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Motivation and Background

• Reinforcement learning (RL) is a 
machine learning method that 
learns from active sampling of 
system performance 
• Integration of RL with a process 

controller such as PID or MPC can 
exploit strengths of both and 
addresses some of the weaknesses
• RL can also be used by itself at the 

supervisory or higher layer 
controller
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RL Basics

• Learning based on a value function and/or a control policy
• Algorithms with a fixed policy – focused on learning a value function given the 

fixed policy (e.g., Q-Learning, SARSA)
• Some algorithms where the policy is learned with a value function – actor-

critic methods; parameterized policy and value function used for control an 
updates

• General goal is to maximize expected sum of rewards:

𝑄" 𝑠, 𝑎 = 𝐸 /
!#$

%

𝛾!𝑟&'!'(|𝑠& = 𝑠, 𝑎& = 𝑎
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RL Basics: State-action-reward-state-action 
(SARSA)

𝛿 = 𝑅 + 𝛾𝑄 𝑠!'( , 𝑎!'( − 𝑄(𝑠! , 𝑎!)

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction, 2nd ed. Bradford, Cambridge, MA,
USA.
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𝐰 ← 𝐰 + α𝛿∇9𝒒(𝑠! , 𝑎!)

• Episodic learning for tasks 
with fixed starting and 
terminal states
• Continuing learning where 

these cannot be defined

𝑄" 𝑠, 𝑎 = 𝐸 /
!#$

%

𝛾!𝑟&'!'(|𝑠& = 𝑠, 𝑎& = 𝑎

𝑎! = argmax
1

9𝒒(𝑠,K)
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Tuning Learning and Learning Metrics

• RL has multiple hyperparameters:

• α is the learning rate, γ is the discount factor
• ε controls the rate of exploration vs. exploitation under an ε-Greedy policy

• Goal is to achieve stable learning to an optimal policy
• Learn Q(s,a) such that action (a) can be selected greedily for all states (s)

• Results show in terms of episode return (G): 

𝛼 ∈ 0,1 , 𝛾 ∈ [0,1], 𝜀 ∈ [0,1]

𝐺& = /
!#$

%

𝛾!𝑅&'!'(
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RL MPC

• RL agent is applied to select 
controller tuning parameters 
online
• Underlying MPC controls the plant

• Output feedback to the agent is 
the RL state and is the subject of 
the RL reward function:

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.

𝑅 ! ≡ − 𝑦23 − 𝑦!'(
,



RL-MPC Algorithm
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Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

• 9𝒒(𝒔, 𝒂) a value function approximator

with weights w

• (α, ε) ϵ (0,1], γ ϵ [0,1)

• Arbitrarily initialize w, the weights of

the function approximation

• An MPC to control the plant 

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

• Initialize the plant and controller to steady-

state (i.e. y = 0, u = 0 in deviation variables)

• Selection an initial action (a0) under the

current policy (i.e. ε-Greedy)

ε-Greedy SearchAlgorithm
Inputs:
ε ϵ (0,1]
For each evaluation:
Draw P from a uniform distribution

If P > ε

𝑎! = argmax
"

;𝒒(𝑠,@)

If P < ε
𝑠𝑒𝑙𝑒𝑐𝑡 𝑎! = 𝑎 ∈ 𝐴 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

Break ties randomly

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

• Apply 𝒂𝒌 =
𝑵𝒑
𝑵𝒄 𝒌

to the MPC

• Calculate:

𝒖𝒌 = 𝒖∗𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝑴𝑷𝑪

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

• Apply uk to the plant and get yk+1

• Calculate 𝑹𝒌 = 𝑹(𝒚𝒌'𝟏)

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

State-action-reward-state-action (SARSA)

• Select 𝒂𝒌'𝟏under the current policy (i.e. ε-

Greedy)

• Calculate 𝜹 ← 𝑹𝒌 + 𝜸9𝒒(𝒚𝒌'𝟏 , 𝒂𝒌'𝟏) −

9𝒒(𝒚𝒌 , 𝒂𝒌)

• Update 𝒘 ← 𝒘 + 𝜶𝜹𝜵9𝒒(𝒚𝒌 , 𝒂𝒌)
Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for

online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

• For each episode continue until the

terminal state (or time) is reached

• Continue until a maximum number of

episodes is reached

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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RL-MPC Algorithm

Inputs

Episode 

Apply RL action and 
calculate control move

Interact with plant

Conduct SARSA weight 
update

• Output is a weight vector which can be

used for action selection, under the

same policy, in an online setting

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.

