

RISK ASSESSMENT FOR CO₂ GEOLOGICAL SEQUESTRATION

Yan Zhang Department of Chemical Engineering Carnegie Mellon University

Panagiotis Vouzis Department of Chemical Engineering Carnegie Mellon University

Nick Sahinidis National Energy Technology Laboratory Department of Chemical Engineering Carnegie Mellon University sahinidis@cmu.edu

OUTLINE

- Introduction to CO₂ sequestration
- A sequestration simulator
- Risk assessment work
- GPU parallel computing
- Conclusions and future work

INTRODUCTION TO CO2 SEQUESTRATION

- Effect of anthropogenic CO₂ on global warming
- Carbon mitigation portfolio
 - Improved efficiency vehicles
 - Decarbonization
 - renewable, nuclear
 - Sequestration
- CO₂ sequestration options
 - Ocean
 - large capacity, ecological impact
 - Mineral
 - permanently, energy penalty

Geological: mature technology

• oil/ gas reservoir

deep coal seam

deep saline formation

*

REVIEW OF SEQUESTRATION MODELING

- Assess the feasibility of CO₂ sequestration
- Models for
 - Pre-injection estimation: capacity evaluation, injection rate, etc
 - Post-injection prediction: evolution of the sequestration system

Reference	Model	Modeled problems	Formation	Trapping mechanism	
Bickle et al., 2007	analytical	Calibration of model to seismic monitoring data from the Sleipner injection site in the North Sea	homogeneous		
Bromhal et., 2005	numerical : PSU- COALCOMP	Storage with enhanced coal-bed methane recovery	homogeneous	sorption	
Doughty and Pruess, 2004	Numerical: TOUGH2	Simulated injection at Frio, TX, test site, evaluated effects of numerical artifacts, choice of characteristic curves	Stochastic three- dimensional heterogeneous	Capillary trapping dissolution	
Fiett et al., 2007	Numerical CHEARS	Injection into saline aquifer, assessed impact of varying heterogeneity(sand/shale ratio) on migration	Stochastic three- dimensional heterogeneous	Dissolution, capillary trapping	
Gaus et al., 2005	Numerical	Considered impact of geochemical reactions induced by CO ₂ injection on caprock integrity, based on the Sleipner site	Layered heterogeneity	Dissolution, mineralization	

*: G.Schnaar and D. C. Digiulio, Vadose Zone Journal, 2009

REVIEW OF SEQUESTRATION MODELING (CONT'D)

Reference Model		Modeled problems	Formation	Trapping mechanism	
Gheraidi et al., 2005	Numerical: TOUGHREACT	Assessed impact of mineral precipitation and dissolution reactions on migration through caprock; sensitivity analysis for initial mineralogy, kinetic parameters, caprock permeability	Layered heterogeneity	Dissolution, mineralization	
lzgec et al., 2005	Numerical: STARS	Calibrated model of mineral precipitation and decrease in permeability to data from core experiments; sensitivity analysis for mineralization rate parameters	pitation and decrease in eability to data from core Homogeneous riments; sensitivity analysis		
Jessen et al., 2005	Numerical:ECLI PSE300	Injection with enhanced oil recovery operation, analyzed different operation strategies for maximizing storage	Stochastic heterogeneity	Dissolution, capillary trapping	
Juanes et al., 2006	Numerical:ECLI PSE100	Injection into PUNQ-S3 oil production test-case model; sensitivity analyses for hysteresis	Heterogeneous	Dissolution, capillary trapping	
Kovscek and Wang, 2005	ECLIPSE300	Geologic sequestration with enhanced oil recovery, evaluation of project design alternatives	Stochastic heterogeneity	Dissolution, capillary trapping	
Knauss et al.,2005	Numerical: CRUNCH	One-dimensional radial injection into Frio formation, TX; evaluated impact of co-contaminants in injected CO ₂ stream	Heterogeneous	Mineralization, dissolution	

*: G.Schnaar and D. C. Digiulio, Vadose Zone Journal, 2009

_ *

*

REVIEW OF SEQUESTRATION MODELING (CONT'D)

Reference	Model	Modeled problems	Formation	Trapping mechanism	
Lagneau et al., 2005	Numerical: Hytec	One- and two-dimensional simulation of evolution of fixed circular zone of high dissolved-CO ₂ water	Homogeneous	Dissolution, mineralization	
Leonenko and Keith, 2008	Numerical: CMG IMEX	Assessed efficiency of brine circulation at accelerating dissolution of CO ₂	Homogeneous	Dissolution	
LeNeveu, 2008	Semianalytical: CQUESTRA	Semianalytical solutions for assessment of leakage through abandoned well bores and fractures; applied to data from Weyburn basin, Saskathewan	Layered heterogeneity	Dissolution, mineralization, capillary trapping	
Lindeberg, 1997	Numerical: ECLIPSE100	Injection in formation similar to North Sea; sensitivity analysis for permeability; assessed leakage through penetration; migration under non-flat caprock	Homogeneous, layered heterogeneity cases	Dissolution	
Nordbotten et al., 2004, 2005a, 2005b, 2006a, 2006b	Analytical	Analytical solutions for CO₂ leakage through abandoned wells	Homogeneous		
Oldenburg et al., 2001	Numerical: TOUGH2	Injection into formation based on Rio Vista gas field in California for sequestration and enhanced natural gas recovery	Homogeneous		

