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Machine Learning vs Human Learning

Why are humans more data-efficient?
4.9 million games vs 3 thousand

Silver et al (2017). Nature

Hypothesis:
• Transfer learning
• Reasoning + Hybrid Modelling
• Higher solution accuracy?

à Can global optimization improve the performance of ML?
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Prevailing Mindsets in Machine Learning Community

The most obvious drawback of the learning procedure is that the error-surface may contain local minima
so that gradient descent is not guaranteed to find a global minimum. However, experience with many
tasks shows that the network very rarely gets stuck in poor local minima that are significantly worse
than the global minimum.

⏤ David Rumelhart, Geoffery Hinton, Ronald Williams
Learning Representations by Back-propagating Errors, Nature (1986)

In the late 1990s, neural nets and backpropagation were largely forsaken by the machine-learning
community and ignored by the computer-vision and speech-recognition communities. It was widely
thought that learning useful, multistage, feature extractors with little prior knowledge was infeasible. In
particular, it was commonly thought that simple gradient descent would get trapped in poor local
minima …

⏤ Yann LeCun, Yoshua Bengio, Geoffery Hinton
Deep Learning, Nature (2015)
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Prevailing Mindsets in Machine Learning Community – Part 2

Belief 1 (1990s - now): Solving machine learning problems to global optimum is impossible using state-of-
the-art solvers, especially for large datasets.

• It is widely believed that deterministic global algorithms are too slow (Hamm et al., 2007).
• In 1990s and 2000s, stochastic global optimization methods were very popular, including Evolving

Neural Networks (Yao et al., 1999, Stanley et al., 2002), Genetic Algorithms (Miller et al., 1989, Leung
et al., 2003), and Simulated Annealing (Goffe et al.,1994).

Belief 2 (2010s - now): Solving ML problem to local optimum is good enough.

• With strong simplification assumptions on the distribution of data and network weight parameters,
as the number of hidden units increases, all local minima become increasingly close to being global
minima (Choromanska et al. 2015).

• If a neural net is strongly over-parameterized so that I can memorize any dataset, then all critical
points become global minima (Livni et al. 2014, Nguyen & Hein 2017).

• For neural nets with one hidden layer and a convolutional structure with no overlap, and a ReLU
activation function, if inputs are independent gaussian variables, gradient descent converges to the
global optimum (Brutzkus & Globerson, 2017)
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Centroid-based Clustering Decision Tree

We Focus on the Global Optimization of 

[Hua et al. ICML 2021spotlight]
[Shi et al. ICML 2022]

[Ren et al. NeurIPS 2022]

[Hua et al. NeurIPS 2022]
2022 INFORMS Data Mining Best Paper
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Applications with High Stake

Interpretable Intuitive

Facility Location 
Problem

Medical DiagnosisBail Decision

Heuristic Algorithm -> Suboptimal Solutions
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• Solving ML problem to 
global optimum is possible 
for large datasets
(1 million samples).

Deterministic Global 
Optimality

• The global optimal 
solution renders a 
much better model 
than the local solution
(≥1% improvement).

Enhanced 
Solution

7

Our Hypothesis
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Outline

• ML as Stochastic Mixed Integer Problems
・Reduced Space Branch and Bound Algorithm

• Centroid-based Clustering
• Optimal Decision Tree

8
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ℒ 𝑀 ≔ min
!∈#, %&!

'
'∈𝒮

𝐸 )𝑦𝑠, 𝑦' + 𝛾𝑅 𝑚

𝑠. 𝑡. )𝑦𝑠 = ℎ (𝑚, 𝑥')
𝑠 ∈ 𝒮

Supervised Learning

ℒ 𝑀 ≔ min
!∈#, %)!