• Continuous learning can be carried out

when implemented on true plant
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Publication: E. Hedrick, K. Hedrick, D.
Bhattacharyya, S. E. Zitney, and B.
Omell, “Reinforcement learning for
online adaptation of model predictive
controllers: Application to a selective
catalytic reduction unit,” Comput. Chem.
Eng., vol. 160, p. 107727, 2022, doi:
10.1016/j.compchemeng.2022.107727.

RL-MPC Offline Algorithm    

Inputs:    

𝑞"(𝑠, 𝑎)	a value function approximator with weights w  

α ϵ (0,1],  ε ϵ [0,1], γ ϵ [0,1] 

Arbitrarily initialize w, the weights of the function approximation  

An MPC to control the plant  

For each episode:    

Initialize the plant and controller to steady-state (i.e. y = 0, u = 0 in deviation 

variables) 

 

Selection an initial action (a0) under the current policy (i.e. ε-Greedy)  

For each timestep (k) of each episode:    

1. Apply 𝑎𝑘 = +
𝑁𝑝
𝑁𝑐
/
𝑘
to the MPC   

2. Calculate: 

 𝑢𝑘 = 𝑢∗𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑀𝑃𝐶 

  

3. Apply uk to the plant and get yk+1   

4. Calculate 𝑅𝑘 = 𝑅(𝑦𝑘+1)   

5. Select 𝑎𝑘+1under the current policy (i.e. ε-Greedy)   

6. Calculate 𝛿 ← 	𝑅𝑘 + 𝛾𝑞"(𝑦𝑘+1, 𝑎𝑘+1) − 𝑞"(𝑦𝑘 , 𝑎𝑘)		 

7. Update 𝐰	 ← 	𝐰	 + 	α𝛿𝛁𝒒H(𝒚𝒌, 𝒂𝒌)		 

 

Offline RL-MPC Algorithm
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Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S.
E. Zitney, and B. Omell, “Reinforcement learning
for online adaptation of model predictive
controllers: Application to a selective catalytic
reduction unit,” Comput. Chem. Eng., vol. 160, p.
107727, 2022, doi:
10.1016/j.compchemeng.2022.107727.

Online RL-MPC Algorithm    

Inputs:    

𝑞"(s,a) that is differentiable, consistent with offline learning 

α ϵ (0,1], ε ϵ [0,1], β ϵ (0,1] 

w from offline learning, R$ = 0  

An MPC to control the plant, consistent with offline learning 

For each sampling time (k), continuing while online:    

1. Apply ak = )
Np
Nc
-
k
to the MPC   

2. Calculate: 

 uk = u∗	from	the	MPC 

  

3. Apply uk to the plant and get yk+1   

4. Calculate Rk = R(yk+1)   

5. Select ak+1under the current policy (i.e. ε-Greedy)   

6. Calculate δ ← R − R$ + q"(yk+1, ak+1,w) − q"(yk, ak, w) 

7. Update R$ ← R$ + βδ 

8. Update 𝐰 ← 𝐰+ αδ𝛁𝐪K(𝐲𝐤, 𝐚𝐤,𝐰) 

 

Online RL-MPC Algorithm



17

• Control of an industrial Selective Catalytic Reduction (SCR) reactor for 
NOx emission reduction in a coal-fired power plant is taken as an 
example for this work
• SCR model is a 1D heterogeneous plug flow reactor model with detailed 

kinetics

SCR

NH3

Flue Gas

Treated Gas

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.

