Variable operating cost
« Fixed operating cost
« Startup costs
« Cost of investments in new generators, transmission lines and storage units
« Cost to extend the life of generators that achieved their expected lifetime
+ Fuel consumption
- Carbon tax for CO, emission

« Penalty for not meeting the minimum renewable annual energy production requirement

Lara, C. L., Mallapragada, D. S., Papageorgiou, D. J., Venkatesh, A., & Grossmann, |. E. (2018). Deterministic electric power infrastructure planning:
Mixed-integer programming model and nested decomposition algorithm. European Journal of Operational Research, 271(3), 1037-1054.

Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. Mixed-integer Linear Programming Models and Algorithms for Generation and
Transmission Expansion Planning of Power Systems. Under review in European Journal of Operations Research.
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Overview of Mixed-integer Linear Programming (MILP) Model

Summary of constraints:

* Energy balance in each regionr.

* DC power flow calculate the power flow between any two nodes at each subperiod s

» Capacity factor of renewable generators.

* Unit commitment constraints to compute the startup and shutdown, operating limits
and ramping rates for thermal generators.

* Operating reserve constraints to determine the maximum contribution per thermal
generator for spinning and quick-start reserves, and the minimum total operating
reserves.

* Investment constraints to ensure that the planning reserve and renewable energy
contribution requirements are satisfied, and to limit the yearly installation per
generation type.

« Balance of generators to define the number of generators that are operational, built,
retired, and have their life extended in each time period t.
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DCv.s. AC Power Flow Equations

DC power flow

N
Pi=) Bin(d; —0) VieN

k=1
Real power only

Linear equations
AC power flow

NT
P.(V.8) = Vi) _ Vi(Gicos (8; — &)
k=1
+ Bj sin (§; — (Sk)) VieN,

N
Qi (V,8) =V; ) Vi(Gisin (8; — &) _
— Real and reactive power
— Biycos (8 —&)) VieN. nonlinear equations

(trigonometric functions)
DC is a good approximation for AC if

1) All system branch resistances are approximately zero

2) The differences between adjacent bus voltage angles are small

3) The system bus voltages are approximately equal to the 1.0 per unit
4) Reactive power flow is neglected
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Comparison of Formulations of Transmission Expansion

Generalized Disjunctive Prog ramming Grossmann, |.E. and F. Trespalacios, “"Systematic Modeling of
Discrete-Continuous Optimization Models through Generalized

Disjunctive Programming,” AIChE J. 59, 3276-3295 (2013).

NTE,,
~NTE w
p?,(t)fgl,s = Bi(0sr) t,d,s — Oer),t,d,s) | V Vie £ t,d, s
pﬂow —0
_FmaX < ﬂOW < Fmax l,t7d73
L ! - pl,t,d,s - l |

Big M reformulation
—(1—nte )M < pzﬂ,%,s—Bl(9sr(1),t,d,s—eer(Z),t,d,s) < (1-nteg )M Vle L™ t,d,s
—F"nte; 4 < pﬁi’fg,s < F™ntery Vle LY, t,d,s
Hull reformulation
pr s =BIAO, 4, VIEL™ td,s
esr(l),t,d,s - Qer(l),t,d,s - Aell,t’d,s + A9l2,t,d,3 Vi € Lnew) t, d, S
—m - ntep < Aell,t,d,s <m-ntes VleLl"™ tds
—m(1 —nteys) < Aﬁlz,t’dws <7(l—nteyy) Vlie LV t,d,s

Tighter formulation, also has more variables
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Comparison of Formulations of Transmission Expansion

Bahiense, L., Oliveira, G. C., Pereira, M., & Granville, S. (2001). A mixed

integer disjunctive model for transmission network expansion. /EEE
Transactions on Power Systems, 16(3), 560-565.

