ADVANCED OPTIMIZATION FOR ENERGY PROCESSES

Nick Sahinidis
National Energy Technology Laboratory
Department of Chemical Engineering
Carnegie Mellon University
sahinidis@cmu.edu
OPTIMIZATION
Theory
Algorithms
Software

Energy Systems

Biomedical Computing

Computational Chemistry
• One-third of U.S. CO2 emissions come from power plants and other point sources

• Available carbon capture and sequestration technologies would increase electricity costs
 – Pulverized coal plants
 » Currently: 75% increase
 » Goal: < 35% increase
 – Integrated gasification combined cycle plants
 » Currently: 35% increase
 » Goal: < 10%

• Risk quantification required
CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES

• Capture
 – Pre/Post/Oxy-fuel Combustion
 – Absorption, adsorption, membranes, cryogenic distillation, …

• Sequestration
 – Ocean
 – Mineral
 – Geologic
 – Oil/gas reservoirs
 – Saline formations
 – Coal seams
 – …

MAJOR GOALS

• Develop algorithms and software to facilitate optimization of energy processes
 – BARON: Global optimization of algebraic NLPs/MINLPs
 – Optimization without an algebraic model
 » Simulation-based optimization
 » Derive surrogate algebraic models from simulations; optimize surrogates with algebraic methods
PROJECTS AND STUDENTS

• Optimization of CO2 capture technologies
 – Alison Cozad

• Design of drilling fluids for high P/T
 – Apurva Samudra

• Risk assessment for CO2 sequestration
 – Yan Zhang