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The chemical industry is a major emitter of CO,

Industry direct CO, emissions in the Sustainable Development Scenario, 2000-2030
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Electrification and CCUS are key emission reduction strategies M

CO, emissions reductions in the industrial sector in the Sustainable Development
Scenario relative to the Stated Policies Scenario
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Electrification of the chemical industry
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Challenges and opportunities in an electrified chemical industry M

= Challenge #1: increasingly time-sensitive

availability and pricing of electricity ~ ™ Requires operational flexibility,

but also
= Challenge #2: significantly greater number increased demand
of large electricity consumers response (DR) potential

= Challenge #3: highly interconnected networks m)  May restrict operational flexibility,

consisting of a large variety of processes
8 g A but also

opportunity for non-power-consuming
processes to benefit from DR

Need coordinated DR for maximum
operational flexibility and performance

= Challenge #4: processes may be owned and
operated by different companies/stakeholders
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Outline

Coordination between one power-intensive process
and its downstream customers

Fairness-guided coordinated DR within a general
multi-stakeholder process network
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Single power-intensive process (industrial load) and its customers M
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Traditional approach without coordination/cooperation

Industrial
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Product demand profiles d
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Cooperative DR relies on incentives for changing demand profiles M

S
Reference schedules N AP »|  Customer |
and cost thresholds R
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= Solving a cooperative DR problem, the = Solving the same scheduling problem, each customer
industrial load determines new schedules and [ determines a reference schedule including d;

proposes payments to the customers = |t also submits a cost threshold S;¢;, indicating when

* Implements a solution that benefits both the it would agree to deviations in d;
industrial load and its customers
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Mathematical formulation of the cooperative DR problem M

weighted overall cost function

minimize « | f(z) + Z Z Z'Yj|dijt - dAijt| +(1—a) Z i(Yi, d Z Z’Yy‘dwt ijt|

bz i€Z jeJ teT i€T JET teT
subject to = € X(d) feasibility for industrial load
Y; € yz( ) Viel

feasibility for customers
AP < dyy <dB* Vi€, jeJ, teT

1t 15t
f(z) + Z Z Z jldige — dije| < f industrial load’s cost must not exceed the reference
i€L jeJ teT
sl Z Z vildije — Z-jt\ <Bici+(1—p)e(l—2) Viel customer i only agrees to deviate
JETtET if its cost gets below S;¢;
| dije — digel < Mz Vi€Z,jed, teT can deviate from the reference only if z; = 1
2z €40,1} VieZ
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] =

Can be interpreted as a (uniform-price) market for product DR
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Need to solve cooperative DR problem in a distributed manner M
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vi=Mly VieI, jed 24 g

|. Boyd et al. (201 ). Foundations and Trends in Machine Learning, 3, 1-122. 11/29



lllustration

of ADMM algorithm
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Green ammonia case study
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Cooperative DR achieves cost savings for both load and customer M
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Sensitivity analysis: effect of dynamic flexibility

48-h Weighted Operating Cost (S)

Ammonia reactor’s dynamics is characterized by the maximum ramp rate
and the minimum constant time
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Outline

Coordination between one power-intensive process
and its downstream customers

Fairness-guided coordinated DR within a general
multi-stakeholder process network
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Need different coordination approach for general process networks M

" Previous method does not directly extend to more complex networks

= Main question: How to distribute jointly generated benefits? — fair allocation
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Envisioned coordinated DR framework
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Network model with DR aggregation

For each process i, we have:

Sijt = Sijt—1 + Qijt — Z Yiirjt ViE€ETit€T
i/ €L,

Sijt = Sijt—1 — Qijt + Z Yirijt VIETihteT material balances
' €L;

viejt ERy Vi€ T, i €Ly, t€T

(gi,86,75) € X general operational constraints

ui(q, si, 7, Y) = Z Z Z Qiit 5t Yiil jt — Z Z Birije Yirige —fi(qi, $i)—hi(r) utility function

teT \jeT; i’efij jefi i’efij
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disaggregated electricity cost, h;(7;) assumed to be convex
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What should be optimized?

= Total utility maximization (TUM):

maximize g Uz‘(Qz‘, Siy T, y)
q787r7y
€L

subject to (q,s,r,y) € F

= Does not respect individual stakeholders’ objectives

= May lead to solutions that favor some processes over others

— Need a fair allocation scheme that all stakeholders can agree to
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Use Nash bargaining as the fair allocation scheme

= There are several notions of fairness and corresponding fairness metrics'

We apply the definition of fairness proposed by Nash?, which involves four axioms:
Symmetry

l.

2. Pareto optimality
3. Scale invariance
4.

Independence of irrelevant alternatives

Fair utility allocation (FUA), maximizing the Nash product:

o 2 Reformulation o B
maximize H [ui(qi, Sis 7, y) — Uy »  maximize Z In (w;(qi, Si,7,y) — Uj)
q?s7r7y q7s7r7y
ieT ieT
subject to (¢, s,7,y) € F \ Status-quo solution subject to (q,s,r,y) € F

(“disagreement point”)

|. Sampat & Zavala (2019). Optimization & Engineering, 20, 1249-1272.
2. Nash (1950). Econometrica, 155-162.
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Geometrical interpretation of TUM and FUA

Process 2 utility surplus ($)
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Increase overall and individual utilities through revenue sharing M

= Some processes may only be able to increase

their utilities if additional revenues are made C\A

. o . TUM soluti
= Fair allocation with revenue sharing (FRS): i solution

4

D
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q,5,7,Y,2 5
€L | 3 AN
bject to  ( ) e F =) R
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Z % =0, exchange o 8
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o
o

\\ Pareto frontier with
\\ revenue sharing

= Useful property: FRS can be solved exactly
in two steps
.  Solve TUM :

2. Obtain shared revenues by solving
a set of linear equations

Process | utility surplus ($)

TUM, FUA, and FRS can all be solved in a distributed manner using ADMM 23/29



Computational experiments

Nash product Total savings ($)
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Comparison of distributed solution methods (for FRS)
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Chlorine network case study

= Chlorine network is responsible for the production
of various important chemicals
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= Power-intensive chlor-alkali process at its center
(accounts for 2% of U.S. electricity use)
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|. Klaucke et al. (2020). Applied Energy, 276, 115366. 26/29



Revenue sharing increases overall cost savings by 54%
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Overall energy consumption profiles
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Concluding remarks

= Coordinated DR can increase operational flexibility in process networks, which translates
into significant cost savings under time-sensitive electricity pricing

= Coordinated DR requires:
* a mechanism that provides appropriate incentives for cooperation

* aframework that allows distributed decision making with minimum information sharing

* Not perfect: the FRS solution evenly distributes the surpluses without accounting
for the effort made by each process — introducing weights may help
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