'
'∈𝒮

𝐸 )𝑥𝑠, 𝑥' + 𝛾𝑅 𝑚

𝑠. 𝑡. )𝑥𝑠 = ℎ 𝑚, 𝑥'
𝑠 ∈ 𝒮

Unsupervised Learning

Branch and Bound (BB) 
Framework

Given: 
• 𝑥*, … , 𝑥', … , 𝑥+ ∈ ℝ,,
• 𝑦*, … , 𝑦', … , 𝑦+ ∈ {0,1}-,
• 𝒮 = {1,… , 𝑠, … , 𝑛}
• Model representation ℎ
Output: 
• Optimal parameters 𝑚 ∈ 𝑀

Machine Learning Problems are MI(N)LP Problems
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Branch and Bound Framework

ℒ 𝑀 ≔ min
!∈#, %&!

'
'∈𝒮

𝐸 )𝑦𝑠, 𝑦' + 𝛾𝑅 𝑚

𝑠. 𝑡. )𝑦𝑠 = ℎ (𝑚, 𝑥')
𝑠 ∈ 𝒮

Objective:

Variable

U

tl1 tb1 tu1

L

P0Root 
node
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Branch and Bound Framework

ℒ 𝑀 ≔ min
!∈#, %&!

'
'∈𝒮

𝐸 )𝑦𝑠, 𝑦' + 𝛾𝑅 𝑚

𝑠. 𝑡. )𝑦𝑠 = ℎ (𝑚, 𝑥')
𝑠 ∈ 𝒮

Limitation:  Need to branch on the full variable space 

Key: Need to exploit the structure

For Decision Tree:  # Integer 2. 𝑛 + 𝑃 + 𝐾 + 1
e.g. depth 𝐷 = 2 and 𝑛 =1 million samples
-> 4 million integer variables

Objective:

L
U

Variable

L(P2)

tl1 tb1 tu1

U(P2)

Left child
node

Right child
node

P0

P1 P2

Root 
node



University of British Columbia

Each sample is 
a scenario

12

First Stage 
Variables

Model 
Parameter 

Second Stage 
Variables

Sample 
Evaluation

Decision TreeCentroid-based Clustering

Machine Learning Problems are Two-stage Stochastic Programming Problems



University of British Columbia
13

First Stage 
Variables

Model 
Parameter 

Second Stage 
Variables

Sample 
Evaluation

ℒ 𝑀 ≔ min
!∈#

'
'∈𝒮

𝑄'(𝑚)

Where:

𝑄' 𝑚 ≔ min
%&!
𝐸 )𝑦𝑠, 𝑥' +

𝛾
𝒮
𝑅 𝑚

𝑠. 𝑡. )𝑦𝑠 = ℎ 𝑚, 𝑥'

Machine Learning Problems are Two-stage Stochastic Programming Problems

Various approaches proposed in the stochastic programming community can be utilized to
exploit the problem structure (Karuppiah & Grossmann 2008, Li et al. 2011, Cao & Zavala 2019,
Li & Grossman 2019, Ogbe & Li 2019, Kannan 2019).

ℒ 𝑀 ≔ min
!∈#, %)!

'
'∈𝒮

𝐸 )𝑥𝑠, 𝑥' + 𝛾𝑅 𝑚

𝑠. 𝑡. )𝑥𝑠 = ℎ 𝑚, 𝑥'
𝑠 ∈ 𝒮



University of British Columbia
14

Theorem [Cao & Zavala, 2019]

With the above lower and upper bounds, the BB procedure can converge by branching only on first 
stage variables (i.e., model parameters)

Lower Bounding Problem:  
(wait and see problem)

𝛽 𝑀 ≔ min
!!∈#

'
'∈𝒮

𝑄'(𝑚')ℒ 𝑀 ≔ min
!∈#

'
'∈𝒮

𝑄'(𝑚)

Machine Learning Problems: Upper Bounding Problem:  
(fix G𝑚 ∈ 𝑀)

𝛼 𝑀 ≔'
'∈𝒮

𝑄'( G𝑚)

For Decision Tree: e.g. depth 𝐷 = 2 and 𝑛 =1 million samples, with 3 features and 2 classes
branching variables: 4 m i l l ion ⟶ 23
Independent to the number of samples

Assumption
Around solution 𝑚*, 𝑄'(𝑚) is continuous with respect to 𝑚𝑐 (i.e., continuous first-stage).     

