

Enabling effective electrification of the chemical industry via coordinated demand response

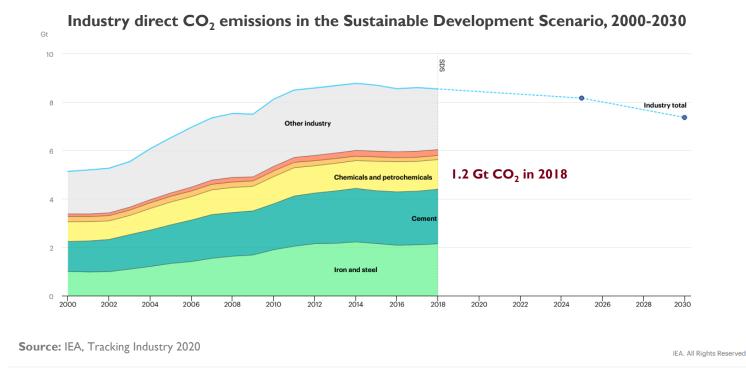
Qi Zhang

Department of Chemical Engineering & Materials Science University of Minnesota, Twin Cities

> February 3, 2022 CAPD Energy Systems Initiative (ESI) Seminar

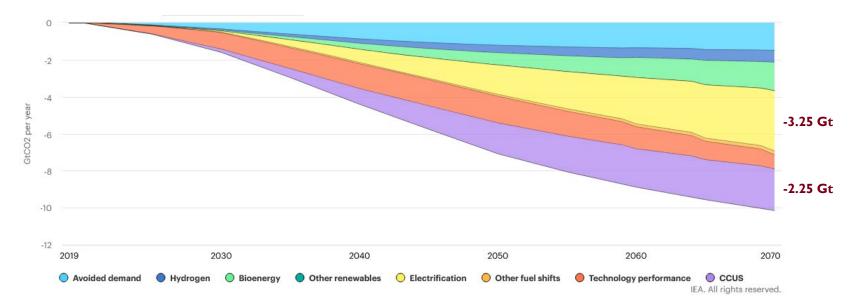
qizh.cems.umn.edu

The chemical industry is a major emitter of CO_2



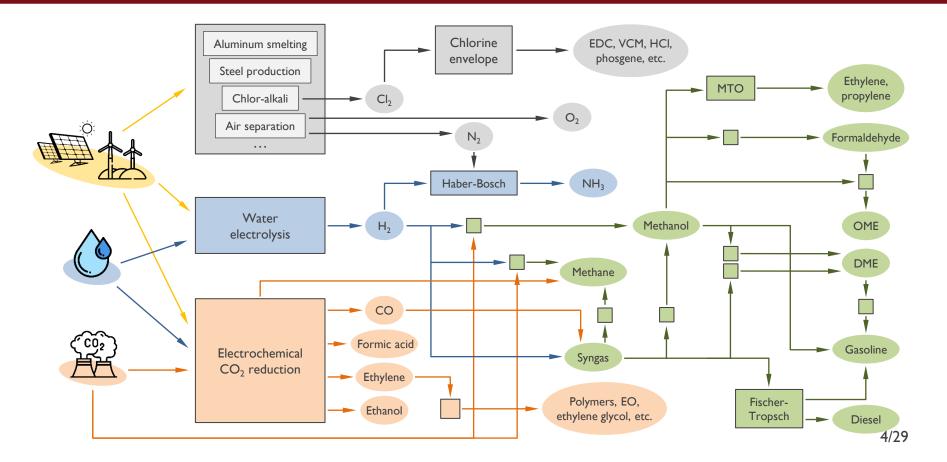
Industry total SDS Iron and steel Cement Chemicals and petrochemicals Pulp and paper Aluminium Other industry

CO₂ emissions reductions in the industrial sector in the Sustainable Development Scenario relative to the Stated Policies Scenario



Source: IEA, Energy Technology Perspectives 2020

Electrification of the chemical industry



Challenges and opportunities in an electrified chemical industry

- Challenge #1: increasingly time-sensitive availability and pricing of electricity
- Challenge #2: significantly greater number of large electricity consumers
- Challenge #3: highly interconnected networks consisting of a large variety of processes

