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The chemical industry is a major emitter of CO2

Industry direct CO2 emissions in the Sustainable Development Scenario, 2000-2030

1.2 Gt CO2 in 2018

Source: IEA, Tracking Industry 2020
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Electrification and CCUS are key emission reduction strategies

CO2 emissions reductions in the industrial sector in the Sustainable Development 
Scenario relative to the Stated Policies Scenario

-3.25 Gt

-2.25 Gt

Source: IEA, Energy Technology Perspectives 2020
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Electrification of the chemical industry
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Challenges and opportunities in an electrified chemical industry

 Challenge #1: increasingly time-sensitive 
availability and pricing of electricity

 Challenge #2: significantly greater number
of large electricity consumers

 Challenge #3: highly interconnected networks
consisting of a large variety of processes

Requires operational flexibility,

but also

increased demand
response (DR) potential

May restrict operational flexibility,

but also

opportunity for non-power-consuming
processes to benefit from DRNeed coordinated DR for maximum 

operational flexibility and performance

 Challenge #4: processes may be owned and 
operated by different companies/stakeholders
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Outline 

Coordination between one power-intensive process 
and its downstream customers

Fairness-guided coordinated DR within a general
multi-stakeholder process network
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Single power-intensive process (industrial load) and its customers
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Traditional approach without coordination/cooperation
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Each customer 𝑖𝑖 solves scheduling problem:The industrial load solves:

Product demand profiles �̂�𝑑
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Cooperative DR relies on incentives for changing demand profiles

Industrial
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Customer 1
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Reference schedules 
and cost thresholds

Delivered products
and payments

Proposed new 
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 Solving the same scheduling problem, each customer 
𝑖𝑖 determines a reference schedule including �̂�𝑑𝑖𝑖

 It also submits a cost threshold 𝛽𝛽𝑖𝑖�̂�𝑐𝑖𝑖 , indicating when 
it would agree to deviations in �̂�𝑑𝑖𝑖

 Solving a cooperative DR problem, the 
industrial load determines new schedules and 
proposes payments to the customers

 Implements a solution that benefits both the 
industrial load and its customers
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Mathematical formulation of the cooperative DR problem

feasibility for industrial load

feasibility for customers

new variables

can deviate from the reference only if 𝑧𝑧𝑖𝑖 = 1

industrial load’s cost must not exceed the reference

customer 𝑖𝑖 only agrees to deviate
if its cost gets below 𝛽𝛽𝑖𝑖�̂�𝑐𝑖𝑖

weighted overall cost function

Can be interpreted as a (uniform-price) market for product DR
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Need to solve cooperative DR problem in a distributed manner

Reformulation:

introduce copy variables → linking constraints

industrial load’s subproblem

each customer’s subproblem

Dualize linking 
constraints and solve 
using the alternating 
direction method of 
multipliers (ADMM)1

1. Boyd et al. (2011). Foundations and Trends in Machine Learning, 3, 1-122. 11/29



Illustration of ADMM algorithm
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Green ammonia case study
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Cooperative DR achieves cost savings for both load and customer

Reference

Centralized optimization

Distributed optimization

Load Customer

Ref. $286 $42

Cent. $276
(4.4% savings)

$41
(2% savings)

Dist. $280
(3.2% savings)

$41
(2% savings)
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Sensitivity analysis: effect of dynamic flexibility

 Ammonia reactor’s dynamics is characterized by the maximum ramp rate 
and the minimum constant time
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Outline 

Coordination between one power-intensive process 
and its downstream customers

Fairness-guided coordinated DR within a general
multi-stakeholder process network
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Need different coordination approach for general process networks

 Previous method does not directly extend to more complex networks
 Main question: How to distribute jointly generated benefits? → fair allocation

Product flow
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Product
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Envisioned coordinated DR framework
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Network model with DR aggregation

For each process 𝑖𝑖, we have:

material balances

general operational constraints

utility function

disaggregated electricity cost, �ℎ𝑡𝑡(�̅�𝑟𝑡𝑡) assumed to be convex
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What should be optimized?

 Total utility maximization (TUM):

 Does not respect individual stakeholders’ objectives
 May lead to solutions that favor some processes over others

→ Need a fair allocation scheme that all stakeholders can agree to
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Use Nash bargaining as the fair allocation scheme

 There are several notions of fairness and corresponding fairness metrics1

 We apply the definition of fairness proposed by Nash2, which involves four axioms:
1. Symmetry
2. Pareto optimality
3. Scale invariance
4. Independence of irrelevant alternatives

 Fair utility allocation (FUA), maximizing the Nash product:

1. Sampat & Zavala (2019). Optimization & Engineering, 20, 1249-1272.
2. Nash (1950). Econometrica, 155-162.

Status-quo solution
(“disagreement point”)

Reformulation
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Geometrical interpretation of TUM and FUA
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Increase overall and individual utilities through revenue sharing

 Some processes may only be able to increase 
their utilities if additional revenues are made

 Fair allocation with revenue sharing (FRS):

 Useful property: FRS can be solved exactly 
in two steps

1. Solve TUM
2. Obtain shared revenues by solving 

a set of linear equations
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TUM, FUA, and FRS can all be solved in a distributed manner using ADMM 23/29



Computational experiments

Nash product Total savings ($)

Configuration TUM FUA FRS TUM/FRS FUA

7.044 7.062 7.547 4,481 4,403

7.235 7.304 7.983 9,230 8,608

6.673 (1) 6.944 8.157 12,903 9,804

6.658 6.997 7.784 9,948 8,609

7.085 7.388 8.34 25,006 17,400

5.980 6.278 7.097 10,878 9,106

6.186 (3) 6.553 8.023 18,290 11,671

5.891 (2) 7.187 8.569 33,844 21,786
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Comparison of distributed solution methods (for FRS)

Direct 2-phase

Configuration Quality Time (s) Iterations Quality Time (s) Iterations

100 373 1,289 100 73 540

100 370 982 100 103 633

99.9 386 993 100 94 693

100 654 1,206 100 182 773

100 535 1,047 100 153 828

99.9 1,381 1,510 100 201 878

99.5 750 1,208 100 207 800

99.4 845 1,028 100 157 798
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Chlorine network case study

 Chlorine network is responsible for the production
of various important chemicals

 Power-intensive chlor-alkali process at its center
(accounts for 2% of U.S. electricity use)

 Involved processes exhibit different
characteristics in terms of 
demands and dynamic flexibility1 

 Case study with 11 processes

1. Klaucke et al. (2020). Applied Energy, 276, 115366. 26/29



Revenue sharing increases overall cost savings by 54%

27/29

FUA: $1,329 cost savings, 
94% of which attributed to 
the chlor-alkali process 

TUM: loss for one process

FRS: $2,048 cost savings, 
evenly divided between the 
processes/stakeholders



Overall energy consumption profiles

28/29



Concluding remarks

 Coordinated DR can increase operational flexibility in process networks, which translates 
into significant cost savings under time-sensitive electricity pricing

 Coordinated DR requires:
• a mechanism that provides appropriate incentives for cooperation
• a framework that allows distributed decision making with minimum information sharing

 Not perfect: the FRS solution evenly distributes the surpluses without accounting 
for the effort made by each process → introducing weights may help
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