Reduced Space Branch and Bound
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Lower Bound Strategy Upper Bound Strategy Bound Tightening

Centroid-based 
Clustering

Decision Tree

Reduced Space Branch and Bound
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Centroid-based Clustering

𝑘-means : 𝑚𝑖𝑛
!

∑
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1

𝑘- centers: 𝑚𝑖𝑛
!∈2

𝑚𝑎𝑥
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1

𝑘-medoids: 𝑚𝑖𝑛
!∈2

∑
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1

Clustering Problems

Given:     Dataset 𝑋 = {𝑥*, … , 𝑥3 } ∈ ℝ4×3

Desired cluster number, 𝐾
Output: 𝑚/ the center of cluster 𝑘
Object:
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Centroid-based Clustering

Piccialli et al. 
2021 Santos, 2009

Duong et al., 
2018

Contardo et al.,
2019

Hua et al. 2021

Ren et al. 2022

Shi et al. 2022

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08
1.00E+09
1.00E+10

k-means k-medoids k-centers

Exact Method

No Global Guarantee

Our Approach (with guaranteed global optimality)

Recent Progress on the Scalability of Data Size
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Centroid-based Clustering

min
!,6,7

'
'∈𝒮

𝑑',∗

𝑠. 𝑡. −𝑁 1 − 𝑏',/ ≤ 𝑑',∗ − 𝑑',/ ≤ 𝑁(1 − 𝑏',/)
𝑑',/ ≥ 𝑥' −𝑚/

1

∑/∈𝒦 𝑏',/ = 1
𝑏',/ ∈ 0,1
𝑠 ∈ 𝒮, 𝑘 ∈ 𝒦

𝑘-means : 𝑚𝑖𝑛
!

∑
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1

First Stage Variables 

𝑚: 𝐾×𝑃

(Center of clusters, continous)

Second Stage Variables

𝑏",$ , 𝑑",$ , 𝑑",∗
(Cluster assignment, mixed integer)

𝑏',/ = X1 if 𝑥' is in cluster 𝑘.
0 otherwise.

𝑑',/ is the distance between 𝑥' and the 
cluster center 𝑚/
𝑑',∗ is min

/
𝑑',/

MINLP Formulation
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Centroid-based Clustering - Lower Bound Strategy

min
!∈9

'
'∈𝒮

𝑄' 𝑚

𝑠. 𝑡.𝑚' = 𝑚':*

𝛽; 𝛭 ≔ min
!!∈9

'
'∈𝒮

𝑄' 𝑚'

non-anticipativity constraint

𝛽' 𝛭 ≔ min
!!∈9

𝑄' 𝑚'

Decompose into 𝒮 =
𝑛 subproblems

Basic Lower Bound
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Centroid-based Clustering - Lower Bound Strategy

𝛽' 𝛭 ≔ min
/
𝛽',/ 𝛭/ = min

/
min

!!,&∈9&
𝑥' −𝑚',/ 1

1

𝛽',/ has closed form solution: 
𝑚',/,< = 𝑚𝑒𝑑 𝑚/,<, 𝑥',<, 𝑚/,< , 𝑖 ∈ {1, … , 𝑃}

𝛭$: = {𝑚",$| 𝑚$ ≤ 𝑚",$ ≤ 𝑚$}

𝛽' 𝛭 ≔ min
!!∈9

𝑄' 𝑚'

Decompose into 𝒮
= 𝑛 subproblems

Basic Lower Bound
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• Cluster 1 center:  𝑚',*,* = 𝑚𝑒𝑑 4, 6, 10 = 6
𝑚',*,1 = 𝑚𝑒𝑑 5, 6, 10 = 6