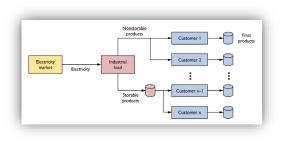
Need **coordinated DR** for maximum operational flexibility and performance

 Challenge #4: processes may be owned and operated by different companies/stakeholders

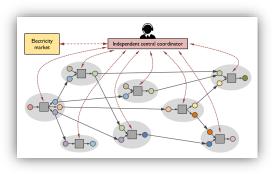
May restrict operational flexibility,

but also

opportunity for non-power-consuming processes to benefit from DR Outline

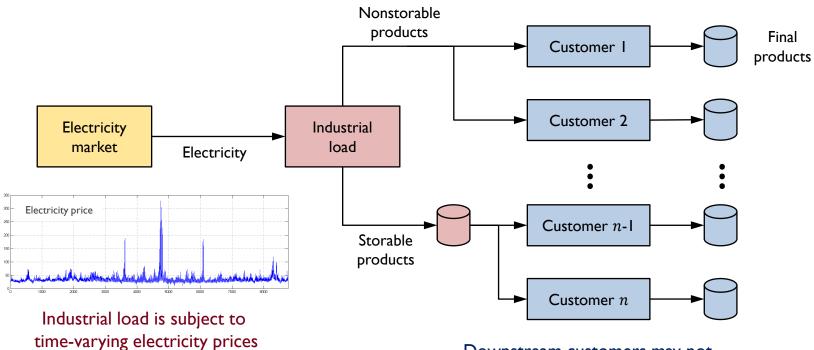


Coordination between one power-intensive process and its downstream customers



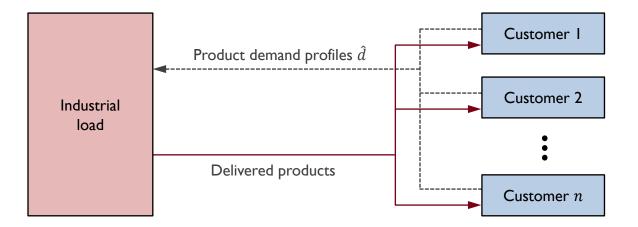
Fairness-guided coordinated DR within a general multi-stakeholder process network

Single power-intensive process (industrial load) and its customers



Downstream customers may not be large electricity consumers

Traditional approach without coordination/cooperation



The industrial load solves:

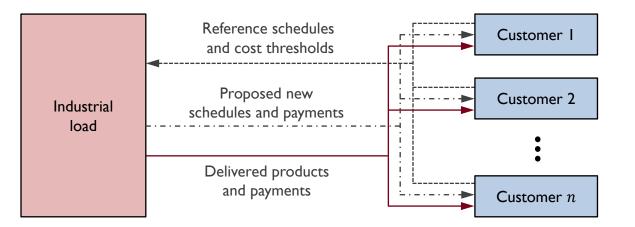
$$\hat{f} = \min_{x} \quad f(x)$$

s.t. $x \in \mathcal{X}(\hat{d})$

Each customer *i* solves scheduling problem:

$$\begin{aligned} \hat{c}_i &= \min_{y_i, d_i} \quad c_i(y_i, d_i) \\ \text{s.t.} \quad y_i \in \mathcal{Y}_i(d_i) \\ \quad d_{ijt}^{\min} \leq d_{ijt} \leq d_{ijt}^{\max} \quad \forall j \in \mathcal{J}, t \in \mathcal{T} \end{aligned}$$

Cooperative DR relies on incentives for changing demand profiles



- Solving a cooperative DR problem, the industrial load determines new schedules and proposes payments to the customers
- Implements a solution that benefits both the industrial load and its customers