4 𝑁𝐻S + 4 𝑁𝑂 + 𝑂, → 4 𝑁, + 6 𝐻,𝑂

4 𝑁𝐻S + 3𝑂, → 2 𝑁, + 6 𝐻,𝑂

Motivating Example – SCR Control
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MPC of SCR

• SCR has complex dynamics with 
many disturbance variables
• Adsorption/desorption kinetics 

lead to significant nonlinearity and 
time delay 

• Some of these variables are 
measurable, can be modeled 

• Others are not incorporated into 
control model 

Inputs (MVs)
Inlet Ammonia Flow u1

Outputs (CVs)

Outlet NOx Concentration y1
Outlet Ammonia Concentration y2

Modeled Disturbances

Inlet Flue Gas Flow d1

Inlet NOx Concentration d2

Unmodeled Disturbances

Inlet Ammonia Temperature d3

Inlet Flue Gas Temperature d4

Inlet Dilution Air Flow d5
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MPC of SCR for Disturbance Rejection – MPC-1

• Initial MPC formulation uses a 
linear model and a disturbance 
rejection objective
• Servo control not regularly needed 

for SCR operation

• One-step ARX model identified 
using least-squares estimate

𝑥!"# = 𝐴𝑥! +𝐵𝑢!

𝑦! = 𝐶𝑥! , 𝐶 = 𝐼

Φ = (Ψ$Ψ)%#Ψ$𝑌

min
&
𝐽 = 𝑦'#

$ 𝐻𝑦'# + 5
!()

'#%#

𝑦!$𝑄𝑦! +5
!()

'$

𝑢!$𝐷𝑢!

𝑠. 𝑡. 𝑥!"# = 𝐴𝑥! +𝐵𝑢!

𝑦! = 𝐶𝑥!

𝑢*,,- ≤ 𝑢*,! ≤ 𝑢*,&-

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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Learning Results

• To standardize learning results, 
the algorithm has been applied 
for 20 randomized trials
• In early episodes of learning, 

performance is poor both 
because exploration is 
intentionally high and because 
the agent has little knowledge of 
the system
• High final value shows learning Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for

online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.
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Online Control Results

• Studies for disturbance rejection
• Unmodeled disturbances in flue gas temperature (d4)
• Load following: simultaneous variation of all disturbance variables following 

industrial profile

• Results compared with the industry-standard feedback augmented 
feedforward (FBAFF) controller
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Online Control Results for (unmodeled) 
Disturbance in Flue Gas Temperature

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya, S. E. Zitney, and B. Omell, “Reinforcement learning for
online adaptation of model predictive controllers: Application to a selective catalytic reduction unit,”
Comput. Chem. Eng., vol. 160, p. 107727, 2022, doi: 10.1016/j.compchemeng.2022.107727.

Controller ISE Ratio to FBAFF IAE Ratio to FBAFF

FBAFF 622 -- 300 --

MPC-1 685 1.10 276 0.92

RL-MPC-1 Greedy 462 0.74 255 0.85

RL-MPC-1 Online 453 0.73 250 0.83

RL-MPC-1 Online 

Learning
384 0.62 241 0.80
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Load Following (Flue gas flowrate, temperature and 
inlet NOX concentration all changing) Control Results

Publication: E. Hedrick, K. Hedrick, D. Bhattacharyya,
S. E. Zitney, and B. Omell, “Reinforcement
learning for online adaptation of model
predictive controllers: Application to a selective
catalytic reduction unit,” Comput. Chem. Eng.,
vol. 160, p. 107727, 2022, doi:
10.1016/j.compchemeng.2022.107727.



Offset-Free Actor-Critic Control Development
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Actor-Critic Approaches

• Use of a parameterized 
value function, Q, and a 
parameterized policy, 𝜋, 
for control
• Critic weight update is 

the same as before
• Policy updated by the 

current critic
• Actor and critic, most 

commonly, are deep 
neural networks

25
Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction, 2nd ed. Bradford, Cambridge, MA,
USA.