• Object value: 𝛽',* 𝛭* = 6 − 4 1 + 6 − 5 1 = 5
21

Centroid-based Clustering - Lower Bound Strategy

Assuming 2 cluster, 2 features (𝐾=2, 𝑃=2):
Subproblem 𝑠: 𝑥' = (4,5)

𝛭*

𝛭1

𝑚"'+

𝑚"(

4 Calculation can be  
easily  parallelized

No need to solve any optimization 
problem

𝛽' 𝛭 = 1

Basic Lower Bound

𝛽' 𝛭 ≔ min
/
𝛽',/ 𝛭/ = min

/
min

!!,&∈9&
𝑥' −𝑚',/ 1

1

𝛽',/ has closed form solution: 
𝑚',/,< = 𝑚𝑒𝑑 𝑚/,<, 𝑥',<, 𝑚/,< , 𝑖 ∈ {1, … , 𝑃}

𝛭$: = {𝑚",$| 𝑚$ ≤ 𝑚",$ ≤ 𝑚$}
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Centroid-based Clustering - Lower Bound Strategy

Dualized the non-anticipativity
constraints and added to the objective 
functions with Lagrange multipliers 𝜆

𝛽=. 𝛭, 𝜆 := min
!!∈>

'
'∈𝒮

𝑄' 𝑚' + '
'?*

𝒮 @*

𝜆'A(𝑚' −𝑚':*)

𝛽'=. 𝛭, 𝜆 := min
!!∈>

𝑄' 𝑚' + 𝜆' − 𝜆':* A𝑚'

𝛽=. 𝛭 ≔ max
B
𝛽=. 𝛭, 𝜆Proposition: 

𝛽; 𝛭 = 𝛽=. 𝛭, 0 ≤ 𝛽=. 𝛭 ≤ ℒ 𝛭

𝜆C = 𝜆' = 0

𝜆 can be optimized via sub-gradient 
method [Held and Karp, 1971]

Lagrangian Relaxation

Lagrangian Relaxation provides a tighter bound than the basic lower bound, at the cost of
significantly higher computational cost per node, with one exception.
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Centroid-based Clustering - Lower Bound Strategy

Lagrangian Relaxation for K-medoid

min
7,&

'
'∈𝒮

'
D∈𝒮

𝑑',D𝑏',D

'
D∈𝒮

𝑏',D = 1

'
D∈𝒮

𝑦D/ = 1

'
/∈𝒦

𝑦D/ ≤ 1

𝑏',D ≤ '
/∈𝒦

𝑦D/

𝑏',D, 𝑦D/ ∈ 0,1

s.t.
Closed-form solution (for a given 𝜆):

ρD 𝜆 ≔ ∑'∈𝒮min 0, 𝑑',D − 𝜆' ,

𝛽=. 𝑀, 𝜆 = min
&

'
/∈𝒦

'
D∈𝒮

ρD 𝜆 𝑦D/ +'
'∈𝒮

𝜆'

Lagrangian Relaxation

𝛽=. 𝑀, 𝜆 = min
7,&

∑'∈𝒮 ∑D∈𝒮 𝑑',D − 𝜆' 𝑏',D + 𝜆'

Quality guarantee of LB:

𝐺𝑎𝑝 =
𝑧 − 𝛽=.
𝑧E − 𝛽=.