- Solving the same scheduling problem, each customer
 i determines a reference schedule including *d̂_i*
- It also submits a cost threshold \(\beta_i \heta_i\), indicating when it would agree to deviations in \(\heta_i\)

weighted overall cost function

$$\begin{array}{ll} \underset{d,x,y,z,\gamma}{\operatorname{minimize}} & \alpha \left(f(x) + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} \gamma_j | d_{ijt} - \hat{d}_{ijt} | \right) + (1 - \alpha) \sum_{i \in \mathcal{I}} \left(c_i(y_i, d_i) - \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} \gamma_j | d_{ijt} - \hat{d}_{ijt} | \right) \\ \text{subject to} & x \in \mathcal{X}(d) & \text{feasibility for industrial load} \\ & y_i \in \mathcal{Y}_i(d_i) \quad \forall i \in \mathcal{I} & \text{feasibility for customers} \\ & d_{ijt}^{\min} \leq d_{ijt} \leq d_{ijt}^{\max} \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}, \ t \in \mathcal{T} & \text{feasibility for customers} \\ & f(x) + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} \gamma_j | d_{ijt} - \hat{d}_{ijt} | \leq \hat{f} & \text{industrial load's cost must not exceed the reference} \\ & c_i(y_i, d_i) - \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} \gamma_j | d_{ijt} - \hat{d}_{ijt} | \leq \beta_i \hat{c}_i + (1 - \beta_i) \hat{c}_i (1 - z_i) \quad \forall i \in \mathcal{I} & \text{customer } i \text{ only agrees to deviate} \\ & | d_{ijt} - \hat{d}_{ijt} | \leq M_i z_i \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}, \ t \in \mathcal{T} & \text{can deviate from the reference only if } z_i = 1 \\ & z_i \in \{0, 1\} \quad \forall i \in \mathcal{I} & \text{new variables} \end{array} \right.$$

Can be interpreted as a (uniform-price) market for product DR

Need to solve cooperative DR problem in a distributed manner

 $\min_{d,[d],x,y,z,\gamma,[\gamma]} \alpha \left(f(x) + \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} \gamma_j |d_{ijt} - \hat{d}_{ijt}| \right) + (1 - \alpha) \sum_{i \in \mathcal{I}} \left(c_i(y_i, [d]_i) - \sum_{j \in \mathcal{J}} \sum_{t \in \mathcal{T}} [\gamma]_{ij} |[d]_{ijt} - \hat{d}_{ijt}| \right)$ Reformulation: subject to $x \in \mathcal{X}(d)$ $f(x) + \sum \sum \sum \gamma_j |d_{ijt} - \hat{d}_{ijt}| \le \hat{f}$ $i \in \mathcal{I} \ i \in \mathcal{J} \ t \in \mathcal{T}$ industrial load's subproblem $d_{ijt}^{\min} \leq d_{ijt} \leq d_{ijt}^{\max} \quad \forall i \in \mathcal{I}, j \in \mathcal{J}, t \in \mathcal{T}$ $\gamma_j \ge 0 \quad \forall j \in \mathcal{J}$ Dualize linking $y_i \in \mathcal{Y}_i([d]_i) \quad \forall i \in \mathcal{I}$ constraints and solve using the alternating $c_i(y_i, [d]_i) - \sum \sum [\gamma]_{ij} |[d]_{ijt} - \hat{d}_{ijt}| \le \beta_i \hat{c}_i + (1 - \beta_i) \hat{c}_i (1 - z_i) \quad \forall i \in \mathcal{I}$ direction method of $i \in \mathcal{T} t \in \mathcal{T}$ multipliers (ADMM)¹ $|[d]_{ijt} - \hat{d}_{ijt}| \le M_i z_i \quad \forall i \in \mathcal{I}, j \in \mathcal{J}, t \in \mathcal{T}$ each customer's subproblem $d_{ijt}^{\min} \leq [d]_{ijt} \leq d_{ijt}^{\max} \quad \forall i \in \mathcal{I}, j \in \mathcal{J}, t \in \mathcal{T}$ $z_i \in \{0, 1\} \quad \forall i \in \mathcal{I}$ $[\gamma]_{ij} \ge 0 \quad \forall i \in \mathcal{I}, j \in \mathcal{J}$