Alternative big M formulation

pﬂgg; _ BZAH;;,d,S <0 YieLr™ t.d,s

flow—

pl7t7d>s o BlAel_,t,d,s S 0 Vvie ﬁnew’ t) d7 S

plovt — BIAGS, 4 > —Mi(1—ntey) Vi€ L t,d,s

flow—

pl,t,d,s - BZAQZ_’t,d’S 2 —Ml(l - ntel,t) Vi € ﬁnew,t, d, S
fl fl flow —
pl,(t):)gl,s — pl,?:}(\ﬂ; o pl’(t)’vé,s \V/l S £ne’w’ ta da S

esr(l),t,d,s - eer(l),t,d,s - Ael—t—t,d,s A\ Vi € £new’ t d7 S

l,t,d,s
plﬂ’;):’ovli; < F"™*nte;y Vle L', t,d,s

flow —
Plos < Fl™nte, Yle LM t,d,s

flow+ flow— + — new
Plods Plids D010 D0 4520 Ve L™ t,ds

The authors claim that alternative big M formulation is tighter than big M formulation

Theorem: The two formulations have the same feasible region when project on the
original variable space
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Solution Techniques-Benders Decomposition

Time scale approach:

d representative days per
year to account for unit
commitment in the hourly
level

Benders master problem

Fix investment decisions

Beginning of End of the
the time- Years:t €T time-
horizon horizon

— —_9 .. — T
| t=1 | t=2 I I t=1 |
| T T 1 |

Representative |

——

days:d € D Vgt T ane des | e

‘ d=1

1 .
' l) - W d
)

Weight of day d

Investment decisions for the planning horizon

Add Benders cuts

Benders subproblems

!

Subproblems are decomposed by year

Li, C., A.J. Conejo, P. Liu, B.P. Omell, J.D. Siirola, I.E. Grossmann. Mixed-integer Linear Programming Models and Algorithms for
Generation and Transmission Expansion Planning of Power Systems. Under review in European Journal of Operations Research.
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Solution Techniques-Nested Benders Decomposition

Time period
t=1{1,..., T}

Upper bound
The forward pass

solves the model in a
myopic fa S h i on. Lara, C.L. et al., “Electric Power Infrastructure Planning: Mixed-Integer Programming

Model and Nested Decomposition Algorithm,” European Journal of Operational
Research 271, 1037-1054 (2018).

Birge, J. R. (1985). Decomposition and partitioning methods for multistage stochastic
linear programs. Operations research, 33(5), 989-1007.
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Solution Techniques-Nested Benders Decomposition

Lower bound Backward Pass generates

L Benders cuts and improves
X the cost-to-go

(\ approximation
t

Time period
t=1{T, ..., 1}
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ERCOT Case Study

20 year time horizon (25t year is 2019)

Load Data from ERCOT database

Panhandle

Solar and wind capacity factor data from NREL

-
Amarillo

Generator cost information from NREL (Annual Technology
Baseline (ATB)

Storage data from Schmidt et al. (2017) Nature Energy.

Transmission line data from Texas Synthetic Grid. Only 5oo kV

tielines between two neighboring regions are considered
All costs in 2019 USD
Regions: Northeast, West, Coastal, South, Panhandle

Fuel price data from EIA Annual Energy Outlook 2016 (reference

case)

Carbon tax is zero in the first year and grows linearly across

years to $0.325/kg CO2.
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4, representative days, 15 years results

Fullspace mixed-integer linear programming (MILP) models

Integer Binary Continuous

formulation Constraints UB

Var Var Var
big-M 274,920 2,800 564,826 1,543,966 - 21.13 36,000
alternative bigM 274,920 2,800 1,102,426 2,081,566 - 21.13 36,000
hull 274,920 2,800 833,626 2,081,566 - 281.73 36,000

All the problems are solved with Cplex v 12.9.0.0 from Pyomo. The fullspace model
cannot be solved directly. No feasible solution can be found within 10 hours

Decomposition algorithms

algorithm formulation ub Ib gap Walltime (secs)
Benders big-M 283> 282.6—0.38% 5,115
< Benders alternativebigM  283.9  281.6 0.82% 3,693 >
Benders hull 282.6 280.6 0.71% 8,418
nested Benders big-M 295.7 268.9 9.98% 53,682
nested Benders alternative bigM 294.2 265.5  10.81% 43,389
nested Benders hull 288.0 269.3  6.97% 37,577

The Benders decomposition algorithm with the alternative big-M
formulation has the best computational performance
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20-year Generation Expansion

180
160
140
120
100

80

60

i
40
20
0

§

Generation capacity (GW)

M naturalgas M wind solar M nuclear coal

* Natural gas capacity increases in the beginning and then decreases due to the increase

in carbon tax

* Most projected capacity expansion is in wind and solar. 27-fold increase in solar and

87% increase in wind.
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Geographical Distribution of Natural Gas Capacity

N
(%2}

1

o

Natural gas capacity (GW)

(03]

o

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

M Coast M Northeast ™ South West

Most natural gas expansions are expected to take place in the Northeast and Coast
regions where the absolute increase in load is high and capacity factors for
renewables are relatively low.
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Transmission Expansion