<
1
𝑒

Cornuejols, Fisher, and Nemhauser. Management Science (1977).
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Lower Bound Strategy

Decompose into
𝐺 = 𝒢 ≤ 𝑛 subproblems

Non-anticipativity constraint on samples 
within groups are maintained

ℒ 𝛭 ≔ min
!∈9

'
F∈𝒢

𝑄F 𝑚

𝑠. 𝑡.𝑚F = 𝑚F:*

𝛽3H 𝛭 ≔ min
!)∈9

'
F∈𝒢

𝑄F 𝑚F

𝛽F3H 𝛭 ≔ min
!)∈9

𝑄F 𝑚F

non-anticipativity
constraint

Proposition: 
𝛽; 𝛭 ≤ 𝛽3H 𝛭 ≤ ℒ 𝛭

Sample Grouping
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Basic Upper bound: Fix 𝑚 at 
a candidate solution G𝑚 ∈ 𝛭

𝛼 𝛭 ≔'
'∈𝒮

𝑄'( G𝑚)

• Decomposable and trivial parallelism
• Solutions from lower bound subproblems

Heuristic methods 
on root node

• K-means: Lloyd Algorithm [Lloyd, 1982] 

• K-center: Farthest First Traversal [Gonzalez, 1985]

• K-medoids: PAM [Kaufman and Rousseeuw, 1990]

Centroid-based Clustering

Theorem [Hua et al. 2021]

With the basic lower and upper bounds, the BB procedure can converge by branching 
only on the centers G𝑚.

Proof: 𝑄' 𝑚 = 𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1. is a continuous function on 𝑚. 

Upper Bounding Methods
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Centroid-based Clustering

For each sample, if the following condition is 
satisfied, then the cluster of sample 𝑠 can be 

determined and removed from the calculation.

max
!&∗∈9&∗

𝑥J −𝑚/∗
1 < min

!&∈9&
𝑥J −𝑚/

1, ∀ 𝑘 ∈ 𝒦\𝑘∗

Simplify Calculation

Inherited to Children Nodes

𝐱"

𝛭#

𝛭$

maximum distance to cluster 2

𝛭%

Sample Determination

Minimum distance to cluster 1

Used for Bound Tightening
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Centroid-based Clustering

Average improvement of 
global optimal value: 
<0.01% (10 datasets)

Practical global optimality 
within reasonable time Solving ML problem to global optimum is possible

Solving to global optimal solution renders a 
much better model

Numerical Results for K-means [ Hua et al. 2021]

Heuristic Benchmark: Lloyd Algorithm [Lloyd, 1982] 𝑘-means : 𝑚𝑖𝑛
!

∑
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1
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Centroid-based Clustering

Heuristic Benchmark: PAM [Kaufman et al., 1990]

Numerical Results for K-medoids [ Ren et al. 2022]

Average improvement of 
global optimal value: 0.46% 

(28 datasets)

Practical global optimality 
within reasonable time Solving ML problem to global optimum is possible

Solving to global optimal solution renders a 
much better model

𝑘-medoids:𝑚𝑖𝑛
!∈2

∑
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1
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Centroid-based Clustering

Heuristic Benchmark:
Farthest First Traversal [Gonzalez, 1985]

Numerical Results for K-centers [ Shi et al. 2022]

Cost reduction:
25.8% on average

(38 datasets)

Practical global optimality 
within reasonable time Solving ML problem to global optimum is possible

𝑘- centers:𝑚𝑖𝑛
!∈2

𝑚𝑎𝑥
'∈𝒮

𝑚𝑖𝑛
/∈𝒦

𝑥' −𝑚/ 1
1

Solving to global optimal solution renders a 
much better model
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Lower Bound Strategy Upper Bound Strategy Bound Tightening

Centroid-based 
Clustering

Decision Tree

Reduced Space Branch and Bound
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Decision Tree

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

8.00E+05

9.00E+05

1.00E+06

Dimitris &
Dunn,
2017

Verwer &
Zhang,
2019

Aghaei et
al., 2020

Aglin et
al., 2020

Firat et al.,
2020

Zhu et al.,
2020

McTavish
et al.,
2021

Demirović
et al.,
2022

Mazumder
et al.,
2022

Hua et al.,
2022

No guaranteed 
global optimality

Decision Tree Training
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𝑎, 𝑏, 𝑐, 𝑑 describe the tree structure:
• 𝑑K where 𝑡 ∈ 𝒯. determines whether a 

decision node splits or not. 