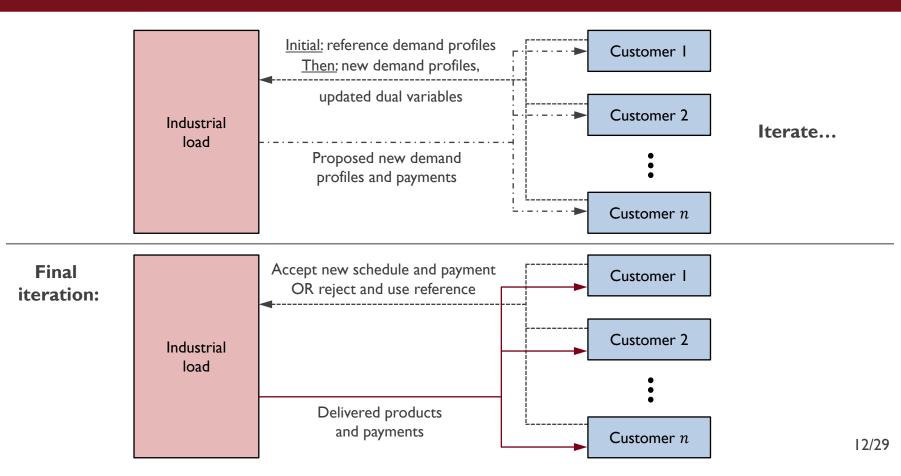
 $d_{ijt} = [d]_{ijt} \quad \forall i \in \mathcal{I}, j \in \mathcal{J}, t \in \mathcal{T}$

 $\gamma_i = [\gamma]_{ij} \quad \forall i \in \mathcal{I}, \ j \in \mathcal{J}$

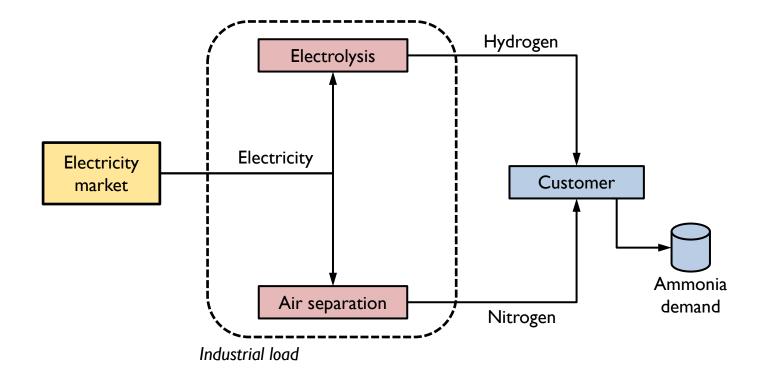
introduce copy variables \rightarrow linking constraints

I. Boyd et al. (2011). Foundations and Trends in Machine Learning, 3, 1-122.

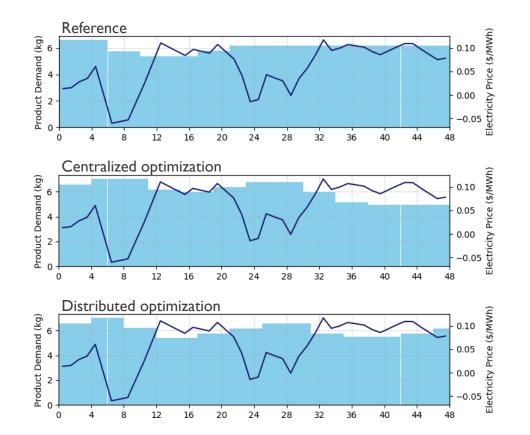
Illustration of ADMM algorithm



Green ammonia case study



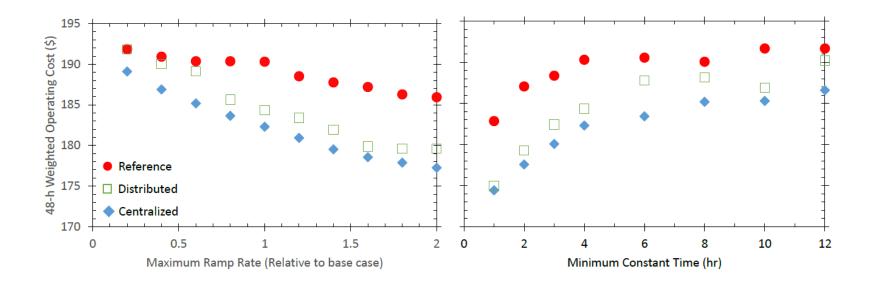
Cooperative DR achieves cost savings for both load and customer



