Solar Cell Research

CAPD Review Sunday March 7, 2010

Balaji Sukumar and Erik Ydstie

Solar grade silicon Float Process for Silicon Wafers Dye Sensitized Solar cells Solar and wind on the electric grid

Supply Chain for Silicon Solar Cells

Solar Grade Silicon using FBR

Current Methods:

- mgSi to TCS and pyrolysis in "bell" reactors (Siemens Dow-Corning, Wacker, +)
- mgSi to TCS to Silane and pyrolysis in bell reactors (Union Carbide REC Silicon)
- Silane from SiO2 and silane pyrolysis in fluid bed (Ethyl Corp MEMC)
- Direct reduction and purification (metallurgical route, Elkem, Dow-Corning)
- Fluid bed silane pyrolysis (REC Silicon, MEMC)

$$SiH_{4(g)} \rightarrow Si_{(s)} + 2H_{2(g)}$$

increase throughput Reduce energy cost

Multi-scale model for Scale-up and Design

Operation challenges

Fast dynamics – fluidization, reaction Slow dynamics – particle size distribution Distributed parameters

- Particle size distribution
- Chemical reaction, yield loss
- Bed fluidization

Commercial Process Built in 2009

Silicon Wafers using Float Process

Current methods are carried out in batch Continuous processes yield inferior product

The Pilkington float Glass Process

Float Process for Silicon Wafers

2009-2013 NSF grants* to study

crystallization fluid flow and heat flow process scale-up and detailed design process control commercialization

* Grant to CMU for fundamental studies and NSF SBIR for iLS for commercialization

Experimental Proof of Concept

- Simulations show that the Silicon melt has to be floated on the substrate and the temperature should be maintained such that there is a liquid layer between the solidified Silicon and the substrate.
- The criteria is satisfied experimentally,³ and as a result, Silicon is retained in the form of sheet (Top).
- Cross-sectional SEM-micrograph showing ~300-400 μm thin sheet of Silicon produced on the substrate after solidification (Bottom).
- Silicon sheet with substrate at the boundaries easy removal of wafers from the medium.

- XRD result of Si sheet cast over the molten substrate. As-grown Silicon sheet shows the peaks of SiO₂ cristobalite (∇), Lead (♦) and Tin (●).
- The inset shows the enlargement without the complete, highly textured, probably single crystals, Si<111> peak.

³US Patent - Patent Pending (2008) "Casting of Solar Quality Silicon Sheet (or Wafer) by Float Process".

Mullins-Sekerka Instability – Spherical Instability

$$\frac{d\delta_l}{dt} = \frac{D(l-1)}{(C-c_R)R} \left[G + \frac{d_0\Gamma_D}{R^2} (l+1)(l+2) \right] \delta_l$$

Concentration gradient **favors** growth of harmonic

Capillary effect **favors decay** of harmonic

Stability of Float Process for Silicon Wafers

Theory: Stability and process modeling

Experiments: Water models

Dye Sensitized Solar Cells (DSC)

-First shown in labs circa 1991 by Gratzel et al¹ -3rd generation solar cell, utilizing a thin film of TiO₂ nanoparticles -TiO₂ particles, coated with a dye, act as the photoanode -Materials are inexpensive, but only low efficiencies are possible without costly processing

Ordered TiO2 Layer

Intention – to use surface science and electrochemistry to create an ordered layer

- reduce distance through which electrons must migrate

- Layer should be sufficiently conductive without sintering at 450° C, enabling the use of plastic substrates

In-situ Monitoring – Kinetics and Process Study

Evanescent wave scattering allows us to observe the presence, approach, and departure of particles from a surface, enabling deeper insights into then kinetic process of electrophoretic deposition. This is valuable not only for DSC, but for all thin-film processes utilizing electrophoretic deposition of micro to nano scale particles.