Panhandle
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* Most of the transmission lines are built for Northeast-Panhandle and South-
West in order to transfer the power generated by the renewables in West and

Panhandle to other regions
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Transmission Expansion

Average annual wind speed at 8o meter

Average annual solar irradiance

Oklahoma

IS

New Mexico Fa l" B ‘L,l'-',\
T R | Quis
. [ KWh/m2/Day
>575
o 5.50t0 5.75
5.25t0 5.50
i MEXICO 5.00to 5.25
B 4.75t0 5.00
450t04.75
4.25t0 4.50
4.00t04.25
<4.00 Data source: NREL
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Power Flow in ERCOT

Panhandle

The largest power flow
magnitudes are Panhandle-
Northeast, West-South due

the surplus of their renewable
Y energy generation

Power flow (GW)

’ There are potential benefits in

integrating generation and
transmission expansion

Year 20 (2038), representative day 15, 11pm
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Representative Day Selection

» Motivation: Expansion planning decisions sensitive to the selection of

representative days

= Algorithms to select the representative days

4

= Estimation of “optimality gap’

Beginning of
the time- Years:t T
horizon

= 2

| L=

End of the
time-
horizon

1
I
Representative | :

¥

|
days:d € D Faoy 'y 2 Cd=3

d=1

Subperiod:s ¢ S

‘ Hours
(l .
l L

5 |

" ] y
T ]) o “ ¢ 1
8 S

Weight of day d
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Fullspace model and Reduced model

365

Investment decisions
foryeart

(FD) OBJFD = mlnz (C;F:Ct + Z T@ft—ryt,d)
teT deD

The whole dataset

(RD) OBJgrp = minz (ctTa:t + wkftTyt,k)
kéi’

teT

Lt

mngt,d Vte T,deD
operating decisions

Ci 1w 1+ Dixy <gr t=2,3,...,|T] for year tday d

re € Xy, VIET, yaq€Ye, VteT,deD

The set of representative days

Vte T, ke

operating decisions
for year t representative

Ci_17i—1 + Dixy < g4 .
day k

€ Xy, YEET, yrk =® Vte T, ke kK
Relaxed integrality

constraints
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K-means clustering

» Objective: minimize the within cluster variance.
S* = argmlnz Z |2 — i |?
i=1 x€S;

n

MINLP formulation:

min d;
c,d,y 4
=1

D
(wa ci;) ) M(1—yy) Vie{l,....n}le{l,... k)
7j=1

k
Syu=1 Vie{l,...,n}
=1
c, cRP vie{1,... k}
deRy Vie{l,...,n}

ya €4{0,1} Vie{l,...,n},le{1,... k}
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K-medoids clustering

» The center u; has to be a data point. Centroid v.s. medoid

MILP formulation:
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Input-based method

» Clustering is performed directly on the input data (load, capacity

factors)

Normalized load

k-medoid
clustering

Normalized PV

—

2.5
2.0
1.5
1.0
0.5
0.0
-0.5
=-1.0

S 10 15 20
Normalized wind
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Cost-based method

» Hypothesis: The days with similar optimal investment decisions, i.e., the days that

need similar generators, transmission lines, and storage units, are similar and should be

assigned to the same cluster

Raw data

Investment cost 3°®°

2500

breakdown

after reduction
(million dollars) 100

22
20
18
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10

2000

1500
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o

Load (GW)

5 10 15

Wind

365
Days

20

1600
1400
1200
1000
800
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400

200

Solar PV capacity factor

Wind capacity factor

10

15 20

Transmission lines

200. . ° °

365

1.0, 1.0,
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 5 10 15 20 0.0 5
Solve CEP for each day
in the full dataset individually &
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Cost-based method

K-medoids clustering
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Failures of the Representative Day Approach

» Extreme events, such as highest ramp and lowest generation, are not
captured by the representative days.

» The investment decisions from (RD) are usually infeasible for (FD).

» Solution: adding days with extreme events

» Option 1: adding extreme days based on some predefined

characteristics, e.g., peak load day.