*: G.Schnaar and D. C. Digiulio, Vadose Zone Journal, 2009

CQUESTRA

• IEA GHG Weyburn CO₂ Monitoring & Storage Project

- Address the migration and fate of CO₂ by quantifying
 - The leakage rate of CO₂ to the biosphere
 - The spatial extent of CO₂ plumes underground
- Starts from the end of EOR phase

- What is the risk associated with sequestration?
- Models are used for quantitative risk analysis to predict CO₂ movement in response to varying conditions or scenarios
 - Walton et al., 2005, used probabilistic risk assessment to understand and evaluate the performance of CO₂ geological sequestration.
 - Raza et al., 2009, performed uncertainty analysis using Monte Carlo simulation for capacity estimates and leakage potential for a saline aquifer.

Simplified geological structure

PROCESS DESCRIPTION

• Viability of a sequestration system:

LEAKAGE THROUGH WELLBORE

Non-penetrating well equation

MOVEMENT THROUGH CAPROCK

Equation for drainage in tunnels

DISSOLUTION OF SOURCE POOL

Dissolution of source pool to the formations below ulletor above the source

CO₂ source pool

- Failure times are unpredictable
 - If the cement annulus fails first...
 - If the cement plug fails first...
- Physical model

Heat conduction from a thin wire

- Aquifer with advection, dispersion and reaction
- Aquitard with diffusion and reaction ٠
- → Apply solution for temperature profile
- → Get CO₂ concentration in the formation
- → Obtain steady state flux at the wall of the wellbore

$$\lim_{t\to\infty}\left(\frac{\partial \mathcal{C}(r,t)}{\partial r}\big|_{r=r_b}\right)$$

→ Migration rate = steady state flux * concentration at the wall * thickness

OVERALL MASS BALANCE

• The mass left in the reservoir pool as time goes by:

 M_0 is the initial mass of the CO₂ source pool; F_D is the flow rate by diffusion from pool; λ is the first order rate constant for mineralization; N_w is the number of wellbores intercepting the pool; N_F is the number of fractures in the caprock; ρw is the density of water; ρs is the density of the CO₂ phase; K_s is the hydraulic conductivity of the reservoir; KF is the hydraulic conductivity of the fracture; φs is the average head gradient; φF is the head gradient at the fracture; εs is the porosity of the reservoir; Ss is the fractional saturation of CO₂ in source pool; r_b is the radius of wellbore; h0 is the initial height of the source pool; w_F is the width of the fracture; A_s is the area of the source pool; C_o is the solubility of CO₂; D is the free diffusion coefficient; and r is the tortuosity factor.

MODEL PARAMETERS

• Parameters:

– Main independent parameters

Formation	Brine water	CO ₂ phase	Wellbore
Depth Thickness Permeability Porosity Tortuosity Mineralization rate	 Salinity Pressure Surface tension of the free phase Temperature gradient Darcy velocity Capillary pressure in reservoir Dispersion coefficients 	•Mass •Composition •Thermo-property •Permeability •Effective saturation •	•Cement seal failure times •Casing failure times •Permeability of degraded cement •Effective crack diameter of degraded cement •Surface tension •Wellbore radius

- Main calculated parameters:

formation fluid density, free phase density, viscosity, solubility, etc.

RESULTS FOR ONE SET OF PARAMETERS

CO₂ mass fractions vs. time

CO₂ leakage rate (kg/a) vs. time

RISK ASSESSMENT

 Probabilistic risk assessment provides risk distribution due to the uncertainty

Input: Randomly Sampled from probability distribution function of independent parameters

Monte Carlo simulation

Output: Statistical Analysis

MONTE CARLO SIMULATION

		Generated inputs with independent parameters						
	sample	x1	x2	x3	x4	x5		xn
	#	Permeability	Porosity	Leakage time	Darcy Velocity	Fracture #'s		
[
	2							
Simulator								
	5000							
		Model Outputs						
	y1	y1		уз		ym	ym	
	Mass le	Mass left Mass		Leakage r	ate			
	► 1							
	→ 2							
	→							
	5000	5000						

RESULTS FOR MONTE CARLO SIMULATION

Frequency histogram showing fraction released to the biosphere at 5000 years

CONVERGENCE OF MONTE CARLO SIMULATION

Mean value of mass fractions vs. numbers of simulations

GPU PARALLEL COMPUTING

• Multi-core and many-core

CPU

GPU

http://www.nvidia.com/object/GPU_Computing.html

Lecture Notes, David Kirk/NVIDIA and Wen-mei Hwu, 2006-2008

GPU SPEEDUPS

CONCLUSIONS AND FUTURE WORK

- Developed a CO₂ sequestration simulator
 - Based mostly on the ideas of the CQUESTRA model
- Performed deterministic simulation and probabilistic risk assessment
 - Over 90% of the injected CO₂ is safely trapped underground after 5000 years in our simulations
- Parallel implementation of Monte Carlo simulation on GPUs
 - 350 times speedups
- Future work
 - Conduct extensive scenario analysis
 - Identify parameters/failure scenarios using derivative-free optimization algorithms