• variable 𝑎K = 𝑎*K, ⋯ , 𝑎,K ∈ 0,1 , and 
𝑏K ∈ [0,1] are used to track the split of 
decision nodes. 

• The prediction of each leaf node is 
controlled by the class indicator 𝑐K ∈
0,1 -, ∀𝑡 ∈ 𝒯=.

𝑧!" ∈ {0,1}, ∀𝑡 ∈ 𝒯# , 𝑠 ∈ 𝒮 represents 
whether sample 𝑠 falls into leaf 𝑡. 

𝐿! ∈ 0,1 represents the loss of sample 𝑠. 
32

Decision Tree

1

7

32

65

𝑎'𝑥" < 𝑏' 𝑎'𝑥" ≥ 𝑏'

𝑎*𝑥" ≥ 𝑏*𝑎*𝑥" < 𝑏*

• 𝑧'L = 1. 
• 𝑑* = 𝑑M = 1, 𝑑1 = 0. 

𝑐+𝑐, 𝑐-

Sample 𝑠 with 
label 𝑦'= [0,1].

𝑐+ = [1,0]

• Since 𝑐/L ≠ 𝑦'/, then 𝐿' = 1.

Decision Tree Training
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Decision Tree

• Minimize the misclassification error

MILP Formulation
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Decision Tree

Second Stage Variable

𝑧#,% , 𝐿#
(Leaf assignment and loss, mixed integer)

Restrict each sample to be predicted 
follows a decision tree structure

First Stage Variable 

𝑚 ∶ 𝑎, 𝑏, 𝑐, 𝑑

(Tree structure Variables, mixed integer)

MILP Formulation
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Decision Tree

𝛽' 𝑀 ≔ min
!!∈#

𝑄' 𝑚'

𝑚 ∶= (𝑎, 𝑏, 𝑐, 𝑑)

Decompose into 𝒮 =
𝑛 subproblems

Searching for
reachable leaves

Basic Lower Bound



University of British Columbia
36

Decision Tree

Given a branching node (in the branch and bound process) with bound 𝑀: 

𝑎$ = 0,0 , 𝑏$ = 0.3 , 𝑐$ = 1 0
0 1 , 𝑑$ = [1]

𝑎% = 1,1 , 𝑏% = 0.6 , 𝑐% = 1 0
0 1 , 𝑑% = [1]

𝑥': [0.7,0.7]
𝑦': [0,1]

class 1 class 2

𝑏! 𝑏"
𝒯O! = 3 , 𝛽' = 0

If choose first 
feature to split
𝑎 = [1,0]

Basic Lower Bound
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Decision Tree

Given a branching node (in the branch and bound process) with bound 𝑀: 

𝑎$ = 0,0 , 𝑏$ = 0.3 , 𝑐$ = 1 0
0 1 , 𝑑$ = [1]

𝑎% = 1,1 , 𝑏% = 0.6 , 𝑐% = 1 0
0 1 , 𝑑% = [1]

𝑥': [0.7,0.7]
𝑦': [0,1]

class 1 class 2

𝑏"

𝑏!

𝒯O! = 3 , 𝛽' = 0

If choose second 
feature to split
𝑎 = [0,1]

Basic Lower Bound

𝑏! 𝑏"
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Decision Tree

Given a branching node (in the branch and bound process) with bound 𝑀: 

𝑎$ = 0,0 , 𝑏$ = 0.3 , 𝑐$ = 1 0
0 1 , 𝑑$ = [1]

𝑎% = 1,1 , 𝑏% = 0.6 , 𝑐% = 1 0
0 1 , 𝑑% = [1]

𝑥': [0.2,0.5]
𝑦': [0,1]

class 1 class 2

𝑏! 𝑏"

If choose first 
feature to split
𝑎 = [1,0]

Basic Lower Bound
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Decision Tree

Given a branching node (in the branch and bound process) with bound 𝑀: 

𝑎$ = 0,0 , 𝑏$ = 0.3 , 𝑐$ = 1 0
0 1 , 𝑑$ = [1]

𝑎% = 1,1 , 𝑏% = 0.6 , 𝑐% = 1 0
0 1 , 𝑑% = [1]

𝑥': [0.2,0.5]
𝑦': [0,1]

class 1 class 2

𝑏! 𝑏"

𝑏"

𝑏!