=
o

» Alternative strategy?

o
o

pacity factor
o
(®)]

Scenario with high ramp rates (volatility) &—G4——>
. e
Representative day = 0_2_\\/
Scenario with low generation levels (intermittency) \
2 6 10 14 18 22

hour
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Extreme Events Selection

» Load shedding cost

Energy balance at each node

Min Load shedding

PowerE%ﬂ@l@ﬁ%ﬁéﬂ&df@ﬁowe HOW ﬁbﬁﬂ%}%@& Char;&wsheddmg

lr(l)=r ls(l)=r

1) Fix the investment decisions from (RD)
2) Solve the operating problem corresponding to each day in our dataset
3) Find the infeasible day with the highest load shedding cost
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Extreme Events Selection

» Highest cost
= Inthe cost-based approach, we have obtained the total cost
(operating + investment) for each day in our dataset

= Select the day with the highest cost as our extreme day
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Optimality Gap

» Motivation: Provide upper and lower bound for the fullspace problem (FD)
» Upper bound: Fix the optimal investment decisions from the reduced

model, solve each day in the fullspace model.

OBJFD(XRD) > OBJFD(XFD) = OBJFD

» Lower bound: Reduced model provides lower bound under certain

assumptions.

Theorem 1. For both cost-based and input-based approaches, if k-means clus-
tering is used, (RD) provides a lower bound for the optimal objective value of

(FD), i.e., OBJrp < OBJpp. This lower bound holds before and after adding

extreme days.

o OBJFD(XRD) — OBJRD

Gap OBJrp(xED)

x 100%
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Case Study

» ERCOT region, 5 years planning problem panhandle

.
Amarillo

» The whole dataset D has 365 days that consists

of load and capacity factor data

Algorithm option Data Clustering Algorithm Extreme Day Method

1 Input k-means load shedding cost
2 Input k-medoids load shedding cost
3 Cost k-medoids highest cost
4 Cost k-medoids load shedding cost
5 Cost k-means highest cost
6 Cost k-means load shedding cost
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Infeasibility without the Extreme Days

» Only using the representative days from Algorithm option k #infeasible day

centroids/medoids of the clustering 5 70
1 10 63

algorithms cannot guarantee feasibility 15 a2
» Cost-based approach has fewer infeasible , 150 ;i
days when ks large 15 40
5 98

3 10 13

15 12

5 98

4 10 13

15 12

5 34

5 10 30

15 29

5 34

6 10 30

15 29
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Feasible After Adding Extreme Days

» Adding the extreme days makes the Option  k  #Extreme day OB.Jyp(x"D)

investment decisions feasible for the 5 3 79.16
1 10 2 79.04
fullspace problem. OB.Jpp(xf*7) < +00 15 2 28.81
> K-medoids clustering has lower cost in > 3 78.92
2 10 2 78.72
most cases 15 2 78.74
5 5 78.83
3 10 3 78.67
1.0 15 3 78.81
5 3 78.93
5 0.8 4 10 2 78.79
E 15 1 78.75
20.67 5 4 78.98
© 5 10 6 79.09

o
© 0.4 15 4 78.98
T 5 3 79.12
E 0.2—\\/ 6 10 4 78.93
\ 15 3 78.81

05 : . : . :
2 6 10 14 18 22
hour
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Optimality Gap

» “Optimality gap” can be
obtained when k-means
clustering is used

» Gap improves as k increases

Option k OBJpp(x"’) LB Gap
5 79.16  76.09  4.0%
1 10 79.04 76.29  3.6%
15 7881  76.58  2.9%
5 78.92 - -
2 10 78.72 - -
15 78.74 - -
5 78.83 - -
3 10 78.67 - -
15 78.81 - -
5 78.93 - -
4 10 78.79 - -
15 78.75 - -
5 7898 76.16 4.2%
5 10 79.09 76.64 3.7%
15 7898 76.74  3.4%
5 79.12 76.15 3.9%
6 10 7893  76.63  3.0%
15 7881 76.73  2.7%

53



Effects of Adding Extreme days

» Comparison of k=15, option 6 before and after adding the extreme days

Total investment cost +325 million
Thermal generator cost +350 million
Transmission line cost +286 million
Storage investment cost +0.2 million

Renewable generator cost -212 million

Option 6
Trillion dollar: 14
12
10
8
6
4
2 |
. L]
Thermal Renewable Transmission Total Investment
Generator Cost Generator Cost Line Cost Cost

B k=15 mk=15+X
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Conclusion and Future work

» We have developed models and algorithms for capacity expansion of
power systems with high penetration of renewables.

» The capability to analyze powers systems enables to study hybrid energy
systems that have both electricity generators and electricity/heat
consumers, such as chemical plants.
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