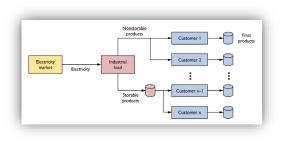
	Load	Customer
Ref.	\$286	\$42
Cent.	\$276 (4.4% savings)	\$41 (2% savings)
Dist.	\$280 (3.2% savings)	\$41 (2% savings)

Sensitivity analysis: effect of dynamic flexibility

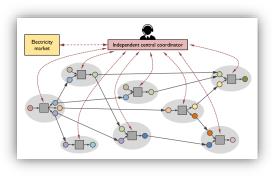
 Ammonia reactor's dynamics is characterized by the maximum ramp rate and the minimum constant time



Outline



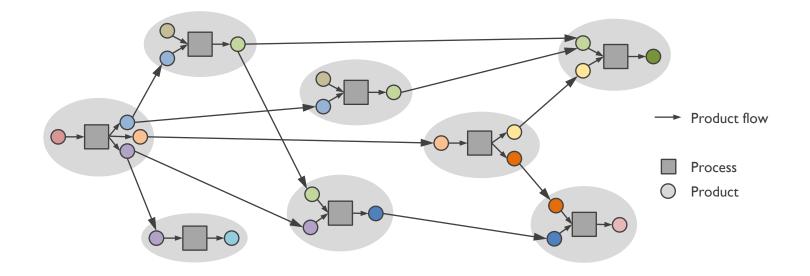
Coordination between one power-intensive process and its downstream customers



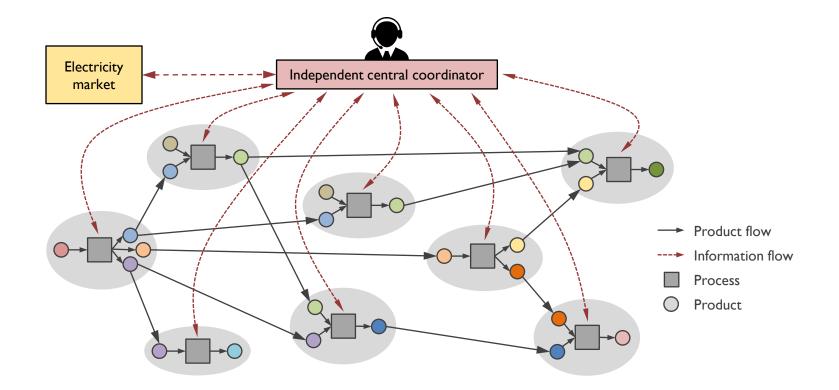
Fairness-guided coordinated DR within a general multi-stakeholder process network

Need different coordination approach for general process networks

- Previous method does not directly extend to more complex networks
- Main question: How to distribute jointly generated benefits? → fair allocation



Envisioned coordinated DR framework



For each process i, we have:

$$\begin{split} s_{ijt} &= s_{ij,t-1} + q_{ijt} - \sum_{i' \in \overline{\mathcal{I}}_{ij}} y_{ii'jt} \quad \forall j \in \overline{\mathcal{J}}_i, t \in \mathcal{T} \\ s_{ijt} &= s_{ij,t-1} - q_{ijt} + \sum_{i' \in \widehat{\mathcal{I}}_{ij}} y_{i'ijt} \quad \forall j \in \widehat{\mathcal{J}}_i, t \in \mathcal{T} \\ y_{ii'jt} \in \mathbb{R}_+ \quad \forall j \in \overline{\mathcal{J}}_i, i' \in \overline{\mathcal{I}}_{ij}, t \in \mathcal{T} \\ (q_i, s_i, r_i) \in \mathcal{X}_i & \text{general operational constraints} \\ u_i(q_i, s_i, r, y) &= \sum_{t \in \mathcal{T}} \left(\sum_{j \in \overline{\mathcal{J}}_i} \sum_{i' \in \overline{\mathcal{I}}_{ij}} \alpha_{ii'jt} y_{ii'jt} - \sum_{j \in \widehat{\mathcal{J}}_i} \sum_{i' \in \widehat{\mathcal{I}}_{ij}} \beta_{i'ijt} y_{i'jt} \right) - f_i(q_i, s_i) - h_i(r) & \text{utility function} \end{split}$$

$$h_i(r) = \sum_{t \in \mathcal{T}} \frac{r_{it}}{\bar{r}_t} \bar{h}_t(\bar{r}_t) \quad \text{with} \quad \bar{r}_t = \sum_{i' \in \mathcal{I}} r_{i't}$$

disaggregated electricity cost, $\bar{h}_t(\bar{r}_t)$ assumed to be convex

What should be optimized?