𝒯O! = 2,3 , 𝛽' = 0

If choose second 
feature to split
𝑎 = [0,1]

Basic Lower Bound
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Decision Tree

• Comparing the label 𝑦!& with the range of 𝑐 of each leaf node
in 𝑡 ∈ 𝒯'&, the loss of some samples can be determined.

• Suppose 𝑘 is the true label of sample 𝑠 (i.e., 𝑦!& = 1), then we can check 
the loss of sample 𝑠 with the following equation:

Sample Determination
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Decision Tree

Practical global optimality 
within reasonable time 

Benchmark:
CART [Breiman et al, 1984], 

OCT[Bertimas and Dunn, 2019]

Solving ML problem to global 
optimum is possible

Numerical Results (D=2, nc=1000)  [Hua et al. 2022]
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Decision Tree

Practical global optimality 
within reasonable time 

Benchmark:
CART [Breiman et al, 1984], 

OCT[Bertimas and Dunn, 2019]

Cost reduction:
12.5% and 11.7%

on average

Solving ML problem to global 
optimum is possible

Solving to global optimal solution renders a 
much better model

Numerical Results (D=2, nc=1000)  [Hua et al. 2022]
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Decision Tree

Training accuracy:

3.7% and 3.6% on average

Benchmark:
CART [Breiman et al, 1984], 

OCT[Bertimas and Dunn, 2019]

Testing accuracy:

3.3% and 2.8% on average

Solving ML problem to global 
optimum is possible

Solving to global optimal solution renders a 
much better model

Numerical Results (D=2, nc=1000)  [Hua et al. 2022]
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Decision Tree

Training accuracy:
DE-MH (GPU) is 0.10% smaller 

than RS-OCT on average

Benchmark:
RS-OCT [Hua et al. 2022]

Testing accuracy:
DE-MH (GPU) is 0.04% larger 

than RS-OCT on average

DE-MH (GPU) can maintain 
comparable levels of accuracy to the 

global method RS-OCT

Numerical Results of DE-MH (D=2)

For datasets with ≤1% gap,
0.25% and 0.39% smaller on 
training and testing accuracy
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Decision Tree

Running Time:
DE-MH (GPU) offers a 675X
improvement in speed over 

RS-OCT with 1000 cores

The metaheuristic method obtains comparable levels of accuracy to 
the global method with significantly reduced running time.

Benchmark:
RS-OCT [Hua et al. 2022]

Numerical Results of DE-MH (D=2)
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Decision Tree

Benchmark:
CART [Breiman et al, 1984],
RS-OCT [Hua et al. 2022]

DE-MH v.s. CART
3.36% and 3.26% larger on 

training and testing accuracy

DE-MH v.s. RS-OCT
2.52% and 2.75% larger on 

training and testing accuracy
(RS-OCT fails to achieve reasonable 

gaps)

Numerical Results of DE-MH (D=3)
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l A reduced-space branch and bound training algorithm.

l Guaranteed convergence by branching only on model parameter variables.

l Decomposable lower and upper bound strategies.
l Trivial Parallelism with closed-form subproblem solutions.

l Achieve global optimum solutions for large-scale ML problems.
l One billion samples within 2 hours (0.1%, k-center problem, 1000 cores).

l Global Optimization vs Heuristics

Conclusion and Highlights
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