Control with Offset (Naïve Deep Deterministic 
Policy Gradient (DDPG))
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Median

IQR

Sample



Learning with DDPG
• Target value-function network Q and target policy network 𝜇 are 

parameterized by 𝜃! and 𝜃", respectively:

𝜃!# ← 𝜏𝜃! + (1 − 𝜏)𝜃!#

𝜃"# ← 𝜏𝜃" + (1 − 𝜏)𝜃"#

• A replay buffer R is used to conduct the update 
• Minimize the loss, L, over the value-function network parameters

27

𝐿 𝜃p =
1
𝑁
&
q

𝑦q − 𝑄 𝑠q , 𝑎q 𝜃p
r

𝑦q = 𝑟q + 𝛾𝑄′ 𝑠qst, 𝜇 𝑠qst 𝜃uv |𝜃
pv

• The exploration noise for DDPG is commonly considered as an Orstein-
Uhlenbeck process

𝑥wst = 𝑥w + 𝜂 𝜇 − 𝑥w ∆𝑡 + 𝜎 ∆𝑡𝒩 𝜗 𝜎r



Network Architectures 
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Actor Network Critic Network

Fully Connected
ReLU

Action Output

Fully Connected
ReLU

tanh or sigmoid

State Input

Action Input

Q Estimate Output

State Input

• Algorithms are implemented in
Python using ML packages from
TensorFlow / Keras



Algorithm
Algorithm 7: DDPG for Offset-Free Control

Input: Initialize critic and actor networks as 𝑄% 𝑠, 𝑎 𝜃&# , 𝑄' 𝑠, 𝑎 𝜃&$ ,

𝜇% 𝑠 𝜃(# , 𝜇' 𝑠 𝜃($

Initialize noise object𝒩

Set the target network weights (𝜃&#% , 𝜃(#%) ← (𝜃&#, 𝜃(#), (𝜃&$% , 𝜃($%) ←

(𝜃&$, 𝜃($)

Initialize the replay buffer R

Set 𝜀
for ep = 1:Maxep

Set 𝑠 = 𝑠) ∈ 𝑆
Initialize noise objects𝒩*,𝒩+

for k =

1:Maxk

Get: 𝑎, = π 𝑠, = 0
µ 𝑠, θ-

# +𝒩*, 𝑖𝑓 𝑥 > 𝜀,

µ 𝑠, θ-
$ +𝒩+, 𝑒𝑙𝑠𝑒

Calculate: 𝑢, = ;
𝑎*,, , 𝑖𝑓 𝑥 > 𝜀,
−𝑎,𝑠, , 𝑒𝑙𝑠𝑒

Get: 𝑠,/* = f 𝑠, , 𝑢,

Calculate: 𝑟, = 𝑟(𝑠,/*, 𝑢,)
Store: 𝑅 ← (𝑠, , 𝑎, , 𝑟, , 𝑠,/*)
Sample N: (𝑠0 , 𝑎0 , 𝑟0 , 𝑠0/*) 𝑓𝑟𝑜𝑚 𝑅
Calculate target:

#% #%

29

Separate networks for 
inner and outlet policies

Noise for exploration

Target networks for 
learning stability

Replay buffer for learning 
over multiple samples  

Noise objects for each 
policy

Calculate action and input

Apply action to plant

Calculate update targets 
sampling from R

Update Critic Network

Update Actor Network

Update Target Networks



Results – Linear System
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𝐴  = 1 0.1
0 1 ,  𝐵  = 0.005

0.1 ,  𝐶  = 1 0



Results – Linear System
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Results – SCR Control
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Initial reward higher than 
double integrator



Results – SCR Control
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Conclusions 

34

• RL-MPC algorithm developed for selecting control parameters online 
• Results presented for an industrially relevant example

• Superior performance achieved with offline learning, further improved with 
learning on the online system

• Developed algorithms for offset-free actor-critic control and applied 
to linear and nonlinear systems 
• There exist considerable opportunities to exploit strengths of RL for 

improving the performance of control systems by using RL by itself 
under sufficient performance guarantee or in combination with 
existing controllers



35

Acknowledgements

• My student Dr. Elijah Hedrick (now in GE) conducted most of the 
research presented in this work. My student Katherine Hedrick 
contributed to model development. 
• Thanks to Dr. Stephen Zitney, and Dr. Benjamin Omell, NETL for their 

valuable contributions
• The authors would like to acknowledge funding from the U.S. 

Department of Energy’s National Energy Technology Laboratory under 
the Mission Execution and Strategic Analysis contract (DE-FE0025912) 
for support services through KeyLogic Systems, Inc. under P.O. 5000-
074.



36



Thank you!
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Questions?