• Total utility maximization (TUM):

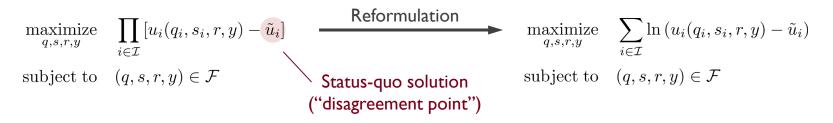
 $\begin{array}{ll} \underset{q,s,r,y}{\text{maximize}} & \sum_{i \in \mathcal{I}} u_i(q_i, s_i, r, y) \\ \text{subject to} & (q, s, r, y) \in \mathcal{F} \end{array}$

- Does not respect individual stakeholders' objectives
- May lead to solutions that favor some processes over others

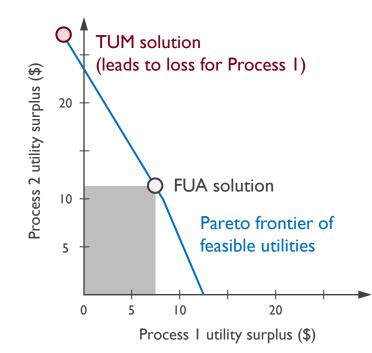
 \rightarrow Need a fair allocation scheme that all stakeholders can agree to

Use Nash bargaining as the fair allocation scheme

- There are several notions of fairness and corresponding fairness metrics¹
- We apply the definition of fairness proposed by Nash², which involves four axioms:
 - I. Symmetry
 - 2. Pareto optimality
 - 3. Scale invariance
 - 4. Independence of irrelevant alternatives
- Fair utility allocation (FUA), maximizing the Nash product:

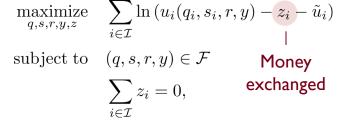


Sampat & Zavala (2019). Optimization & Engineering, 20, 1249-1272.
 Nash (1950). Econometrica, 155-162.

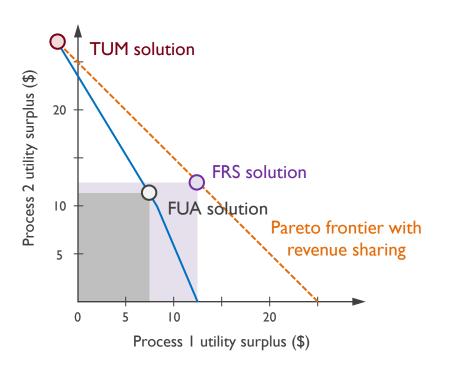


TUM, FUA, and FRS can all be solved in a distributed manner using ADMM

- Increase overall and individual utilities through revenue sharing
- Some processes may only be able to increase their utilities if additional revenues are made
- Fair allocation with revenue sharing (FRS):



- Useful property: FRS can be solved exactly in two steps
 - I. Solve TUM
 - 2. Obtain shared revenues by solving a set of linear equations

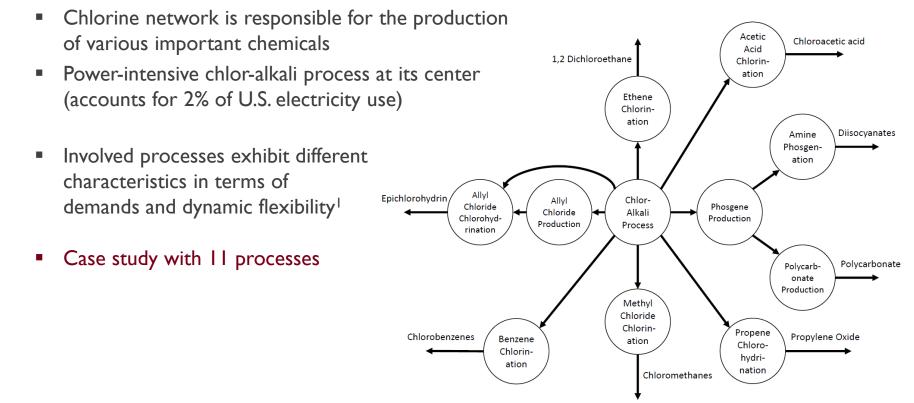


	Nash product			Total savings (\$)		
Configuration	TUM	FUA	FRS	TUM/FRS	FUA	
0+0	7.044	7.062	7.547	4,481	4,403	
0-+0-+0	7.235	7.304	7.983	9,230	8,608	
\propto_{0}^{0}	6.673 (I)	6.944	8.157	12,903	9,804	
○->○->○	6.658	6.997	7.784	9,948	8,609	
	7.085	7.388	8.34	25,006	17,400	
0+0+0+0+0	5.980	6.278	7.097	10,878	9,106	
0+0<0+0	6.186 (3)	6.553	8.023	18,290	11,671	
	5.891 (2)	7.187	8.569	33,844	21,786	

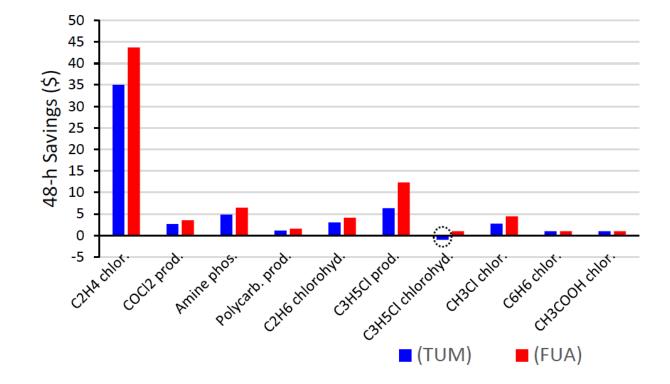
Comparison of distributed solution methods (for FRS)

	Direct			2-phase		
Configuration	Quality	Time (s)	Iterations	Quality	Time (s)	Iterations
0-+0	100	373	1,289	100	73	540
0+0+0	100	370	982	100	103	633
\propto°_{\circ}	99.9	386	993	100	94	693
0+0+0+0	100	654	1,206	100	182	773
	100	535	I,047	100	153	828
0-+0-+0-+0	99.9	1,381	1,510	100	201	878
0+0	99.5	750	1,208	100	207	800
	99.4	845	1,028	100	157	798

Chlorine network case study



Revenue sharing increases overall cost savings by 54%

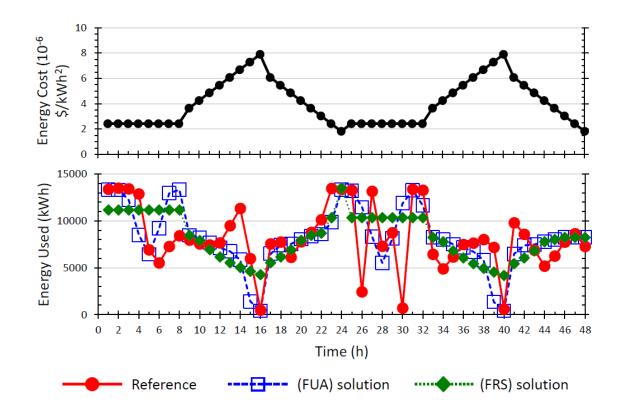


TUM: loss for one process

FUA: \$1,329 cost savings, 94% of which attributed to the chlor-alkali process

FRS: \$2,048 cost savings, evenly divided between the processes/stakeholders

Overall energy consumption profiles



- Coordinated DR can increase operational flexibility in process networks, which translates into significant cost savings under time-sensitive electricity pricing
- Coordinated DR requires:
 - a mechanism that provides appropriate incentives for cooperation
 - a framework that allows distributed decision making with minimum information sharing
- Not perfect: the FRS solution evenly distributes the surpluses without accounting for the effort made by each process → introducing weights may help

Enabling effective electrification of the chemical industry via coordinated demand response

Qi Zhang

Department of Chemical Engineering & Materials Science University of Minnesota, Twin Cities

> February 3, 2022 CAPD Energy Systems Initiative (ESI) Seminar

qizh.cems.umn.edu